
SIAM Conference on

Parallel Processing for Scientific Computing
San Francisco, CA
February 25-27, 2004

Performance of a New CFD Solver
Using a Hybrid Programming
Paradigm
M. Aftosmis
NASA Ames Research Center

Moffett Field, CA

M. Berger
Courant Institute
New York University, NY

Support clustered PCs to supercomputers
 OpenMP for quick development and shared-memory systems

 MPI on distributed clusters

 Attention to memory locality

Hybrid programming
 paradigm
 Domain decomposition - Each

 CPU integrates its subdomain

 Explicit exchanges between subdomains

 Develop in OpenMP

Motivation
Cartesian methods offer solutions at all levels of fidelity

Outline

 Basic Approach
 Space-filling-curves (SFC)

 • Multigrid / Domain decomposition
 Conversion to MPI
 Parallel scalability
 Summary

Basic Approach

 Explicit Euler solver with multigrid acceleration
 Subdomains reside on processor local memory
• Each subdomain has own local grid hierarchy
• Exchange via structure copy (OpenMP), send/receive (MPI)
• Restrict use of OpenMP
 constructs

 Common code base

 Customize
• Initial distribution
• Boundary exchanges
• Gather/Scatter

Partition 1Partition 0

Coarse

Fine

Space-Filling-Curves

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

Peano-Hilbert and Morton Ordering in 2D

U-Order

N-Order

Peano-Hilbert: U-Order
 • Basic building block is U-shaped
 curve visiting each 2x2 block
 • Subsequent levels replace each
 quadrant with U-shaped curves

Morton: N-Order
 • Basic building block is N-shaped
 curve visiting each 2x2 block
 • Subsequent levels replace each
 quadrant with N-shaped curves

(Salmon94, Griebel96, Baden96, Plimpkin98, Behrens00, ...)

Space-Filling-Curves

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

Peano-Hilbert and Morton Ordering in 2D

U-Order

N-Order

(Salmon94, Griebel96, Baden96, Plimpkin98, Behrens00, ...)

Space-Filling-Curves

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

Peano-Hilbert and Morton Ordering in 2D

U-Order

N-Order

(Salmon94, Griebel96, Baden96, Plimpkin98, Behrens00, ...)

Space-Filling-Curves

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

!

"#$%&%'"!()%)(*!+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'()**)+,!-./0&1

!

,-$./0123&-45!$.6!7/45/.!/46-42.8!2.!90:

!

;5! <28<! -./=8<! 4-'/3=52/.*!

!

&0&/2

!

! >2?-3! /@! '>$A-! 2.! $! 4-A5$.8=3$4
6/"$2.!2'!B2'25-6!&C!5<-!A=4B-D

!

3&0&*!4 3&0&*!5

6'7/8&/

9'7/8&/
3&0&*!:

Peano-Hilbert and Morton Ordering in 2D

U-Order

N-Order

(Salmon94, Griebel96, Baden96, Plimpkin98, Behrens00, ...)

Space-Filling-Curves

 Extend to 3D with
additional U-shaped
turns
 Basic building block
is 2x2x2

Peano-Hilbert and Morton Ordering in 3D

Space-Filling-Curves

 Extend to 3D with
additional U-shaped
turns
 Basic building block
is 2x2x2
 Refine by replacing
segments with basic
building block
At high enough
resolution each
voxel is visited by
curve

Peano-Hilbert and Morton Ordering in 3D

Space-Filling-Curves

Finest cell in mesh defines
the dimension of voxel to
be visited by SFC.

 • Coarser cells are
 collections of voxels.

Compute M(i) or H(i) in
each cell and sort using
SFC index as sorting key

Runtime using quicksort is
O(NlogN)
• Approx: 4 sec./1M cells
on 2Ghz Pentium 4.

Ordering adaptively refined meshes

N-ordered adaptively refined mesh around NACA 0012

Mesh Coarsening

 Since the curve is hierarchal by construction, simply
traverse, collecting children as you go.
 Cells are siblings if M(i) H(i) of parent are the same

Simple traversal of cells in SFC order

Mesh Coarsening

Fine Mesh

Subsequent coarse grids automatically generated in SFC order!

Mesh Coarsening

Fine Mesh First Coarsening

Subsequent coarse grids automatically generated in SFC order!

Mesh Coarsening

Fine Mesh First Coarsening Second Coarsening

Subsequent coarse grids automatically generated in SFC order!

Mesh Coarsening
3D mesh coarsening example

Fine Coarse 1

Coarse 4Coarse 2
4.5M cells

4500 cells

635000 cells

98000 cells

Mesh Coarsening

Perfect coarsening is 8:1
• In practice, ratios near 7 on examples with real geometry
• Coarse meshes produced in SFC order automatically - coarsen again

Coarsening alg. has linear-complexity from SFC ordered mesh
• One sweep to coarsen cells
• One sweep for 1-irregularity rule
• This example takes under 15 sec. on 2Ghz Pentium 4.

Domain Decomposition

Place partition boundaries in 1-D hyperspace of U
Hierarchical structure of SFC gives partition quality competitive
with other popular partitioners
Simple scan of U-ordered mesh – permits variable work-per-cell

!

"#$%&%'"!()%)(*!(+

!

"#$%!&$%$'()*!+$,-$(

!

"#$%&'!"()#$*#+&,&#'

,-./012!/03$/124!.50.65216'!07!89:

a

b

c

d

e
f

g h

i j

k

lm

n o

pq

r

s

.$52!(

.$52!;

.$52!<

;=>!.?4'13$/!'.$36

(=>!?4.65'.$36

a b c d e f g hi j k lmnop q r s

.$52!(.$52!; .$52!<

@/$36!.$521210A!&0BAC$516'!1A!(=>!?4.65'.$36!-

D165$53?1$/!'25B32B56!07!89:!E1F6'!.$521210A!GB$/124!30".62121F6!H12?!02?65!
.0.B/$5!.$521210A65'

81"./6!'3$A!07!-=05C656C!"6'?!=!.65"12'!F51&/6!H05I=.65=36//

Domain Decomposition

SSLV with 4.7 M cells, cut-cells
weighted 2.1x for load-balance

Partitions largely rectilinear

Partition on-the-fly from single U-
ordered mesh on disk

 • Runtime partitioning
 • Restart on different # of CPUs

Coarse grids partition with same SFC
 • Also on-the-fly
 • Load-balance each independently
 • Good overlap b/c same SFC

Domain Decomposition

Compare communication with idealized cubic partitioner over
range of CPUs
Surface-to-volume tracks idealized behavior
Partitioning minimizes communication enough to give near
ideal parallel scalability

Partition Quality

Domain Decomposition
STS-107 Ascent debris, moving body 6-DOF, with adaptive mesh

Isobars
multiple exposure

M∞ = 2.46
α = 2.08°
β = -0.95°

CAIB Report, Vols. 1&2

Domain Decomposition
STS-107 Ascent debris, mesh partitioning

Load balanced partitioning almost unchanged despite mesh adaptation to motion.

frame 1

frame 3 frame 4

frame 2

Domain Decomposition

Intergrid transfer operators in multigrid introduce comm.
between every cell in hierarchy
Good overlap between corresponding subdomains on
coarse and fine meshes minimizes off-processor bandwidth
requirements
In this example, only 4% of fine cells restrict to a different
partition, tabulated results in AIAA 2004-1232

Subdomain overlap in multigrid hierarchy

Conversion to MPI

Parallel regions:
 • OpenMP - #pragma omp parallel
 • MPI - all CPUS move through identical code, insert
 MPI_Barrier() where OpenMP threads fork.
Exchange Routines:

 • OpenMP - structure copy using shared memory
 • MPI - pack-send-receive-unpack exchange buffers
Reductions:

 • Different implementations in OpenMP or MPI.
Multigrid transfer across partitions

 • OpenMP - do directly with shared memory
 • MPI - explicit transfer if restrict/prolong off subdomain
I/O and initial problem layout different

Scalability and Performance

Origin 3000: Speedup of 599 (OpenMP) and 486 (MPI) on 640 CPUs
4.7M cell mesh has only ~7350 cells on each partition

Single grid, 4.7M cell mesh SSLV example – Origin 3000

Isobars

M∞ = 2.6
α = 2.09°
β = 0.8°

Scalability and Performance

Origin 3000: Speedup of 512 (OpenMP) and 392 (MPI) on 640 CPUs
First and second coarse meshes have only 1100 and 180 cells/cpu

Multigrid, 4.7M cell mesh SSLV example – Origin 3000

Isobars

M∞ = 2.6
α = 2.09°
β = 0.8°

Scalability and Performance

Altix 3000: Speedup of 440 (OpenMP) and 320(MPI) on 512 CPUs
Each Altix CPU (1.5Ghz Itanium 2) is ~3x faster than Origin
Machine is still new, so further gains expected (MPI especially)

Single Grid, 4.7M cell mesh SSLV example – SGI Altix 3000

Isobars

M∞ = 2.6
α = 2.09°
β = 0.8°

0 100 200 300 400 500
Number of Processors

0

100

200

300

400

500

P
ar

al
le

l
S

p
ee

d
u

p

Ideal
MPI, STS-107 Launch Vehicle

OpenMP, STS-107 Launch Vehicle

Scalability and Performance

Cluster: Speedup of 13 on 15 CPUs with simple Gig-E unmanaged
switch interconnect.
Each CPU is about 3-4x faster than an Origin CPU

Cluster performance, 16 2.4Ghz Pentium 4, with Gig-E switch

Summary & Future Work

Very good scalability on wide range of platforms 500
-600/640 on Origin 3000, 320-440/512 on SGI Altix, 13/15 on
Pentium 4 cluster.

 • Architect code for distributed memory, but use direct access
 in OpenMP.
 • Restrict reliance on OpenMP constructs
 • Isolate non-local memory references

Relatively painless port to MPI
 • Common code base (instruction path ~15% different)
 • Rewrite MPI backends for exchange, setup and I/O
 • Additional work for pack-send-receive-unpack results in
 scalability almost as good as OpenMP

Actively seeking DVSM to evaluate OpenMP code on
clusters

