Integrated Real-Time Modeling System for Heliospheric Space Weather Forecasting

Dusan Odstrcil (PI), Lan Jian (Co-I), and Janet G. Luhmann (Co-I)

supported by:
NASA/CCMC (L Mays, P. MacNeice, A. Taktakishvili)
collaboration with: NOAA/SWPC & EU/HELCATS
Integrated Real-Time Modeling System for Heliospheric Space Weather Forecasting

- Improvements in the WSA-ENLIL-Cone modeling system (Dusan Odstrcil)
- Verification and Validation of the updated WSA-ENLIL-Cone modeling system (Lan Jian)
- Modeling/predicting solar energetic particle (SEP) events using SEPMOD with ENLIL (Janet Luhmann/Christina Lee)
- Q & A
Integrated Real-Time Modeling System for Heliospheric Space Weather Forecasting: Improvements in the WSA-ENLIL-Cone Modeling System

Dusan Odstrcil (PI), Lan Jian (Co-I), and Janet G. Luhmann (Co-I)
supported by:
NASA/CCMC (L Mays, P. MacNeice, A. Taktakishvili)
collaboration with: NOAA/SWPC & EU/HELCATS
Observationally driven, near-real time, “hybrid” modeling system for heliospheric space weather
Routine simulation of co-rotating streams & CMEs, event-by-event, much faster than real-time
Supported by NSF.CISN and implemented at NASA/CCMC & NOAA/SWPC
All CMEs (>500 km/s) fitted by CCMC in past 8 months are used for 4-months prediction at NH
- History (light-grey background) and prediction (white background) for heliospheric missions
- Can be used for mission planning and operational support at NASA/CCMC
All (“classical-propulsion”) missions to Mars follow the Hohmann trajectory. Spacecraft close to IMF line passing through Earth with SEP measurements for alerts. Simulations confirm Posner’s idea (PSS, 2013) except periods when IMF is disturbed by CMEs.
- IMF line connects geospace with an interplanetary shock under very large inclination angle because of: (1) spiraling IMF line and (2) bow-shaped shock front
- Thus determination of shock parameters from MHD values stored along the IMF line is very difficult because many numerical grid points are used across the shock structure and pre- and post-shock values are at different solar wind
Two simulations are used: one for background only and the other for background+transient.
Subtraction the two results to clearly identify an interplanetary shock leading edge along the observer connected IMF line.
WSA-ENLIL-Cone Modeling System — Project Proposal

Driven by evolving WSA maps & improved CME fittings — predictions in mid heliosphere

Development of additional products and applications (SEP, white-light, etc.)

Validation across the solar-activity cycle
Simulations of all CMEs from 2007 (STEREO data available) until present:
- evolving background using the WSA maps
- hydrodynamic ejecta by DONKI and HELCATS fitting of CMEs > 300 km/s

This covers basically the solar-activity cycle:
- verification & validation during minimum and maximum solar activity
- calibration of model free parameters
WSA-ENLIL-DONKI-HELCATS — CMEs > 300 km/s by SSE in 2010

Values at EARTH in 2010

- Vr (km/s)
- N (cm⁻³)
- T (K)
- |B| (nT)

Legend:
- shock
- CME
- simulated
- observed

- SIM
- OBS
- DIFF
- MAE
- RMSE
- RMSEr
- SSnr
- SSnr
- SS1n
- SS1n
- SS1n
- SS1n

ENLIL-lowres / tub-a6b1 / sse300-d4x1 / g53h10d20

HEL CATS + DONKI @ HelioWeather
WSA-ENLIL-DONKI-HELCATS — Solar Wind Speed in 2012-03

2010-08-01T00:00

(a) Ecliptic plane

EARTH

2010-08-01T00 + 0.000 days

(b) Temporal profiles

Vr (km/s)

N (cm⁻³)

T (kK)

|B| (nT)

ENLIL-lowres + GONGb-WSA / lp400-d4x1 / g53h10

HELCATS + DONKI @ HelioWeather
2010-08-01T00:00

(a) Ecliptic plane

(b) Shock distance along the IMF line

EARTH

STEREOA

STEREOb

R = 2.0 AU

IMF line

V_{amb} (km/s)

0 400 800

N/N_{amb}

1.5 4.0 6.5

V - V_{amb} at shock (km/s)

20 210 400

HELICATS + DONKI @ HelioWeather
iCCMC Event “A” — CME 2010-04-03
observed arrival: 2010-04-05T08:26, predicted arrival: 2010-04-06T03:30 (19.07 h later)

- “ad hoc” solar wind — predicted arrival: 2010-04-06T04:27 (20.02 h later)
- “realistic” solar wind — predicted arrival: 2010-04-05T18:32 (10.09 h later)
WSA-ENLIL-DONKI-HELCATS — Solar Wind Speed in 2012-03
WSA-ENLIL-DONKI-HELCATS — Solar Wind Speed in 2012-03

2010-04-05T00

Ecliptic Plane

R = 1.1 AU

MERCURY

VENUS

ENLIL-lowres + GONGb-WSAtu-Cone / a6b1-d4f1x1

HELCATS+DONKI : HelioWeather

ENLIL-lowres + GONGz-WSAtu-Cone / a6b1-d4f1x1

HELCATS+DONKI : HelioWeather
WSA-ENLIL-DONKI-HELCATS — Solar Wind Speed in 2012-03

STEREO-A

2010-04-03T00:00

(a) Running-difference image

MIN MAX
HI 1+2

MIN MAX
HI 1+2

SUN

(b) J-map at Ecliptic

ENLIL-lowres + GONGb-WSAtu-Cone / a6b1-d411x1
HELCATS+DONKI : HelioWeather

ENLIL-lowres + GONGz-WSAtu-Cone / a6b1-d411x1
HELCATS+DONKI : HelioWeather
WSA-ENLIL-DONKI-HELCATS — Solar Wind Speed in 2012-03

The diagram shows the solar wind speed over the period from 2010-03 to 2010-04, with the following parameters:

- **Vr (km/s)**: Solar wind speed in kilometer per second.
- **N (cm^-2)**: Density in centimeter per square centimeter.
- **T (kK)**: Temperature in kiloKelvin.
- **|B| (nT)**: Magnetic field strength in nanoTeslas.

The graphs display the variations of these parameters over time, with different colors indicating different data sources or events, such as shocks, CMEs, and observations.
• Various models & various outputs — continuous near-real time verification
• Fixed model parameters do not reflect variations over the solar cycle
Enlil is utilized internationally for operational prediction of the background solar wind and CME propagation and is an essential forecasting tool.

Memorandums of Understanding and non-disclosure agreements with operational partners have been signed with Enlil as an element of cooperation.

Software versioning is maintained to ensure consistent product.

In operations, multiple runs may be evaluated for official forecasts.

Current partners include:
- United Kingdom (Met Office)
- Korea (RRA/KSWC)
- Australia (BoM/SWS)

Additional international partners have expressed interest.
Community Coordinated Modeling Center (CCMC) is a multi-agency facility operated at NASA/GSFC.

ENLIL was implemented at CCMC in 2005 (legacy of NSF/CISM project) and it is used continuously since then for run-on-request & mission support services.

Total number of ENLIL requests is 5703 (as of May 17, 2016).

There are only 9 papers & 22 presentations in CCMC database that explicitly mention ENLIL by name in their title. This is probably a very small subset of papers/publications that utilized ENLIL.

CCMC staff also independently evaluates and validates the modeling system and uses it for space weather predictions to support NASA robotic missions.

It is also used for education and public outreach.
OpenSpace is a multi-scale rendering software platform
OpenSpace is open source software available for MacOS, PC, Linux on laptops, desktops, classrooms, planetariums, virtual reality
OpenSpace enables interactive 3D visualization of space weather models at the NASA/CCMC
ENLIL will be featured in the Sun-Earth day planetarium at AMNH (New York) on July 27, 2017
Visualization of Heliospheric Simulations at Planetariums

- Collaborative project between NASA/CCMC, Linkoping Univ (Sweden), and American Museum of Natural History (New York, NY)
- OpenSpace tool — interactive, multi-scale, multi-display environments to explore our current understanding of the Universe
- Ultimate goal — a general open-source visualization software enabling synchronized presentations in planetariums across the globe
Summary

- We developed new versions of the WSA-ENLIL-Cone modeling system capable to handle new inputs & produce new outputs.
- We set up the project testbed system for “on-fly” verifications of various new versions under near-real-time conditions.
- Updated WSA-ENLIL-Cone modeling system can now routinely predict:
 - ICME arrival times (ejecta and/or shock) in mid-heliosphere
 - ensemble modeling
 - evolving background solar wind
 - IMF topology and shock parameters for SEP models & alert plots
 - synthetic white-light images (for “mid-course” correction)
- We realized large-scale calibration & validation studies to evaluate new features, compare with previous versions, and with other models implemented at CCMC.
- We continued in development of the SEP model and applied it to selected multi-CME event scenarios observed during maximum of solar activity.
- We authored or co-authored 18 papers and made numerous presentations at domestic and international conferences. Impact of our work has been enhanced by CCMC users.
- Updated WSA-ENLILCone modeling system facilitates:
 - direct comparison with remote and in-situ observations at planets and spacecraft
 - high-quality images and animations red for presentations/publications
 - scripting system to support research and prediction activities
 - supports heliospheric predictions & mission planning relevant to NASA missions.