Building on the previous success of a mono-crystal snowflake growth model, a team of NASA researchers has invented and implemented a poly-crystal variant of the model to simulate simultaneous crystalline growth along lattices of different orientations.

Inferring snowfall intensity and amount using remote sensing relies on knowing the scattering properties of snowing particles. However, these scattering properties depend strongly on the geometric shapes of the snowing particles.

Poly-crystal snow particles, such as bullet rosettes, appear frequently in nature. Simulating the growth of both mono-crystal and poly-crystal particles and obtaining accurate scattering properties are paramount for furthering accurate quantitative estimates of snowfalls.

\[\text{Thomas L. Clune, NASA Goddard Space Flight Center} \]
\[\text{Kwo-Sen Kuo, University of Maryland, College Park} \]