Predicting Composition of Photo Voltaic Cells Using Neural Networks

Introduction: A better understanding of IV curve data collected from photo voltaic cells may
lead to the construction of better solar cells. With this in mind IV curve data from different
types of solar cells was acquired from Photovoltaics and Electrochemical Systems Branch, NASA
Glenn Research Center. Neural networks were created to predict the chemical composition of
different classes of solar cells with varying degrees of success.

Language and API: The neural network was built in Python using Keras with TensorFlow as a
backend, and the data to train the network was acquired from researchers from NASA Goddard
Research Center. Data preprocessing steps and K-means clustering were conducted using Sci-
Kit Learn, and electrical properties of the curve were calculated using R.

Solar Cell Data: The IV curves from over 7000 solar cells representing 20 different types of
solar cell materials were used in this study. The short circuit current (SCC), reverse saturation
current (RCS), shunt resistance (RSH), open circuit voltage (VOC), series resistance RS, and the
diode ideality (DIF) were calculated from the IV curves using a proprietary R code developed at
NASA Goddard. These values were used as the features to predict the materials used in the
different solar cells. The solar data was first separated by material type, which were non-alloy
compound and elemental, single gap, and triple gap solar cells. Non-alloy compound and
elemental solar cells were those composed of elements or non-alloy compounds. Single gap
solar cells are those which possess only one energy gap, and triple gap cells are those that
possess three energy gaps. There were 5 non-alloy compound and elemental solar cells, 15
single gap solar cells and 3 triple gap solar cells.
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Figure 1: The y-axis is listing of solar cell materials represented in the received data set. The x-
axis is the count of a particular material.

K-mean clustering of the PV cell IV curve data suggests that there are four types of PV cell IV
curves, which are visualized in the t-SNE plot (Figure 2a). Interestingly, each curve cluster has a
unique chemical signature (Figure 2b), which suggests that chemistry plays an important role in




determining solar cell performance. However, IV curves do not cluster solely on the chemical
properties that were used to divide the compounds to train neural network models.

S
75

. L
2} .é‘ Y 0 4.02827,-11.7385
2 .
N Q a&g -
o SRS UL 00
s VRN, Tea 1 55.2538, 39.4362
25 ‘ é* é 'S ! :"
b - L]
oM 2 -23.388, 41.9674
-75 ’
-75 -50 25 0 25 50 75 100 3 57.2296, 26.5328

Figure 2a: t-SNE visualization of the 4
k-means clusters. Each point

represents an IV curve and each color

represents a distinct cluster (0 — red, 0 4693
1—green, 2 —cyan, 3 —purple). The
coordinates are for reference only 1 8

and are not be interpreted as a

distance relationship among the data.
2 1188




Cluster O

Cluster 1

Cluster 2

Cluster 3

8 & 8 8

° S s 8

G eenpes

06V InGaAs m

InGay IGe B
oA —

o

s b

"agdte |
Gapelll

1
-
nGAPIGaASTS 1
i
-

EMTY
EMapd 5L TJ
Zn0ICu0

0Jaisn|D ul sjeusjely (20 Jejos juslayiq O Junoy

16V In GaAs

Dual Junction

2
P e lc—
ogPicaks

InGap/GaRs/Ge

ndIPTE
]

méd\e
5

GaloPs
q’ép

T
5 el
Gals mid
nGaP\GaAsIGg
301Nk
%

agg
InGAP/GaAs]

EMapd.
‘Tnoscsuo

} Jaisn|D Ul sjeusje (120 JejoS Jualayi] JO Juno)

ek 'l?é“ﬁ

06V inGak

S

0748V nGahs

iple Junclion —
e

nGaP\ AL

“ .§* F

nGAPIGaASaa

ENT

Emapg Sl 1Y

8

Z J01SN|D Ul s[eujep (90 JB(OS Juaialiq JO JUNoD

wwwww

R
066V InGaAs

Gaks
TUm

S m—
4 eV
OTageaE
GaAs w/iQD
GaAs+!

7T —
126V inGaAs
Dual Junction |
InGaP
nGaP/GahelGe
GEPIGaAs mm—

InGap/GaRs/Ge |

‘avfﬂs/i—

nGaP GG ;
31

Far)
InGAP/GaAs(Ge

ENTTY
EMand SL TJ
Zn0ICu0

R, E m
- -I 2= =g mm I m

03
2
110V IR0AHs 1
Peroysk

InGaAs
st

£ JaISN|D Ul S[euaiepy (|80 JB[oS JualayIq JO JUnoD

Figure 2b: The chemical “Figure print” for each on the four k-means clusters.

Neural Network Architecture: A fully connected neural networks constructed with the 5

electrical parameters as inputs was used to build three neural network models to predict the

chemical composition of non-alloy compound and elemental, and single gap, and triple gap

solar cells. The predicted output was 3 for the triple gap IV curves model, 5 for the non-alloy
compound and elemental IV curves model, and 15 for the single gap IV Curves model, which

were the number of materials in each class. Dropout regularization was used to guard against

over fitting.




def nn_model(out, 11, 12, 13):
model = Sequential()
model.add(Dense(1l1l, input_shape = (6,), kernel initializer = glorot_uniform(seed=None), activation = 'relu'))

model.add (Dropout(0.1)) Code
model.add(Dense(12, kernel initializer = glorot_uniform(seed=None), activation = 'relu'))
model .add (Dropout (0.1) ) Keras Code for the

model.add(Dense(13, kernel initializer = glorot_uniform(seed=None), activation = 'relu'))
model.add(Dropout(0.1))

model.add(Dense(out, activation= 'softmax'))

return model, es

Neural Network

Layer (type) Output Shape Param #
e ety ‘—
' dense_1 (Dense) (None, 50) 350
, dropout_1 (Dropout) (None, 50) 0
dense 2 (Dense) (None, 30) 1530 Dense
Linear Model of
dropout_2 (Dropout) (None, 30) 0 the Data
dense_3 (Dense) (None, 20) 620
dropout 3 (Dropout) (None, 20) 0
dense 4 (Dense) (None, 5) 105 ——p . Predicted Composition(s)

Total params: 2,605
Trainable params: 2,605
Non-trainable params: 0

Figure 3: Keras code for the fully connected neural network.

Results: Of the three models the model distinguishing among the non-alloy compound and
elemental solar cells performed the best. With a 91% accuracy it could predict which of the 5
solar cell materials generated a given IV curve given the calculated electrical properties (Figure
3a). The model had the most difficulty distinguishing between a-Si and Si; when presented with
calculated electrical data from a given a-Si IV curve it predicted it was Si  43% of the time.
However, when presented with calculated electrical data from a given Si IV Curve it predicted it
was a Si 94% of the time. The single gap model fared well, correctly predicting the composition
81% of the time (Figure 3b). There were a few materials where the prediction was accurate
100% of the time. There were also a few materials, one of which was a-Si, where it had a
prediction accuracy of 0%. The triple gap model fared the worst (Figure 3c). This is likely due to
the disproportionate representation of IngsGao.sP/GaAs/Ge in the data set. Consequently, the
model defaulted to predicting InosGao.sP/GaAs/Ge, failing to correctly predict the other
compounds the majority of the time.
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Figurer 4a: The confusion matrix for the non-alloy compound and elemental solar cells targeted
in the model. The number of IV curves from a given chemistry is in parentheses: GaAs (1055),
Ge (323), InP (27), Si (1156), a-Si (22)
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Figure 4b: The confusion matrix for the single gap solar cells targeted in the model. The
number of IV curves from a given chemistry is in parentheses: Al_0.2Ga_0.8As (11), GaAs
(1055), GaAs_0.5P_0.5 (12), Ge (323), InP (27), In_0.05Ga0.95As (5), In_0.15Ga_0.85As (34),
In_0.2Ga_0.8As_0.98N_0.02 (9), In_0.3Ga_0.7As (12), In_0.45Ga_0.55P (4), In_0.5Ga_0.5As
(67), In_0.5Ga_0.5P (435), In_0.8Ga_0.2As (73), Si (1156), a-Si (22)



confusion matrix with normalization

In_0.5Ga_0.5P/GaAs/Ge 003 001 08

06

In_0.5Ga_0.5P/GaAs/In_0.5Ga_0.5As 025 001

True label

ro4

ro2

In_0.5Ga_0.5P/In_0.05GaAs_0.95/Ge 0.01 0.25

Predicted label

Figure 4c: Confusion matrix for the triple gap solar cell compounds targeted in the model. The
number of IV curves from a given chemistry is in parentheses: In_0.5Ga_0.5P/GaAs/Ge (2588),
In_0.5Ga_0.5P/GaAs/In_0.5Ga_0.5As (294), In_0.5Ga_0.5P/In_0.05GaAs_0.95/Ge (565)

Conclusion: Trained neural network models were used to predict the materials composition of
solar cells from electrical parameters generated form IV curves. The model worked best
predicting non-alloy compound and elemental solar cells. The model prediction was at 91%
accuracy for the best-case scenario. More data in equal amounts from the different material
types is needed to improve model performance for other chemical compositions.



