Abstract

Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NASA Advanced Supercomputing Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a wave front algorithm to determine the optimal trajectory. ANS employs the “GridScape” to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready tasks to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60 percent on 64 processors.1

Keywords: dynamic scheduling, performance, navigation, trajectory optimization.

1 Introduction

Planning NASA missions involves a number of applications working in concert to provide a feasible or optimal planning decision. These applications simulate various aspects of the anticipated mission environment, evaluate various scenarios of achieving mission goals, and evaluate multiple configurations of the vehicles to be involved in the mission. The quantity of applications, scenarios, and configurations could be significant and would require a substantial amount of computer resources and human effort to perform the calculations. To reduce the time required for the simulation and evaluation of various scenarios and configurations, we have developed an Application Navigation System (ANS).

The ANS works with applications composed of communicating tasks. It uses a task graph representation of such applications. This model can be used to represent many data flow applications c.f. [2]; ANS makes scheduling decisions based on the state of the tasks and the state of the resources of the distributed system.

ANS performs an automatic characterization of the resources, extrapolates the application’s performance to the available resources, and assigns the tasks to the best resources with the goal of minimizing the application turn around time. In [8] we have shown that this approach reduces some applications turnaround time by 25-35 percent.

In this paper, we demonstrate that ANS can efficiently manage the problem of optimizing a trajectory of a martian airplane, Section 5. The plane has a base and a number of fly-over targets located in a canyon on Mars. The goal is to find the most energy-efficient trajectory that starts at the base, visits all the targets, and returns to the base. To solve this problem, we choose a number of intermediate way points in the martian airspace and calculate the optimal trajectories between each point and its closest neighbors. Then, we use a combination of the wave front algorithm and a heuristic traveling salesman algorithm to find the most efficient trajectory. For calculation of the most lift and drag between a pair of way points we use the Cart3D package [3].

The architecture of the system is shown in Figure 1. We
describe the interaction between servers and navigators in Section 3.1, and the acquisition and use of the GridScape in Section 3.2.

![Diagram of the Architecture of the Navigation System](image)

Figure 1. The Architecture of our Navigation System. Each navigator executes the iterations of the Navigational Cycle (see Figure 2).

The results in Section 6 show that our navigation system achieves 60 percent efficiency relative to the optimal running time of the tasks without dependencies. In our experiments, we used five machines containing 1,152 processors and having peak performance of 4.1 TFLOPS, Table 1.

As an abstraction of system resources we use a GridScape, a map of the system resources represented by a directed graph, where each machine and router is represented as a node of the graph with an attached list of machine resources and a history of their dynamics. Communication links between machines are represented by the arcs of the graph labeled with the observed bandwidth and latency of the links. The initial information about the GridScape is acquired during installation of the benchmark/application servers (Figure 1). The dynamic component of the GridScape is measured by means of the NAS Grid Benchmarks (NGB) [9] during the monitoring, and by requests of the navigators.

2 Related Work

2.1 Scheduling

Application scheduling in a distributed computing environment has been a popular topic of research for several years. One type of application is the so-called parameter-sweep application, comprised of many independent experiments. In [4] the authors discuss the methods of scheduling a dynamic parameter-sweep application. In our case, the scheduler must deal with large numbers of dependent tasks with complex I/O relations. Fortunately, our main application Cart3D allows us to compose the tasks so that they can be executed in a data flow manner: a task can be launched as soon as all its input data have arrived.

To manage dependencies between tasks, we are using lists (proposed in [5]) to keep track of which nodes can be executed and which nodes cannot. The authors required the scheduler to update the “ready nodes” list after every local schedule action it performs. They also used a critical path scheduling algorithm to improve the performance of their tasks. We do not use the critical path algorithm for two reasons. First, large numbers of paths in our graphs are close to critical, and second, the length of a path can only be calculated when all tasks have finished. Also, our tasks are all virtually the same size and require the same amount of computing power, so they are somewhat more predictable than the tasks mentioned in other research papers.

Scheduling data flow graphs is an NP-complete problem unless gross assumptions are made to simplify it. Most research on data flow graphs conclude that simplifying assumptions are detrimental to the quality of the scheduler. Memory, processor, and cluster architecture are generally accepted to be too unpredictable to simplify the scheduling problem [10]. However, in our case, our simplifying assumptions have been tested and have been shown through our experiments to be reliable and predictable. This is most likely the case because we are using batch scheduler controlled systems to avoid interference among tasks.

Two models of data flow graphs are generally accepted for modeling the tasks and interconnections: task interaction graphs (TIGs) and task precedence graphs (TPGs) [10]. The TIG model is generally used for static scheduling and the TPG model is used for dynamic scheduling. In this paper, we use the TPG model, which is also referred to as the directed acyclic graph (DAG) model. When scheduling a DAG, it is important to decide whether to sacrifice efficiency of the scheduler to find an optimal solution, or to sacrifice the optimality of the solution for efficiency of the scheduler. As our initial scheduler, we used a simple but efficient scheduling method that achieved about 60 percent of the efficacy of the schedule (relative to the optimal schedule of the tasks without dependencies).

2.2 Mars Airplane

The dream of a Mars airplane has been pursued and researched by many different scientists throughout the last decade. Many felt that an unpiloted vehicle would be unable to make the judgement calls necessary for a successful flight, but recent demonstrations of unpiloted flying vehicles on Earth has eroded their theorized evidence. It is important that a flying vehicle be unpiloted because it makes the vehicle lighter. It also allows the vehicle to conduct research long before humans can get to Mars.

A flying vehicle on Mars is important because the wheeled rover missions are limited to a small area with relatively simple terrain. An airplane would allow researchers to cover much more distance and analyze more difficult terrain. One of the most interesting areas on Mars to researchers is the Valles Marineris, a canyon 1,860 miles long, and up five miles deep. Scientists hope that the canyon walls will provide clues on the sedimentation of the crust and possibly existence of life on Mars.

In 1998, NASA offered a grant to an organization that
Table 1. The grid machines used in our experiments.

<table>
<thead>
<tr>
<th>Machine Name</th>
<th>NP</th>
<th>Clock Rate (MHz)</th>
<th>Peak Perf. (GFLOPS)</th>
<th>Memory (GB)</th>
<th>Maker</th>
<th>Architecture</th>
<th>Batch System</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3K</td>
<td>64</td>
<td>600</td>
<td>76</td>
<td>16</td>
<td>SGI</td>
<td>Origin3800</td>
<td>-</td>
</tr>
<tr>
<td>O3K1</td>
<td>512</td>
<td>600</td>
<td>626</td>
<td>256</td>
<td>SGI</td>
<td>Origin3800</td>
<td>PBS</td>
</tr>
<tr>
<td>Altix</td>
<td>64</td>
<td>1500</td>
<td>384</td>
<td>128</td>
<td>SGI</td>
<td>Altix</td>
<td>-</td>
</tr>
<tr>
<td>Altix1</td>
<td>512</td>
<td>1500</td>
<td>3072</td>
<td>1000</td>
<td>SGI</td>
<td>Altix</td>
<td>PBS</td>
</tr>
</tbody>
</table>

came up with the most compelling space exploration proposal. Several of the 29 proposals were for aircraft that would explore Mars. Even though none of the missions have been fulfilled, there has been a significant amount of research dedicated to designing an airplane that will fly on Mars [14].

3 The Application Navigation System

3.1 The Navigational Cycle

In our navigation system, tasks are assigned to the machine resources by the navigators, Figure 1. The decision to accept or reject an assigned task is performed by a server based on its own criteria such as task priority and available resources. The navigators run on launch machines, while the servers are running on compute engines. For a given application, a navigator performs the following functions:

- Obtains a list of tasks ready to be executed;
- Consults the “GridScape” to find resources able to execute these tasks;
- Submits the tasks to the resources that will provide the fastest advance of the application;
- Repeats this sequence until all tasks are executed.

In order for a navigator to accomplish these functions, it must understand an application’s requirements and know the current state of the system resources.

In our computational environment, the application description includes the application performance model (expected execution time, parallel efficiency, memory size, size of I/O data). This performance model is based on several runs of the tasks on an average (not extreme) flight parameters. Despite the fact that convergency of Computational Fluid Dynamic codes may significantly vary depending on small changes in initial conditions, during our runs, we observed very consistent, predictable convergency of the flow-Cart solver.

When deciding to submit a task, a navigator uses the GridScape to match task requirements with abilities of the current resources. It estimates the time it will take to execute the task and assigns to it the number of processors that minimizes the application turnaround time. In summary, the navigator performs the routine of the navigational cycle, Figure 2. A detailed description of the ANS can be found in [8].

3.2 The GridScape

The GridScape serves as an abstract description of grid resources that represents the current state of computing resources. The navigators use it to make submission decisions, while the servers use it to qualify submitted jobs. As a result, the quality of scheduling and the overall efficiency of the navigation system depend on how well the GridScape is synchronized with task submissions and changes in the state of grid resources.

We use three ways to update the GridScape to achieve a good synchronization. First, each server updates the GridScape when it changes the state of a task to (or from) Running, by subtracting from (or adding to) the GridScape the resources used by the task. Second, each monitor periodically updates the GridScape based on timings of the NAS Grid Benchmarks. Finally, each navigator can request an update to the GridScape. The details of the GridScape acquisition process is described in [8].

4 The Martian Mission Site and Environment

The site of the mission at 279° EL and 9° SA on the Martian surface is shown on Figure 3 (left pane) and the elevation map is shown on Figure 3 (right pane).

4.1 The Martian Flyer

The Martian Flyer² (MF) is a delta-plane comprised of a wing-integrated body, two movable elevons, and two

² The MF geometry was provided by Michael Aftosmis group
fixed winglets, Figure 4. The flier was designed for data-gathering missions on the surface of Mars. The elevons can be adjusted individually from deflections of 10 degrees down to 20 degrees up to change the pitch, roll, and yaw of the aircraft. The winglets were added to reduce drag and increase lift. The computer model of MF has not been physically tested; however, it has been through rigorous virtual testing using the Cart3D package. The Cart3D package allows users to adjust the elevon settings, Mach number, and other flight characteristics to simulate conditions on Mars.

Figure 4. MF configuration with the right elevon down and a flow around it obtained with Cart3D.

4.2 The Trajectory Space

The MF starts from a base on the Mars surface, flies over a number of target points in the canyon, and returns back to the base while spending as little energy as possible to overcome the drag. The flyer takes advantage of the air updraft along the warm slopes of the canyon while avoiding the downdraft along the cold slopes. We estimate the updraft as a function of the amount of the solar radiation obtained by the slope during the current Martian day. It is a simple function of the angle between the normal to the surface and direction to the Sun\(^3\).

As an approximation of the space of all possible trajectories, we create a mesh of points at a fixed elevation and connect each point with the nearest neighbors by edges, see Figure 5. Each trajectory consists of parts of edges and parts of the circular arcs connecting the edges (not shown in the picture). It can start/end at the base, way point, or a target point. The vector of the MF velocity at the beginning of each segment is the calculated velocity at the end of the previous segment. The optimal trajectory is one that minimizes the drag along it.

Figure 5. Approximation grid for the trajectories of MF. White edges indicate edges with updraft and black edges indicate edges with downdraft. A sample trajectory is represented by the white line, with a small offset from actual position.

\(^3\)Currently we ignore effect of shadows on the updraft.
5 Trajectory Optimization

To find the optimal trajectory for the MF we need to perform a complex data flow management. We formulate this management problem as scheduling of the tasks representing flow calculations along the fragments of the trajectory. The dependencies between pairs of tasks are derived from the trajectory continuity condition.

5.1 The Cart3D Package

5.2 The Wave Front Algorithm

To find an optimal trajectory, we use the wave front algorithm that expands trajectories from already reached way points to yet unvisited way points. The algorithm ensures that a fragment of trajectory waits to be calculated until the optimal incoming trajectory is found. Once the optimal incoming trajectory is established, the fragment is calculated to extend the optimal trajectories until a trajectory from the base to all targets is found.

The finding a tour of minimum length that visits given graph vertices is known as the Traveling Salesman Problem. The general problem is NP-hard, however, the three-dimensional Euclidian problem can be solved approximately in polynomial time by Arora’s algorithm. In our case, there are only four graph vertices to visit, so even complete enumeration looks efficient. However, the length of an edge in a tour (represented as total drag along it) depends on the previous edge of the tour (due to the continuity of the MF trajectory) so that our problem can not be directly reduced to the salesman problem. Therefore, we use the heuristic wave-front algorithm to solve the trajectory optimization problem.

We define depth of a vertex (way points or the targets) of the trajectory graph as the minimum number of edges on a path connecting the vertex with the base. Obviously, vertices of depth d are connected only with vertices of the depth $d - 1$, d, and $d + 1$. The algorithm starts by sending copies of the MF state from the base along edges to the way points of depth 1. Each copy is processed by Cart3D to calculate drag along the edge. Then, on even iterations it sends copies of the MF state from all way points of depth d along edges to points of depth d. On odd iterations, it sends copies of the MF state from all way points of depth d to points of depth $d + 1$. At each point of the depth d, the copies of MF arrive on one odd iteration from the points of the depth $d - 1$ and on even iterations from the points of the same depth. The algorithm records the path of minimal energy from the base to the current way point. To maintain continuity of the trajectory, the algorithm takes the speed and altitude of the MF on the last edge of the path and uses them as initial conditions of the copies of the MF state sent to the other way points. To make a first approximation of the velocity matching given lift C_L and to adjust the angle of attack $\alpha = \frac{C_L}{k \sqrt{1 - \mu^2}}$, where k is a proportionality coefficient, cf. [1]. Then, assuming that the velocity vector is constant along the segment, the drag is computed using Cart3D. If the newly incoming edge belongs to a path
of smaller energy, then the current path is replaced with the more efficient one. The iterations continue until all targets are visited.

Then, the algorithm takes the speed and altitude of the MF on the optimal path, incoming to each target as initial conditions for the outgoing edges, and repeats the iterations using the targets as a new base. As a result, we will get pairwise shortest paths among the base and all targets. Then, we use the “go to the nearest unvisited neighbor” heuristic to build a trajectory from the base that visits all targets and comes back to the base. This path may have discontinuities in velocity at some targets. To compensate for the discontinuity we compute a maneuver that transits the MF between the trajectories in these targets and add these maneuvers to the final trajectory.

Currently, our algorithm only calculates the drag along the straight line segments of the trajectory, ignoring transitions and corners. The final version of our algorithm will account for the drag generated by turns and use all the drag values to determine the final optimal trajectory.

5.3 Scheduling Dependent Tasks

For finding the optimal trajectory by the Wave Front Algorithm, we need to execute many tasks using Cart3D with various flight parameters. The trajectory continuity condition implies dependencies between the flight parameters along the incoming and outgoing edges of each way point. These dependencies are represented as an acyclic directed task graph (e.g., the task graph of the trajectories from the base to the targets had 393 nodes and 1,402 arcs).

An algorithm called the "Allocator" was devised to schedule the tasks of the graph using subsets of the processors of a supercomputer. The algorithm uses information from the GridScape to determine the available resources, and ultimately matches all the nodes (i.e., tasks) with a certain number of processors to minimize the total turnaround time.

We keep the information about the current state of the system resources (available, busy, estimated release time) in the GridScape. The scheduler keeps track of the available and unavailable processors, along with the nodes that are ready and those that are waiting for other nodes to complete. During each cycle of the scheduler, it attempts to allocate all available, idle processors to tasks ready to execute. Processors are distributed evenly between the ready nodes, and the leftover processors that cannot be evenly distributed are allocated to the nodes with the largest number of outgoing arcs. Once all processors have been distributed, the nodes allocated to processors begin execution. When a node has finished, the processors it used become idle and are used to execute another task assigned to them by the Allocator.

The run time for each task is predictable because the tasks differ only slightly in the areas of Mach number, sideslip angle, and angle of attack, which negligibly affects turnaround time. The Cart3D code was tested with different numbers of processors to determine accurate simulated run times. The simulation abilities of our scheduler allow the user to see speedup capabilities of applications using different numbers of processors or configurations of the scheduling algorithm, see Figure 7.

![Speedup of Cart3D Execution Time](image)

Figure 7. Scalability of Cart3D when computing a single MF configuration.

In Figure 8, the graph of performance gains/losses from the simulation predictions can be seen. Running the tasks with no dependencies (where no trajectories depend on incoming trajectories) is the ideal case because no processors are required to sit idle until some tasks become available. The figure shows that using our algorithm with dependencies returns only small performance losses from the ideal case for a small number of processors. The tuned algorithm in the figure gives more processors to tasks that pass their results to many other tasks. The tuned algorithm performs better in most, but not all cases.

6 Experiments

The navigation system is implemented in Java. It uses the Java Registry to install task services on hosts used for experiments and the Java Remote Method Invocation (RMI) to run the benchmark tasks and to communicate data between them. In addition, it uses the Java Native Interface (JNI) to invoke the Cart3D tasks written in C or FORTRAN.

We tested the navigation system on a distributed system comprised of four machines shown in Table 1. During our experiments, all machines had normal production loads.

To launch jobs, we implemented the jgrun command, which has an interface similar to mpirun. GridScape performance was acquired by using the Java version of ED.S of the NAS Grid Benchmarks [9]. We used automatic submission of the servers to the queue, requesting 16, 32, or 64 processors on the machines controlled by the PBS batch scheduler.
Figure 8. Speedup of the task graph execution time. The schedules were generated by two variants of the Allocator scheduler. For comparison, we show the speedup which can be obtained while ignoring all intertask dependencies.

7 Conclusions and Future Work

We have described an architecture and implementation of an Application Navigation System (ANS) that automates execution of the applications comprised of many dependent tasks. The ANS system automatically acquires a map of the available compute resources and assigns tasks to them. The system chooses resources that provide the fastest advance of application tasks and, as a result, achieves 64 percent efficiency when solving a trajectory optimization problem.

In this paper, we laid out a framework for scheduling and execution of dependent tasks. This opens many areas of research involving the trajectory optimization problem and improving scheduling of the tasks. In particular, we are planning to increase precision of our model. We will improve our scheduling algorithm and reduce total amount of work by pruning trajectories with high drag to eliminate computations along suboptimal edges.

Acknowledgments. We want to thank Michael Aftosmis, Scott Murman, and Marian Nemec (all NASA Ames) for providing the Cart3D package, and the Martian Flyer geometry triangulation. We would also like to thank Timothy Sandstrom for providing Mars elevation data.

References

