
1

Computer Sciences Corporation1

Numerical Aerodynamic Simulation
NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035-1000
(415)604-4319

e-mail: f ineberg@nas.nasa.gov

1. This work was supported through NASA contract NAS 2-12961.

Abstract

The NHT-1 I/O (Input/Output) benchmarks are a benchmark suite developed at the
Numerical Aerodynamic Simulation Facility (NAS) located at NASA Ames
Research Center. These benchmarks are designed to test various aspects of the I/O
performance of parallel supercomputers. One of these benchmarks, the Applica-
tion I/O Benchmark, is designed to test the I/O performance of a system while exe-
cuting a typical computational fluid dynamics application. In this paper, the
implementation of this benchmark on three parallel systems located at NAS and
the results obtained from these implementations are reported. The machines used
were an 8 processor Cray Y-MP, a 32768 processor CM-2, and a 128 processor
iPSC/860. The results show that the Y-MP is the fastest machine and has relatively
well balanced I/O performance. I/O adds 2-40% overhead, depending on the num-
ber of processors utilized. The CM-2 is the slowest machine, but it has I/O that is
fast relative to its computational performance. This resulted in typical I/O over-
heads on the CM-2 of less than 4%. Finally, the iPSC/860, while not as computa-
tionally fast as the Y-MP, is considerably faster than the CM-2. However, the
iPSC/860’s I/O performance is quite poor and can add overhead of more than 70%.

Implementing the NHT-1 Application I/O
Benchmark

Samuel A. Fineberg
Report RND-93-007 May 1993

2

1.0 Introduction

The NHT-1 I/O (Input/Output) benchmarks are a new benchmark suite being
developed at the Numerical Aerodynamic Simulation Facility (NAS), located at
NASA Ames Research Center. These benchmarks are designed to test the perfor-
mance of parallel I/O subsystems under typical workloads encountered at NAS.
The benchmarks are broken into three main categories, application disk I/O, peak
(or system) disk I/O, and network I/O. In this report, the experiences encountered
when implementing the application disk I/O benchmark on systems located at
NAS will be reported. Further, the results of the benchmark on these systems are
presented.

2.0 The Application I/O Benchmark 1 [CaC92]

2.1 Background

Computational Fluid Dynamics (CFD) is one of the primary fields of research that
has driven modern supercomputers. This technique is used for aerodynamic simu-
lation, weather modeling, as well as other applications where it is necessary to
model fluid flows. CFD applications involve the numerical solution of non-linear
partial differential equations in two or three spatial dimensions. The governing dif-
ferential equations representing the physical laws governing fluids in motion are
referred to as the Navier-Stokes equations. The NAS Parallel Benchmarks
[BaB91] consist of a set of five kernels, less complex problems intended to high-
light specific areas of machine performance, and three application benchmarks.
The application benchmarks are iterative partial differential equation solvers that
are typical of CFD codes. While the NAS Parallel Benchmarks are a good measure
of computational performance, I/O is also a necessary component of numerical
simulation. Typically, CFD codes iterate for a predetermined number of steps. Due
to the large amount of data in a solution set at each step, the solution files are writ-
ten intermittently to reduce I/O bandwidth requirements for the initial storage as
well as for future post-processing. TheApplication I/O Benchmark [CaC92] simu-
lates the I/O required by a pseudo-time stepping flow solver that periodically
writes its solution matrix for post-processing (e.g., visualization). This is accom-
plished by implementing theApproximate Factorization Benchmark (called BT
because it involves finding the solution to a block tridiagonal system of equations)
precisely as described in Section 4.7.1 of The NAS Parallel Benchmarks [BaB91],
with additions described below. In an absolute sense, this benchmark only mea-
sures the performance of a system on this particular class of CFD applications and
only a single type of application I/O. However, the results from this benchmark
should also be useful for predicting the performance of other applications that
exhibit similar behavior. The specification is intended to conform to the “paper and
pencil” format promulgated in the NAS Parallel Benchmarks, and in particular the
Benchmark Rules as described in Section 1.2 of [BaB91].

1. To obtain a copy of the NAS Parallel Benchmarks or the NHT-1 I/O Benchmarks report as well as sample
implementations of the benchmarks, send e-mail tobm-codes@nas.nasa.gov or send US-mail to NAS
Systems Development Branch, M/S 258-5, NASA Ames Research Center, Moffett Field, CA 94035.

3

2.2 Benchmark Instructions

The BT benchmark consists of a set ofNS iterations performed on a solution vector
U. For the Application I/O Benchmark, BT is to be performed with precisely the
same specifications as in the NAS parallel benchmarks, with the additional
requirement that everyIW iterations, the solution vector, U, must be written to disk
file(s) in a serial format. The serial format restriction is imposed because most
post-processing is currently performed on serial machines (e.g., workstations) or
other parallel systems. Therefore, the data must be in a format that is interchange-
able with other systems without significant modification. I/O may be performed
either synchronously or asynchronously with the computations. Performance on
the Application I/O Benchmark is to be reported as three quantities: The elapsed
time TT, the computed I/O transfer rateRIO, and the I/O overheadζ. These quanti-
ties are described in detail below.

The specification of the Application I/O Benchmark is intended to facilitate the
evaluation of the I/O subsystems as integrated with the processing elements.
Hence no requirement is made of initial data layout, or method or order of transfer.
In particular, it is permissible to sacrifice floating point performance for I/O perfor-
mance. It is important to note, however, that the computation-only performance
will be taken to be the best verified time of the BT benchmark.

For this paper, the matrix dimensions,Nξ, Nη, and Nζ are assumed to be equal and
are lumped in to a single parameter calledN. The benchmark is to be run with the
input parameters shown for the largest problem size in Table 1. In addition, for this
paper, the two smaller sizes were also measured to facilitate comparison with
slower machines.

2.3 Reported Quantities

2.3.1 Elapsed T ime

The elapsed timeTT is to be measured from the identical timing start point as spec-
ified for the BT benchmark, to the larger of the time required to complete the file
transfers, or the time to complete the computations. The time required to verify the
accuracy of the output files generated is not to be included in the time reported for
the Application I/O Benchmark.

2.3.2 Computed I/O T ransfer Rate

The computed I/O transfer rate RIO is an indication of total application perfor-

TABLE 1. Benchmark input parameters

N NS IW

12 60 10
64 200 5
102 200 5

4

mance, not just I/O performance. It is to be calculated from the following formula:

Here,N3 is the grid size dimension,NS is the total number of iterations,IW is the
number of iterations between write operations,w is the word size of a data element
in bytes, e.g., 4 or 8, andTT is the total elapsed time for the BT benchmark with the
added write operations. Note that the 5 in the numerator of the equation for RIO
reflects the fact that U is a 5xNxNxN matrix. The units ofRIO are bytes per sec-
ond.

2.3.3 I/O Overhead

I/O overhead,ζ, is used to measure system “balance.” It is computed as follows:

The quantityTC is the best verified run time in seconds for the BT benchmark, for
an identically sized benchmark run on an identically configured system. This is
vital to insure that any algorithm changes needed to implement fast I/O do not
skew the overhead calculation by generating a TC that is too large. In this paper
this constraint was not strictly followed. Instead, TC was assumed to be the run-t-
ime of the particular BT application without any I/O code added and no algorithm
modifications were made to improve I/O performance. This was because there
were no published results for the largest N=102 size of the BT benchmark and not
all of the codes used to generate the published N=64 results were available. The
effects of variations in TC will be discussed further in Section 4.

2.4 Verification

Another aspect of the Application I/O Benchmark is that the integrity of the data
stored on disk must verified by the execution of a post-processing program on a
uniprocessor system that sequentially reads the file(s) and prints elements on the
solution vector’s diagonal. Output from this program is compared to output from
an implementation that is known to be correct in order to verify the file’s integrity.

3.0 Implementation

Implementing the application I/O benchmark on a given machine involves two dis-
tinct tasks. First, one must develop or obtain a version of the BT benchmark for the
target system. Second, one has to add the I/O operations to the existing code and
make any possible optimizations. Of these tasks, however, the first is the most crit-
ical. This is because the quality of implementation of the BT benchmark code can

RIO

5w() N3() NS××
IWTT

=

ζ
TT

TC
1−=

5

greatly effect bothRIO and ζ. Further, if the value ofTC used for the overhead cal-
culation is not the best one available, the amount of overhead may be greatly dis-
torted. Examples of this will be discussedin the following sections.

3.1 Cray Y-MP

The Cray Y-MP 8/256 on which the experiments were run has eight processors and
256MW (2GBytes) of 64-bit 15-ns memory. Its clock cycle time is 6-ns and its
peak speed is 2.7 GFLOPS. I/O is performed on a set of 48 disk drives making up
90GBytes of storage. For this benchmark, the Session Reservable File System
(SRFS) [Cio92] was used. This is a large area of temporary disk space that can be
reserved by applications while they are running. This assures that a sufficient
amount of relatively fast (8MByte/sec) disk space will be available while an appli-
cation is running. While additional performance might be gained by manually
striping files across multiple file systems, there is no support for automatic striping
of files.

The BT benchmark for the Cray was obtained from Cray Research. This code will
be referred to asCrayBT. CrayBT was written in FORTRAN 77 using standard
Cray directives and multitasking. It was designed for the N=64 benchmark and had
to be modified to run for the N=102 case. This modification was completed, the
I/O portion of the benchmark code was added, and a verification program was
written. Measurements were made in dedicated mode to eliminate any perfor-
mance variations due to system load.

The I/O code was implemented on the Cray using FORTRAN unformatted writes.
U was laid out as a simple NxNxNx5 matrix and could be written with a simple
write statement. The code used for opening the file is shown below:

 open (unit=ibin,f ile=’btout.bin’,status=’unknown’,

*access=’sequential’,form=’unformatted’)

 rewind ibin

whereibin is the unit number to which the output file will be assigned and the
file name isbtout.bin . Then, the actualwrites are performed as follows:

do l=1,nz

write(ibin) (((u(j,k,l,i),j=1,nx),k=1,ny),i=1,5)

enddo

Here, u is the solution vector, and nx, ny, and nz are equivalent toNξ, Nη, and Nζ.
During each write step where step mod IW = 0, nzwrites occur, each writing
nx*ny*5 words for a total of nz*nx*ny*5*8 bytes (69120 for N=12, 10485760 for
N=64, and 42448320 for N=102) per write of U. The advantage of this format is
that when verifying the code, the solution vector may be read back nx*ny*5*8
bytes (5760 for N=12, 163840 for N=64, and 416160 for N=102) at a time, signifi-
cantly reducing the amount of memory needed for the verification program.

6

Finally, the verification can be accomplished easily with the following short pro-
gram:

 program btioverify

 integer bsize,isize,ns,iw,nwrite

c def ines isize, bsize, etc.

 include ’btioverify.incl’

 real*8 u(isize,isize,bsize)

 integer tstep,i,j

 open (unit=8,f ile=’btout.bin’,status=’unknown’,

*access=’sequential’,form=’unformatted’)

 do tstep=1,nwrite

do i=1,isize

read(8) u

do j=1,bsize

write(6,’(F15.10)’) u(i,i,j)

enddo

enddo

 enddo

 stop

 end

3.2 Thinking Machines CM-2

The CM-2 is a SIMD parallel system consisting of up to 65536 1-bit processors
and up to 2048 floating point units [Hil87, ZeL88]. The configuration used for
these experiments had 32768 1-bit processors, 1024 floating point units, and
4GBytes of memory. The system is controlled by a Sun 4/490 front end. The pri-
mary I/O device is the DataVault. The DataVault is a striped, parity checked disk
array capable of memory to disk transfer rates of up to 25MBytes/sec. However, to
achieve this speed, it uses a parallel file format that is unusable by any other
machine or even a different CM-2 configuration. To satisfy the file format con-
straints of the benchmark, it was necessary to use the DataVault in “serial” mode.
This was done with thecm_array_to_f ile_so subroutine call provided by
Thinking Machines. The result of this call is a file in serial FORTRAN order con-
taining the array with no record markers. This call was measured to operate at
approximately 4.3 MBytes/sec.

Verification of data for the CM-2, however, required a different approach. Unlike
the Cray or iPSC/860, it is not feasible to verify the results on a single node. There-
fore, one must transfer the file to another machine to verify the data. Due to the
large size of the output file (1.6GBytes for the full size benchmark), ethernet trans-
fers were impractical. Further, problems with the network interface slowed down
the high speed network link provided and limited the choice of verification
machines. The most practical machine to verify the benchmark was the Cray Y-MP
due to its high speed network links and its large available disk space. Therefore,
the files were transferred to the Cray through the CM-HiPPI and UltraNet hub.
One difficulty in verifying the data was the different floating point formats of the

7

Cray and the CM-2. This was alleviated using theieg2cray function to convert
the 64-bit IEEE floating point numbers generated on the CM-2 to 128-bit Cray
floating point numbers. The 128-bit Cray format was chosen so that this conver-
sion could be done with no loss of precision.

Initially, the I/O benchmark was implemented using the publicly available sample
implementation of the BT benchmark written in CM-FORTRAN. This code will
be referred to as SampleBT/CMF. The computation rate of SampleBT/CMF was
very slow. A faster version was obtained from NAS’s Applied Research Depart-
ment (RNR). This version, RNRBT/CMF, was also written in CM-FORTRAN. It
was faster but was not as fast as the codes cited in [BaB92]. It is the fastest version
that can run for N=12 and N=102 and does not use the TMC supplied library block
tridiagonal solver. The fastest BT code for N=64 used an algorithm that was
dependent on N being evenly divisible by 16 and was therefore unsuitable for the
I/O benchmark (i.e., it would not run for the official benchmark size of N=102).
While the RNRBT/CMF code was about 32% faster than SampleBT/CMF, it still
could not complete the large size (N=102) benchmark in less than about 18 hours.

The actual I/O code was quite simple to implement. The file was opened as fol-
lows:

 call cmf_f ile_open(ibin,

$ ’datavault:/f ineberg/btout.bin’,istat)

 call cmf_f ile_rewind(ibin, istat)

whereibin is the unit number, istat is a variable in which the status of the
operation will be stored, and the file to be stored on the datavault is called
/f ineberg/btout.bin . For SampleBT/CMF, U was stored in a 4-dimen-
sional matrix spread across the processors. The code for writing this matrix was as
follows:

if (mod(istep,ibinw) .eq. 0) then

call cmf_cm_array_to_f ile_so(ibin, u, istat)

endif

whereistep is the current step number, andibinw is the write interval IW. For
RNRBT/CMF, U was broken up into five 3-dimensional matrices. These were
written consecutively as follows:

if (mod(istep, ibinw) .eq. 0) then

call cmf_cm_array_to_f ile_so(ibin, u1, istat)

call cmf_cm_array_to_f ile_so(ibin, u2, istat)

call cmf_cm_array_to_f ile_so(ibin, u3, istat)

call cmf_cm_array_to_f ile_so(ibin, u4, istat)

call cmf_cm_array_to_f ile_so(ibin, u5, istat)

endif

Verification was performed on the Cray Y-MP with the following C program:

include <stdio.h>

8

#include “btioverify.incl”

main()

{

FILE *fp;

long i,j,k,n;

char foreign[8];

double data;

fp = fopen(“btout.bin”, “r”);

for (k=0; k<RPT; k++){

for (i=0; i<DIM; i++){

fseek(fp, 5*8*(DIM*DIM*DIM)*k + 8*(i + DIM*i +

DIM*DIM*i), 0);

for (j=0; j<5; j++){

fread(foreign, 8, 1, fp);

CONVERT(foreign, &data);

printf(“%15.10lf\n”, data);

fseek(fp, 8*(DIM*DIM*DIM)-8, 1);

}

}

}

 fclose(fp);

}

whereDIM=N andRPT=NS/IW (these are defined in btioverify.incl).
CONVERT is a small FORTRAN program that calls Cray’s ieg2cray function to
convert from IEEE 64-bit floating point numbers to Cray 128-bit floating point
numbers. The text to convert is as follows:

function CONVERT(a, b)

real a

double precision b

ierr = ieg2cray(3, 1, a, 0, b, 1, x)

convert=1

return

end

Note this program assumes that the matrix is written as specified for
RNRBT/CMF. For SampleBT/CMF, U was a 5xNxNxN matrix, so thefseek ’s
would be different (RNRBT/CMF’s output is written in FORTRAN order for a
NxNxNx5 matrix). Both file formats are legal for the benchmark and should result
in the same verification output file.

3.3 Intel iPSC/860

The iPSC/860 is a hypercube interconnected multicomputer consisting of up to
128 i860 computational nodes and an i386 based host processor [Int91]. The nodes
each have 8MB of memory (1GByte total) and run a small run-time kernel based
OS called NX. The host system runs UNIX. The hypercube network uses a form of

9

circuit switching [Nug88] and links between nodes operate at about 2.8MB/sec.
I/O on the iPSC/860 is handled by itsConcurrent File System(CFS), a set of i386
based processors controlling individual SCSI disks. The I/O nodes are each con-
nected to a node on the hypercube network via an added link at each node, i.e.,
each node has 8 links, 7 for communicating with other nodes and one that can be
used to connect to an I/O node. The CFS used for these experiments had 10 I/O
processors, attached to each was a disk with a theoretical transfer rate of 1MByte/-
sec. CFS files can be striped across disks for a theoretical peak throughput of
10MBytes/sec, although actual obtained performance is considerably lower
[Nit92] and is dependent on block size and data layout. I/O was implemented using
thecwrite() synchronous write calls provided by Intel. The use of asynchro-
nous I/O was avoided because the amount of data generated was larger than the
available buffer space and it slowed down I/O for the larger problem sizes.

Initial experiments used a version of the BT benchmark (SampleBT/iPSC) with a
1D data decomposition where only N processors could be used for a size N3 prob-
lem. This code was written in FORTRAN 77 using Intel’s standard message pass-
ing library. As expected, the results were disappointing, and though the measured
overhead was low, the execution time was high and RIO was low. For more on
these results, see Section 4.3. Implementation of the I/O code for the 1D partition-
ing was more difficult than for both the Cray and CM-FORTRAN implementations
because it was necessary to construct a sequential ordering on the CFS from inde-
pendent regions of memory on each node. Unlike the CM-2, there is no library
support for this. This code is implemented as follows. First, node 0 makes sure that
no pre-existing file is resident on the CFS by opening it and closing it with the
option “status=’delete’ .” Next, node 0 opens the file and pre-allocates the
space usinglsize . It then closes the file and broadcasts a message to all other
nodes indicating whether the pre-allocation was successful or not. If the pre-allo-
cation fails, the program terminates. If not, all nodes open the file. The code for
this is shown below:

c iam is equal to the processor’s node number

 if (iam .eq. 0) then

open (unit=ibin, f ile=’/cfs/f ineberg/btout.bin’,

$ status=’unknown’,form=’unformatted’)

c delete any pre-existing f ile

close (unit=ibin, status=’delete’)

open (unit=ibin, f ile=’/cfs/f ineberg/btout.bin’,

$ status=’new’,form=’unformatted’)

c Calculate length then pre-allocate f ile space

length1 = nx*ny*nz*8*5*(itmax/ibinw)

length = lsize(ibin, length1, 0)

close(unit=ibin)

c check if lsize worked

if (length1 .ne. length) then

c lsize didn’t work

call csend (12345, 0, 4, -1, 0)

10

stop ’Inadequate CFS f ile space’

else

c lsize worked

call csend (12345, 1, 4, -1, 0)

endif

 else

call crecv(12345, iok, 4)

if (iok .eq. 0) then

c lsize didn’t work

stop

endif

 endif

c everyone opens f ile

 open (unit=ibin, f ile=’/cfs/f ineberg/btout.bin’,

$status=’old’,form=’unformatted’)

 rewind ibin

Next, the program begins to iterate, and everyibinw iterations the data is written
as follows:

 if (mod(istep, ibinw) .eq. 0) then

if (iam .lt. nx) then

offset = ((istep/ibinw)-1)*nx*ny*nz*5*8 + 5*8*iam

istat = lseek(8, offset, 0)

do 992 ia=1,nz

do 991 ja=1,ny

call cwrite(8, u(1, 1, ja, ia), 40)

offset = (nx-1)*5*8

istat = lseek(8, offset, 1)

991 continue

992 continue

endif

 endif

As demonstrated with the other machines, results utilizing a less than optimal cod-
ing of the computational part of the benchmark were not useful. Therefore, a better
implementation of the BT benchmark that decomposed data along three dimen-
sions (RNRBT_3D/iPSC) was obtained from Sisira Weeratunga [Wee92] of
NAS’s Applied Research Department. This code, also written in FORTRAN 77
with message passing, was considerably faster than the 1D code and more effi-
ciently used the available processors. However, for the RNRBT_3D/iPSC imple-
mentation described later, additional synchronization had to be added to the I/O
benchmark to correct a timing problem that appeared after adding the I/O code.
The problem was most evident when using 128 processors. To correct the problem,
when 128 processors were used, the processors were grouped such that only a
fixed number of processors (<128) could write at once. Fortunately, this additional

11

synchronization not only corrected the problem but also decreased execution time.
The effect of this grouping of processors on the N=102 application I/O bench-
mark’s execution time is plotted in Figure 1. As can be seen from this graph, the

lowest execution time was achieved for a write group size of 16. Therefore, for the
experiments shown later in this paper, only groups of 16 processors were allowed
to write at a time for all 128 node experiments on the iPSC/860. Note that these
results corroborate similar CFS performance anomalies described in [Nit92].

The complicated data layout and the required synchronization caused the imple-
mentation of the I/O code for RNRBT/iPSC to be more difficult than for the other
systems. The sequence for opening the file was the same as was shown for the
SampleBT/iPSC example. However, the code for each of the writes of the solution
vectoru was much more complicated. This code is shown below:

 if (mod(istep, ibinw) .eq. 0) then

if (iam .ge. group) then

c wait until node iam-group has f inished

call crecv(9999, itemp, 1)

endif

offset1 = (((istep/ibinw)-1)*nx*ny*nz +

$ mod(iam,nodex)*ldx)

do na3 = 0, ldz-1

offset3 = ((iam/(nodex*nodey))*ldz + na3)*nx*ny

do na2 = 0, ldy-1

offset2 = ((mod(iam,nodey*nodex)/nodex)*ldy

$ + na2)*nx

1 2 4 8 16 32 64
Writer Group Size (processors)

2.6e+03

2.7e+03

2.8e+03

2.9e+03

3.0e+03

3.1e+03

3.2e+03

3.3e+03

3.4e+03

3.5e+03

3.6e+03

E
xe

cu
tio

n
T

im
e

(s
ec

s)
Figure 1: Effect of Grouped Writing

on the iPSC/860

12

offset = 40*(offset1+offset2+offset3)

c f ind correct f ile position

istat = lseek(ibin, offset, 0)

c write data

call cwrite(ibin, u(1,1,na2+1,na3+1), 40*ldx)

enddo

enddo

if (iam .lt. nodes-group) then

c start node iam+group

call csend (9999, itemp, 1, iam+group, 0)

endif

call gsync()

 endif

The writes for RNRBT/iPSC went as follows. The first group processors start
writing data while the other processors wait for a message. The writing consists of
a series oflseeks to the proper file positions followed bycwrites . When a
node finishes writing its data, it sends a message to the nodeiam+group , causing
that node to start writing data and waits for all nodes to complete by executing a
gsync() (global synchronization) call. This prevented more thangroup nodes
from writing at a time. Nodes in the last group do not send the final message, and
when all nodes complete their writes, the nodes proceed past thegsync() and
resume the computation portion of the benchmark.

Another problem encountered on the iPSC/860 was with verification. Because the
system’s nodes were each workstation CPUs, i.e., they were not 1-bit processors,
the data could be verified by a single node. This worked well for N=12 and N=64,
however, for N=102, the amount of time required for verification was longer than
the average time between system reboots. Additionally, because the only method
for removing data from the CFS was through an ethernet connection, the amount
of time required to move the large data file off of the system was also greater than
the average time between reboots. Therefore, the largest problem size was not ver-
ified at the time this paper was written.

The verification code was written in C and ran on a single i860 node. This code is
shown below:

#include <stdio.h>

/* “btioverify.incl” def ines the matrix dimension (N) as DIM,

and the number of writes (N S/I W) as RPT*/

#include “btioverify.incl”

main()

{

 FILE *fp;

 long i,j,k,n;

 double data;

13

 fp = fopen(“/cfs/f ineberg/btout.bin”, “r”);

 fp = fopen(“btout.bin”, “r”);

 for (k=0; k<RPT; k++){

fseek(fp, 5L*8L*(DIM*DIM*DIM)*k, 0);

for (i=0; i<DIM; i++){

for (j=0; j<5; j++){

fread(&data, 8, 1, fp);

printf(“%15.10lf\n”, data);

}

fseek(fp, (5L*8L*(DIM*DIM) + DIM*5L*8L), 1);

}

}

 fclose(fp);

}

4.0 Results

4.1 Cray Y-MP

Results for an 8 processor Cray Y-MP in dedicated time are shown in Table 2 and

are plotted in Figure 2. This benchmark implementation was the only one that
obtained true “supercomputer” performance. With 8 processors, the Cray ran at
1.38 GFLOPS without I/O and 1.08 GFLOPS with I/O. Note that the fast computa-
tion speed exaggerates the overhead of I/O. The overhead measurement here
(0.372) was the largest of any of those measured in this study. However, RIO was
the highest measured and the execution times were the lowest.

4.2 Thinking Machines CM-2

In Table 3, the data collected for two values ofN, 12 and 64, is listed using the exe-
cution time of SampleBT (without the addition of I/O code) asTC.

As can be seen from these results, the runtime of SampleBT/CMF was quite large.
This generally distorts results by making RIO andζ too low (note that whileζ was

TABLE 2. Results for CrayBT based benchmark

N No. Proc. TC (secs) TT (secs) RIO (bytes/sec) ζ

64 8 117.9 141.7 2442810 0.202
102 1 3554 3740 453993 0.052
102 2 1816 1857 914342 0.023
102 4 930.6 975.3 1740934 0.048
102 6 645.0 774.5 2192295 0.201
102 8 506.4 694.8 2443772 0.372

TABLE 3. Results for SampleBT/CMF based benchmark

N TC (secs) TT (secs) RIO (bytes/sec) ζ

12 60.25 81.85 5067 0.359
64 5526 5621 74618 0.017

14

not too low for N=12, this does not occur for any other problem sizes on the CM-2
or for the other machines). A better BT implementation was RNRBT/CMF. Its
results are shown in Table 4 for N=64 and N=102.Note that the N=102 execution
time is an approximation determined from running the benchmark for 1/8 of the
total number of iterations and multiplying the result by 8. This was necessary
because the amount of run-time needed for the large benchmark on the CM-2 was
prohibitive.

4.3 Intel iPSC/860

Experiments were performed on the iPSC using the SampleBT/iPSC code for
N=12 and 64 with 16 and 64 processors respectively. These results are summarized

a. approximated by running for 25 iterations and multiplying
elapsed time by eight.

TABLE 4. Results for RNRBT/CMF based benchmark

N TC (secs) TT (secs) RIO (bytes/sec) ζ

64 3754 3901 107519 0.039
102a 63426 64769 26215 0.021

Figure 2: Cray Y-MP/8 Performance

1 2 3 4 5 6 7 8
Number of Processors

0

500

1000

1500

2000

2500

3000

3500

4000
E

xe
cu

tio
n

T
im

e
(s

ec
s)

TC

TT

15

in Table 5. As with the CM-2, the results with this inefficient BT implementation

yield low results for both RIO andζ.

In addition, the faster RNRBT_3D/iPSC code was run for N=12, 64, and 102 with
a varying number of processors. These results are shown in Table 6. Note that for

N=12 and 102, only a single machine size was possible. RNRBT_3D/iPSC
requires the processors to be laid out as a 3 dimensional grid with sides that are
powers of two. For N=12, the data distribution was too sparse for more than 8 pro-
cessors (a 2x2x2 grid). For N=102, all 128 processors had to be used to have
enough memory to store the programs data set. The 128 processors were laid out as
a 4x4x8 grid. For N=64, three machine sizes were possible including 32 (2x4x4
grid), 64 (4x4x4 grid), and 128 (4x4x8 grid) processors.

5.0 Analysis

In high performance computer systems, balance can be defined as the property a
system exhibits when all of its components are well matched in performance.
Therefore, a “well-balanced” I/O system should be capable of performing its
required tasks at a rate commensurate with the system’s computational perfor-
mance. Unfortunately, balance is not only an application dependant characteristic,
but is also subjective. However, as a goal, scientists at NAS generally consider an
overhead of 10% (0.1) to be acceptable [Wee92]. In a balanced system, one would
hope to keepζ low, though aζ that is “too” low may indicate I/O hardware that has
a higher capacity than is required for a system’s computational capacity. One also
wants to decrease execution time as much as possible, thus keeping RIO high. The
goals of increasing RIO and decreasingζ may be contradictory if I/O performance
does not scale with computation performance. Consider Figure 3. In this graph, the
performance of the three machines is compared. First, note the difference in aggre-
gate system performance, RIO. Clearly, the Y-MP is the fastest machine, followed
by the iPSC/860, with the CM-2 being the slowest. These are reflected in the val-

TABLE 5. Results for SampleBT/iPSC based benchmark

N TC (secs) TT (secs) RIO (bytes/sec) ζ

12 37.96 39.82 10415 0.049
64 6663 9262 45285 0.390

TABLE 6. Results for RNRBT_3D /iPSC based benchmark

N No. Proc. TC (secs) TT (secs) RIO(bytes/sec) ζ

12 8 9.694 10.20 40659 0.052
64 32 1381 1567 267665 0.135
64 64 753.0 1036 404856 0.376
64 128 435.6 779.9 537800 0.719
102 128 1566 2663 637602 0.701

16

ues of RIO shown in Tables 4, 6, and 8. These are 2.3 MBytes/sec for the Y-MP,
0.61 MBytes/sec for the iPSC/860, and 0.025 MBytes/sec for the CM-2. (Note, the
iPSC/860’s performance is still repeatable given the approximately 10 times price
difference between the iPSC/860 and the Y-MP.)

What is of more interest, however, is the added execution time due to I/O. For the
CM-2, the TT is only slightly greater than TC. However, for the iPSC/860, TT is
almost twice TC. This indicates that while the iPSC/860’s overall performance is
significantly better than the CM-2, its I/O performance is much worse relative to
its computation performance. In terms of system balance, neither of these
machines is well balanced. The iPSC/860 lacks adequate I/O performance, and the
CM-2 has I/O performance greater than that needed for its computational power.
TC and TT for the Y-MP seem to be equal, however, the relative difference
between TT and TC falls between that of the other two machines. Thus, TT is sig-
nificantly greater than TC (by about 20%, see Table 2), but the difference is not
nearly as great as the relative difference between TC and TT for the iPSC/860. This
indicates that the Y-MP is balanced such that I/O only adds 20% to execution time.
This is better than the iPSC/860 and indicates a better balance between computa-
tion and I/O performance than the CM-2. However, it still does not reach the goal
of 10% overhead.

Consider what happens if we change the computational performance of the Cray
Y-MP (by varying the number of CPUs). As the number of processors is increased,
TC and TT decrease (see Figure 2). The change in computation rate can be
observed using RIO which is a measure of overall system performance (see Figure
4). Therefore, as the number of processors, and therefore the computational perfor-
mance is increased, RIO increases proportionately. However, note that in Figure 2

Y-MP/8 CM-2 iPSC/860
Machine Type

0

500

1000

1500

2000

2500

3000

3500

4000

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Figure 3: System Comparison for N=64

TC

TT

17

the difference between TC and TT increases as the number of processors is
increased. To better illustrate this, Figure 5 plots ζ (overhead) vs. number of pro-
cessors used on the Y-MP. As can be seen, the I/O overhead increases steadily as

the number of processors is increased. This is because the I/O rate is not being
scaled with the computational performance (i.e., the number of processors).
Rather, the I/O transfer rate remains approximately constant with two or more pro-
cessors. Because computation time is decreasing as more processors are added and

Figure 4: Cray Y-MP/8 I/O Rate

1 2 3 4 5 6 7 8
Number of Processors

0.0e+00

4.0e+05

8.0e+05

1.2e+06

1.6e+06

2.0e+06

2.4e+06

2.8e+06
R

IO
 (

by
te

s/
se

c)

1 2 3 4 5 6 7 8
Number of Processors

0.02

0.06

0.09

0.13

0.16

0.20

0.23

0.27

0.30

0.34

0.37

O
ve

rh
ea

d

Figure 5: Cray Y-MP/8 Overhead

18

I/O time is remaining relatively constant, the added overhead due to I/O increases.
Thus, balance is dependent on both computation and I/O performance and neither
alone is a good system metric. Further, we see that the Cray Y-MP could use
slightly better I/O performance to achieve the 10% goal for 8 CPUs and reaches
this goal for balance with approximately 5 CPUs. While this may be unimportant
for an existing machine (i.e., an application running on an existing machine will
generally use all available processors), it indicates that for a more powerful system
(e.g., a Y-MP C90) the I/O performance must be scaled with computational perfor-
mance.

Now, consider what happens when a sytem is out of balance. First, there is the
CM-2, which is an example of a machine with a low RIO, and I/O performance that
is relatively high. Consider the data for RNR_BT/CMF with N=64. RIO is low,
107519 bytes/sec, but overhead is also low, 3.9% (0.039). This indicates a system
that is out of balance relative to the 10% goal in that the computation rate is too
low for the I/O performance. Next, there is the iPSC/860. For N=64, RIO is 537800
bytes/sec, five times that of the CM-2, though not as good as the Y-MP. However,
the iPSC/860’s I/O performance is less than both the Y-MP and the CM-2. This
results in an overhead of 71.9% (0.719), i.e., 71.9% of the time required to run the
I/O benchmark is spent writing data. This indicates that the I/O system is slower
than is needed to achieve the 10% goal with the available computation perfor-
mance.

6.0 Conclusions

In this paper it has been shown that the NHT-1 application I/O benchmark is a
measure of both absolute system performance and balance for a given type of com-
putational and I/O workload. System performance is indicated by the RIO metric
by measuring the total run time of an application that includes significant quanti-
ties of I/O and dividing that time by the total amount of I/O performed. This allows
RIO to reflect both the system’s computational and its I/O performance. Therefore
a system with a high RIO must achieve high performance for applications with sig-
nificant amounts of I/O. However, what RIO does not indicate is the relative bal-
ance of I/O and computational performance. Balance is then indicated by ζ. Α
machine with a high RIO and aζ around 0.1 is a fast, well-balanced machine. A
machine with a highζ, is unbalanced in that its I/O is too slow in proportion to its
computational power. If ζ is low, however, the machine is still unbalanced, in that
the I/O performance is higher than is warranted for the system’s computational
performance.

In this paper we have seen results from three machines, none of which were per-
fectly balanced. The CM-2 is quite slow in absolute performance, but has I/O that
is relatively fast (particularly given its lack of computational power). The
iPSC/860 is relatively fast, but has I/O that is much too slow for its computational

19

power. The Cray Y-MP is relatively well balanced but could use slightly faster I/O
for applications that use all 8 processors.

These results indicate that no single benchmark metric is appropriate for measur-
ing application I/O performance. Rather, by measuring both absolute performance
and balance, it is possible to get a good sense for how a machine will perform
under loads that include significant amounts of disk I/O. These two aspects are
measured by the RIO andζ metrics that are generated by the NHT-1 Application
I/O benchmark. Thus, the benchmark allows one to determine if a system configu-
ration meets absolute performance goals and has an appropriate amount of I/O per-
formance relative to its computational power.

7.0 Acknowledgments

The author of this paper would like to acknowledge Russell Carter, Bill Nitzberg,
and Bernard Traversat for their help in preparing this paper, as well as the mem-
bers of the High Speed Processor (Cray support) and Parallel Systems support staff
at NAS for putting up with the abuse applied to their systems while collecting the
data for this paper.

8.0 References 2

[BaB91] D. Bailey, J. Barton, T. Lasinski, and H. Simon, eds,The NAS Parallel
Benchmarks, Revision 2, Technical Report RNR-91-002, NASA Ames Research
Center, Moffett Field, CA, July 1991.

[BaB92] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon, NAS Parallel
Benchmark Results, Technical Report RNR-92-002, NASA Ames Research Cen-
ter, Moffett Field, CA, August 1992.

[CaC92] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg, NHT-1 I/O Bench-
marks, Technical Report RND-92-016, NASA Ames Research Center, Moffett
Field, CA, November 1992.

[Cio92] B. Ciotti, “Session Reservable File Systems (SRFS),”Spring 1992 CRAY
User Group Proceedings, Berlin, Germany, 1992.

[Hil87] W. D. Hillis, “The connection machine,”Scientific American, vol. 256,
June 1987, pp. 108-115.

[Int91] Intel Supercomputing Systems Division,iPSC/2 and iPSC/860 User’s
Guide, Intel Corporation, Beaverton, OR, 1991.

[Nit92] B. Nitzberg, Performance of the iPSC/860 Concurrent File System, Tech-
nical Report RND-92-020, NASA Ames Research Center, Moffett Field, CA,

2. NAS technical reports may be obtained by sending e-mail todoc-center@nas.nasa.gov .

20

December 1992.

[Nug88] S. F. Nugent, “The iPSC/2 direct connect communications technology,”
Third Conference on Hypercube Concurrent Computers and Applications, January
1988, pp. 51-60.

[Wee92] S. Weeretunga, NAS Applied Research Department, personal communi-
cation, October 1992.

[ZeL88] S. A. Zenios, R. A. Lasken, “The connection machines CM-1 and CM-2:
solving nonlinear network problems,” 1988 International Conference on Super-
computing, July 1988, pp. 648-658.

