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Abstract 

 
The modeling of groundwater flow using three-
dimensional finite element discretizations creates a need to 
solve large systems of sparse linear equations (Ax = b) at 
each of several nonlinear iterations. These linear systems 
can be difficult to solve because of the ill-conditioning of 
the matrix A resulting from the widely varying magnitudes 
of its coefficients. Because the meshes may contain 
millions of nodes, iterative solvers are typically used to 
perform the Ax = b solution. Since 80 percent or more of 
the computational time is spent in the iterative solver part 
of the computer program, choosing the most efficient 
solver for each application can dramatically reduce the 
total solution time. This paper tests 12 Krylov subspace 
parallel linear iterative solvers with 5 preconditioners (60 
scenarios) on linear systems of equations resulting from a 
finite element study of remediation of a military site using 
pump-and-treat technology. Both symmetric, positive-
definite matrices, resulting from a Picard linearization of 
the nonlinear equations for the steady-state case, and 
nonsymmetric matrices, arising from a Newton 
linearization of the nonlinear equations of a transient case, 
are studied. The Portable, Extensible Toolkit for Scientific 
Computation (PETSc) library was used in this study on the 
Engineer Research and Development Center Major Shared 
Resource Center SGI O3K and Cray XT3 computers. 
Matrix data corresponding to each subdomain in a 
parallel groundwater finite element program were first 
written to a file in a compressed sparse column format. A 
separate program was then written in FORTRAN to read 
these data, renumber the nodes, call the PETSc routines to 
load A and b and then solve for x, and finally compute 
error norms. Solver time, iteration count, 2-norm and ∞-
norm of the residual after convergence, weak speedup, and 
strong speedup are tabulated in this paper for the different 
scenarios and then analyzed. 

1.  Introduction 
 

The modeling of groundwater flow using the finite 
element method with three-dimensional (3-D) meshes 
creates a need to solve large systems of linear equations, 

 
    bAx =         (1) 

 
 
at each of several nonlinear iterations. Here, A is the 
coefficient matrix, b is the known right-hand-side vector, 
and x is the unknown vector to be computed. Widely 
varying material properties of the media (e.g., hydraulic 
conductivity of sand and clay) and the presence of 
unsaturated flow can give rise to ill-conditioned  matrices 
having coefficients that vary in size by several orders of 
magnitude. Because the meshes may contain millions of 
nodes, iterative solvers are often used to solve Equation 1. 
Since 80 percent or more of the computer time is spent in 
the iterative solver part of the computer program, choosing 
the most efficient solver for each application can 
dramatically reduce the total solution time. The purpose of 
this work is to test several iterative parallel linear solvers 
to help determine the best one for groundwater flow 
applications. Because of the nature of the matrices, the 
findings may be applicable to other application areas as 
well. 
 
2.  Test Problem 
 

The test problem consists of a finite element model of 
a pump-and-treat system for cleaning up a military site. 
Figure 2 shows a top view of the entire mesh. Figure 3 
shows a magnified portion of the mesh showing wells and 
trenches. Figure 4 shows a further magnification of the 
mesh surrounding two wells. Finally, Figure 5 shows a 
lateral view of the mesh showing the refinement chosen for 
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the various soil layers. The original mesh was discretized 
using 102,996 nodes and 187,902 elements, while  a 2-fold 
refinement utilized 197,409 nodes and 375,804 elements, 
and an 8-fold refinement utilized 763,887 nodes and 
1,503,216 elements. Two linear systems from this test 
problem were tested: (1) the steady-state run at the tenth 
nonlinear iteration using a Picard linearization, producing 
a symmetric, positive-definite (SPD) linear system and (2) 
a transient run at the tenth nonlinear iteration of the first 
time-step using a Newton linearization, producing a 
nonsymmetric linear system. 
 
3.  Testing Iterative Solvers Using PETSc 
 

This paper tests 12 Krylov subspace parallel linear 
iterative solvers[1,2,4,6] with 5 preconditioners (60 scenarios) 
on the two linear systems described above. The Portable, 
Extensible Toolkit for Scientific Computation (PETSc) 
library[5] was used in this study on the Engineer Research 
and Development Center Major Shared Resource Center 
SGI O3K and Cray XT3 computers. The solvers are 
 

1. Conjugate Gradient (CG) 
2. Generalized Minimum Residual (GMRES) 
3. Biconjugate Gradient (BiCG) 
4. Biconjugate Gradient Stabilized (BiCGSTAB) 
5. Conjugate Gradient Squared (CGS) 
6. Transpose-Free Quasi-Minimal Residual, version 

1 (TFQMR1) 
7. Transpose-Free Quasi-Minimal Residual, version 

2 (TFQMR2) 
8. Conjugate Residual (CR) 
9. Flexible GMRES (FGMRES) 
10. Minimum Residual (MINRES) 
11. Symmetric LQ (SYMMLQ) 
12. Biconjugate Gradient Stabilized, degree k 

(BiCGSTAB(k)) 
 
The preconditioners are 
 

1. None 
2. Jacobi 
3. Block Jacobi (Bjacobi) 
4. Additive Swartz method (ASM) 
5. successive overrelaxation (SOR) 

 
Figure 1 shows a generic parallel version of the Conjugate 
Gradient solver algorithm for a finite element program 
with each processing element (PE) assigned to a portion of 
the mesh. The preconditioning matrix K is chosen so that it 
approximates A in some sense and because the auxiliary 
linear system 
 

rKz =        (2) 
 

is much easier to solve than the original linear system and 
can  be solved efficiently on parallel architectures. Ghost 
nodes for the vector p are updated prior to calculating the 
vector q = Ap, and parallel reduction operations are  
required to calculate the inner products bTb, zTr, pTq, and 
zTr. x0 is an initial guess to the solution x. 
 

 
 

Figure 1: Parallel Conjugate Gradient algorithm 
 
3.1.  Saved Data 
 

For each subdomain, the following data were written 
to a file from a parallel groundwater finite element 
program: 
 

1. Number of global nodes, number of "owned" 
nodes (i.e., subdomain nodes),  number of "local" 
nodes, which is the union of owned nodes and 
"ghost" nodes (i.e., nodes in other subdomains 
that are connected to an owned  node), number of 
compressed columns, and number of PEs. 

2. A one-dimensional (1-D) array containing the 
global node numbers for the local nodes. 

3. A two-dimensional (2-D) array in compressed 
column format containing the local node numbers 
corresponding to the coefficients of A for the 
owned rows of A. Zeroes are used to pad the 
array to simplify the reading and writing of these 
data. 

�  = 0; p = 0 
r = b – A * x0; nmax = 20000 
�  = 10-15; eps = �  * sqrt(bTb) 
! || reduction needed for bTb 
n = 0 
do 
  n = n + 1 
! Apply preconditioner 
  Solve K * z = r for z 
  �   = zTr 
! || reduction needed for zTr 
  if (n > 1) �  = �  / � sav 
  p = z + �  * p   
! Ghost node update needed for p 
! || reduction needed for pTq 
  q = A * p; �  = �  / pTq 
  x = x + �  * p; r = r – �  * q 
  � sav = �  
! || reduction needed for rTr 
  if (n > nmax .or. 
      sqrt(rTr) < eps) exit 
end do  
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Figure 2: Top view of mesh 
 
 

  
 

Figure 3: Magnified view of a portion of the mesh 

 

 

Wells 

 
Figure 4: Further magnification showing fine resolution of 

the mesh for modeling wells 
 

  
Figure 5: Side view showing strata layers 
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Figure 6: Small finite element mesh 
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4. A 2-D array in compressed column format 
containing the coefficients of A for the owned 
rows of A. Zeroes are used to pad the array. 

5. A 1-D array containing the owned portion of b. 
6. A 1-D array containing the owned portion of the 

solution vector x obtained independently. 
 

A separate program was then written in FORTRAN to 
read these data, renumber the nodes, call the PETSc 
routines to load A and b and then solve for x, and finally 
compute error norms. Solver time, iteration count, 2-norm 
and ∞-norm of the residual after convergence, weak 
speedup, and strong speedup were tabulated for the 
different scenarios and then analyzed.  
 
3.2.  Renumbering the Nodes 
 

ParMETIS[3] was used to compute the original 
partitioning of the mesh. Unfortunately, the resulting 
global numbering of the nodes was very  inefficient when 
input directly into PETSc, which used a block partitioning  
of the matrix A by rows. To illustrate the difficulty, Figure 
6 shows a sample finite element mesh containing 22 nodes 
and partitioned into three PEs. The node assignment is 
 
PE 0   4 22 21 17  1 20  8 18 19 
PE 1   9  2 11  5 15 14  6 
PE 2  16  3 13  7 12 10 
 
If the same number of nodes per PE is maintained, the 
PETSc partitioning is 
 
PE 0   1  2  3  4  5  6  7  8  9 
PE 1  10 11 12 13 14 15 16 
PE 2  17 18 19 20 21 22 
 
With the ParMETIS partitioning, node 1 has no ghost 
nodes; node 2 has ghost nodes 19 and 20; node 3 has ghost 
nodes 18; etc. However, with the PETSc partitioning, node 
1 has ghost nodes 17, 18, 19, 20, 21, and 22; node 2 has 
ghost nodes 9, 11, 14, 15, 19, and 20; node 3 has ghost 
nodes 12, 13, 16, and 18; etc. To eliminate the 
communication cost of the additional ghost nodes, the 
global nodes were renumbered consecutively within each 
ParMETIS partition. npetsc is a mapping vector from 
the original global node  numbering to the new numbering. 
 
3.3.  PETSc FORTRAN Code 
 
 To see an example of how the input data are used with 
PETSc, consider the code to load the array a with values 
from the matrix A (Figure 7). Definitions of the major 
variables are as follows: 
 
nown number of owned nodes 
ncol number of compressed columns 

ai  original A matrix 
a  PETSc version of the A matrix 
jloc local node number from the local row i and local  

compressed column j 
ii  new global row number in zero-based numbering  

system 
jj  new global column number in zero-based  

numbering  system 
 

 
 

Figure 7: Loading A into PETSc 
 

The b vector is loaded in a similar fashion. After 
options are set, a call to KSPSolve completes the 
solution. Table 1 shows times for the O3K and XT3 for 
loading the data into PETSc after allocating sufficient 
memory for the arrays. 
 

PEs Nodes Elements Time (sec) 
8 102996  187902  0.29 
16 102996  187902  0.15 
32 197409  375804  0.29 
8 102996  187902 0.08 
16 102996  187902 0.04 
32 197409  375804  0.06 
64 763887  1503216  0.17 

 
Table 1: Load times of the PETSc data for the O3K (white) 

and XT3 (shaded) for the SPD matrix 
 
4.  Test Results 
 
 Table 2 shows results for the 60 scenarios for the SPD 
matrix for the original mesh of 102,996 nodes and 187,902 
elements using 8 PEs on the O3K and XT3.  In all the runs, 
the convergence criterion of 

do i = 1, nown 
 ii = npetsc(i) - 1 
 do j = 1, ncol 
  jloc = id(i, j) 
  if (jloc .ne. 0) then 
   jj = npetsc(jloc) - 1 
   v = ai(i, j) 
   call MatSetValues (a, 1, ii, 1, & 
        jj, INSERT_VALUES, ierr) 
  end if 
 end do 
end do 
 
call MatAssemblyBegin (a, &  
     MAT_FINAL_ASSEMBLY, ierr) 
call MatAssemblyEnd (a, & 
     MAT_FINAL_ASSEMBLY, ierr) 
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CG 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 56.4  23.1 7096 24.47 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 13.14 

Jacobi 18.3 8.44 768 2.78 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.50 

Bjacobi 9.91 5.16 224 1.94 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.03 

ASM - - - - 
 ּ ּ - - - - 

SOR 11.4 5.89 306 2.06 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.59  

GMRES  
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 2.00 1.18 215247 1478.09  
 ּ ּ 1.99 1.75 236216 645.88 

Jacobi 1.72 1.16 2639 18.81 
 ּ ּ  ּ ּ 0.673 2419 6.64 

Bjacobi 1.72 1.08  586 7.97 
 ּ ּ 1.71 1.16 587 3.22 

ASM 1.69 1.64 514 9.22 
 ּ ּ 1.70 0.764 515 3.30 

SOR 1.62 0.946 808 8.66 
 ּ ּ 1.63  ּ ּ 809 5.02 

BiCG 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 58.7 29.8 7426 56.06 
 ּ ּ 58.3 25.0 7466 25.81 

Jacobi 18.2 8.66 769 6.06 
 ּ ּ  ּ ּ 9.90  ּ ּ 2.72 

Bjacobi 9.82 4.61 224 4.22 
 ּ ּ 9.97 6.23 ۰ ۰ 2.00 

ASM 9.86 4.56 220 5.22 
 ּ ּ 9.82 6.69 ۰ ۰ 2.35 

SOR - - - - 
 ּ ּ - - - - 

BiCGSTAB 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 83.3 33.7 8140 55.84 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 29.63 

Jacobi 52.9 32.6 509 3.69 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.87 

Bjacobi 35.2 16.2 154 2.96 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.39 

ASM 23.6 9.80 141 3.53 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.53 

SOR 23.9 11.8 214 2.91 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 2.19 

CGS 
PC 2-Norm ∞-Norm Iterations Time 

× 10-9 × 10-10 (sec) 
None - - - - 

 ּ ּ - - - - 
Jacobi 2699. 24700. 516 3.75 

 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.90 
Bjacobi - - - - 

 ּ ּ - - - - 
ASM - - - - 

 ּ ּ - - - - 
SOR 1620. 2640. 214 2.94 

 ּ ּ  ּ ּ  ּ ּ  ּ ּ 2.21 
TFQMR1 

PC 2-Norm 
× 10-9 

∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 38500. 159000. 5225 39.34 
 ּ ּ 47700. 198000.  ּ ּ 19.72 

Jacobi 3020. 3430. 512 3.94 
 ּ ּ 2990. 3170.  ּ ּ 1.97 

Bjacobi 464000. 3260000. 180 3.84 
 ּ ּ 308000. 1610000.  ּ ּ 1.66 

ASM 22600. 95800. 144 3.84 
 ּ ּ 21200. 90200.  ּ ּ 1.59 

SOR 1800. 2300. 214 3.03 
 ּ ּ 1790. 2350.  ּ ּ 2.23 

TFQMR2 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None - - - - 
 ּ ּ - - - - 

Jacobi - - - - 
 ּ ּ - - - - 

Bjacobi 39700. 41500. 413 12.00 
 ּ ּ 49900. 29200. 445 7.94 

ASM 8080. 4270. 377 15.81 
 ּ ּ 8180. 3570. 376 6.24 

SOR 1670. 1200. 748 16.88 
 ּ ּ 1790. 1640. 576 9.14 

CR 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 55.5 37.2 6682 23.66 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 13.05 

Jacobi 17.7 8.80  744 2.81 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.48 

Bjacobi 9.93 5.24  222 2.34 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.06 

ASM - - - - 
 ּ ּ - - - - 

SOR 11.5 5.75  303 2.09 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.61 

FGMRES 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 2.00 1.18 215247 1527.46 
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 ּ ּ 1.99 1.75 236216 651.07 
Jacobi 2.06 0.873 2147 15.85 

 ּ ּ 2.05 0.946 2130 5.97 
Bjacobi 2.07 1.18 600 8.82 

 ּ ּ 2.06 1.20  ּ ּ 3.30 
ASM 2.00 1.16 501 8.99 

 ּ ּ 2.07 0.815 500 3.17 
SOR 2.06 1.24 768 8.41 

 ּ ּ 2.05 1.05 769 4.80 
MINRES 

PC 2-Norm 
× 10-9 

∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 290. 107. 6814 32.31 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 15.98 

Jacobi 102. 39.6 737 3.59 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.75 

Bjacobi 23.1 19.4 221 2.72 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.14 

ASM - - - - 
 ּ ּ - - - - 

SOR 26.3 10.7 300 2.50 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.72 

SYMMLQ 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 63.9 105. 7261 33.71 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 16.49 

Jacobi - - - - 
 ּ ּ - - - - 

Bjacobi - - - - 
 ּ ּ - - - - 

ASM - - - - 
 ּ ּ - - - - 

SOR - - - - 
 ּ ּ - - - - 

BiCGSTAB(k) 
PC 2-Norm 

× 10-9 
∞-Norm 
× 10-10 

Iterations Time 
(sec) 

None 77.6 41.5 6760 49.03 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 25.89 

Jacobi 43.9 22.2 492 3.65 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.91 

Bjacobi 27.4 13.6 154 3.22 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.43 

ASM 28.1 29.9 142 3.69 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 1.56 

SOR 20.1 8.00 202 2.88 
 ּ ּ  ּ ּ  ּ ּ  ּ ּ 2.10 

 
Table 2: Test results for iterative solvers and 

preconditioners (PC) using 8 PEs on the O3K (white) and 
XT3 (shaded) for the SPD matrix 
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Figure 8: O3K solver times for the SPD matrix 
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Figure 9. XT3 solver times for the SPD matrix 
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Figure 10: XT3 iteration counts for the SPD matrix 

 

1 2 3 4 5 6 7 8 9 10 11 12

SOR

ASM

Bjacobi

Jacobi

 
Figure 11: XT3 ||r||∞ for the SPD matrix 
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CG – Jacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  768 2.78     

16 102996  187902  768 1.56 1.78   
32 197409  375804  1095 2.38   0.66 
8 102996  187902 768 1.50     

16 102996  187902 768 0.85 1.76   
32 197409  375804  1095 1.25   0.68 
64 763887  1503216  3652  7.88   0.19 

CG – Bjacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  224 1.94     

16 102996  187902  257 0.98 1.98   
32 197409  375804  594 2.17   0.45 
8 102996  187902 224 1.03     

16 102996  187902 257 0.59 1.75   
32 197409  375804  594 1.36   0.43 
64 763887  1503216  1378  6.43   0.16 

GMRES – Bjacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  586 7.97     

16 102996  187902  584 2.67 2.99   
32 197409  375804  1043 4.99   0.54 
8 102996  187902 587 3.22     

16 102996  187902 584 1.56 2.06   
32 197409  375804  1043 2.78   0.56 
64 763887  1503216  3892  22.81   0.14 

GMRES – ASM 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  514 9.22     

16 102996  187902  563 4.72 1.95   
32 197409  375804  943 7.93   0.60 
8 102996  187902 515 3.30     

16 102996  187902 563 1.96 1.68   
32 197409  375804  944 3.42   0.57 
64 763887  1503216  3892  22.81   0.14 

BiCGSTAB – Bjacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  224 4.22     

16 102996  187902  170 1.21 3.49   
32 197409  375804  386 2.94   0.42 
8 102996  187902 224 2.00     

16 102996  187902 170 0.75 2.67   
32 197409  375804  386 1.72   0.44 
64 763887  1503216  848  7.74   0.29 

BICGSTAB – ASM 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  141 3.53     

16 102996  187902  144 1.55 2.28   
32 197409  375804  310 3.59   0.43 
8 102996  187902 141 1.53     

16 102996  187902 144 0.88 1.74   
32 197409  375804  310 1.97   0.45 
64 763887  1503216  881  10.76   0.14 

CR – Bjacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  222 2.34     

16 102996  187902  253 0.97 2.41   
32 197409  375804  572 2.21   0.41 
8 102996  187902 222 1.06     

16 102996  187902 253 0.60 1.77   
32 197409  375804  572 1.35   0.44 
64 763887  1503216  1312  6.29   0.17 

CR – SOR 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  303 2.09   

16 102996  187902  328 1.17 1.79  
32 197409  375804  711 2.65  0.44 
8 102996  187902 303 1.61   

16 102996 187902 328 0.87 1.85  
32 197409 375804 711 1.85  0.47 
64 763887 1503216 - - - - 

MINRES – Bjacobi 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  221 2.72     

16 102996  187902  252 1.08 2.52   
32 197409  375804  568 2.36   0.46 
8 102996  187902 221 1.14     

16 102996  187902 252 0.63 1.81   
32 197409  375804  568 1.41   0.45 
64 763887  1503216  2440  12.49   0.09 

MINRES – SOR 
PEs Nodes Elems Iters Time 

(sec) 
Strong 

SP 
Weak 

SP 
8 102996  187902  300 2.50   

16 102996  187902  325 1.30 1.92  
32 197409  375804  9489 38.78  0.03 
8 102996  187902 300 1.72   

16 102996  187902 325 0.91 1.89  
32 197409  375804  9489 25.90  0.04 
64 763887  1503216  - - - - 

 
Table 3: Iteration count and speedup (SP) values for 

preconditioner/solver combinations for the O3K (white) 
and XT3 (shaded) 

 
    15

22
10,

!
=""< br       (3) 
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was used. This is a stringent criterion that could tax some 
solver/preconditioner combinations. But since ||b||2 = 1.36 
(106) for the original mesh, the absolute convergence 
criterion of 1.36 (10-9) is within acceptable limits of 
machine accuracy. In fact, SYMMLQ with the Jacobi, 
block Jacobi, or SOR preconditioners was the only 
additional method to converge when the convergence 
criterion was increased to 10-13.  For the SPD matrix A, 
Figures 8 and 9 show the elapsed times for the 12 solvers 
on the O3K and XT3, respectively.  Figure 10 shows the 
solver iteration counts for the XT3, and Figure 11 shows 
the infinity norm of the final computed residual vector.  
For the SPD matrix, Table 3 shows the elapsed times and 
speedups for certain solvers when solving the linear 
systems corresponding to larger meshes. Finally, Figures 
12 and 13 show the elapsed times when solving the 
nonsymmetric linear system corresponding to the original 
mesh. 
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Figure 12. O3K solver times for the nonsymmetric matrix 
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Figure 13. XT3 solver times for the nonsymmetric matrix 

 
5.  Conclusions 
 

Conclusions observed from this study are as follows:  
 

1) The times for loading the matrices and vectors 
into PETSc are small compared with the solver 
time if enough memory for the arrays is allocated 
in the initialization process, 

2) the load times can be hundreds of times larger 
than the solver times if space for the A matrix is 
allocated dynamically, 

3) the XT3 was approximately twice as fast as the 
O3K, 

4) the GMRES solver was the slowest to achieve a 
given convergence criterion but produced the 
most accurate solution, 

5) the successive over-relaxation preconditioner 
performed much better on the O3K than on the 
XT3, 

6) the overall best solvers for these linear systems 
were Conjugate Gradient and Conjugate Residual 
using the block Jacobi preconditioner, 

7) some solvers gave identical results on the O3K 
and XT3, while others did not with even the 
number of iterations being different, and 

8) a superlinear speedup was observed for some 
solvers for small processor counts on the O3K.  
For example, GMRES using the block Jacobi 
preconditioner gave a speedup of 2.99 on the 
O3K when doubling the number of PEs from 8 to 
16. Here, the iteration count was 586 on 8 PEs 
and 584 on 16 PEs. 
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