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Abstract

A method for predicting the drag of unconstrained bluff bodies from subsonic
through supersonic flight conditions using analytic expressions is presented. The
method is motivated by the need to rapidly analyze the trajectories of potential debris
sources for the Space Shuttle Launch Vehicle. Comparisons are presented against both
fully-coupled inviscid 6-DOF simulation results, and validated drag predictions for the
drag experienced by insulating foam shed from the shuttle external tank.

1 Introduction

This paper is chiefly concerned with predicting the lift and drag characteristics of un-
constrained bodies traveling at speeds up to Mach 10 within the Earth’s atmosphere. The
motivation for this work is the rapid assessment of potential debris sources (insulating foam,
ice, ...) for the Space Shuttle Launch Vehicle (SSLV), however the analysis is general and can
be applied to a variety of problems. Figure [1| presents a gallery of shapes analyzed during
the space shuttle Return-to-Flight (RTF) initiative. Unlike vehicles designed for controlled
flight, these general shapes cannot maintain an aerodynamically efficient (trim) orientation,
i.e. they are not stable in a low-drag/high-lift orientation Further, in supersonic flow a
general body will often have a static stability point in a bluff-body orientation. Hence, the

aerodynamic analysis for general unconstrained shapes reduces to analyzing the behavior of
bluff bodies.

2 Drag

The first aerodynamic parameter required to characterize the behavior of debris shapes
is the drag coefficient. This is used with a ballistic code to estimate the position and

*Some shapes, such as spheres or cubes, may be stable in their lowest drag orientation, however they will
not generate appreciable lift.
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Figure 1: Gallery of debris shapes analyzed during NASA’s Return-to-Flight initiative.

velocity along a direction of travel. Excursions from this direction are determined by the
aerodynamic lift, and are considered in the next section. Figures [2f and [3| present computed
streamlines around a bluff body (parallelepiped) for two body aspect ratios, in subsonic and
supersonic flow respectively. As the aspect ratio of the body increases, the region around the
body governed by one-dimensional flow also increases, to the point where a one-dimensional
analysis can provide an accurate estimate of the pressure on the majority of the area for
the windward and leeward faces. Since we are only interested in analyzing bluff bodies,
which by definition have the largest body dimension perpendicular to the flow direction,
the contribution of skin friction to drag is negligible. Similarly, the Reynolds number at
200,000 ft. of altitude during ascent of the SSLV is still O(10?) for a body of dimension 1
inch, and hence low Reynolds number effects can be neglected. The approach here is thus
not to directly predict the drag for any body shape, but rather predict how the drag differs
from the asymptotic behavior for a 3-D bluff body of infinite aspect ratio.

2.1 Subsonic

In a compressible, subsonic flow (here defined as 0.1 < M,, < 0.8) the pressure on the
windward wall (p,,) can be estimated using the 1-D isentropic flow relationship for stagnation
pressure (cf. [2])

v

p—”=<1+ 21M2) - (1)
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Figure 2: Effect of aspect ratio on the subsonic flow around a bluff body.

(a) Aspect ratio = 1 (b) Aspect ratio = 10

Figure 3: Effect of aspect ratio on the supersonic flow around a bluff body.

The pressure on the leeward wall face is approximated as

_ 10 2)

Poo
While these provide reasonable estimates over a large portion of the surface area, a correction
term to account for 3-D effects can improve the integrated drag prediction. This correction is
assumed proportional to the square of the Mach number to leading order, so that z% ~ M?2.
Comparison against inviscid computed results provides the coefficient for this scaling

Poo O

Combining the above wall pressures and correction, along with the dynamic pressure
(%vpooMgo) provides the following estimate for the drag coefficient of a bluff body with high
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aspect ratio in the subsonic regime

(14 552M2) 7T — (10— 202) | A

where A is the frontal area of the body, and S is a suitable reference area.

2.2 Supersonic

The drag in the supersonic regime, here defined as 2 < M., < 10, can be predicted in a
similar manner as the subsonic regime. A bow shock forms ahead of the bluff body, which
approaches a normal shock as the aspect ratio increases (cf. Fig. [3). The pressure and Mach
number behind the shock can thus be predicted from the shock jump relations

Ds 27 2
=14 = (M2 -1
—1) M2 +2
M2 (/7 ) oo+ (6)

ST M2 — (v - 1)

Behind the shock there is an isentropic compression governed by Eqn. [l The wall pressure
is thus predicted by

Pw 1+2_’Y(

Poo v+1

M2 —1

o0

(7)
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The back pressure behind the body is approximated as approaching vacuum, i.e. p, = 0.

As with the subsonic regime, a 3-D correction term proportional to the square the Mach

number is determined from comparison against computed inviscid results. This correction
term is

& _ i M2 (8)

P 100

The drag coefficient thus becomes

:
2 —1 (y=1)MZ +2 |71
{[1+7—11(M30—1)} [1+VTW] —%Mgo}fl
Cr —
’ 3TMZS
2.3 Transonic

In the transonic regime (1.0 < M, < 1.2) the windward wall pressure can again be
predicted with the isentropic stagnation pressure, Eqn. [I The leeward wall pressure is
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approximated with a constant value, If’—b = 1 The quadratic correction term is [f’—c =
oo oo

1
—LM?Z . The drag coefficient becomes

(1 5 M2) 7T = (L4 3M2)| A
= IAZS 1o

The drag coefficient variation is assumed linear in the model gaps around the transonic
region.

The drag coefficient predictions outlined above are compared to inviscid computations
for 3-D parallelepiped shapes of increasing aspect ratio and unit depth in Fig. [ using
S = A. As the aspect ratio increases, the computed drag coefficient is in good agreement
with the model. For unconstrained trajectories, the uncertainty in the dynamic behavior
(e.g. oscillating vs. tumbling) swamps the uncertainty in aspect ratio in Fig. , hence the
effect of aspect ratio is subsumed into the dynamic analysis to follow. For completeness,
the following corrections are effective for static configurations when the frontal area can be
accurately determined. In the subsonic region, the correction term can be altered as

DPe Y 2 4
— =M H— — 11
Poo 25 % ( \/AR> (11)

The correction term in the supersonic region becomes

Pe Y 2 1
—=—-——M 1+ — 12
Poo 10 °°( " AR) (12)

The transonic region is left for future work.
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Figure 4: Drag model for flow around a high aspect ratio bluff body.
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2.4 Dynamic Behavior

The dynamic behavior of an unconstrained bluff body is a complex unsteady phenomena.
Roughly, we can break the behavior into two modes: a tumbling motion, and an unsteady
oscillation about a stability point (cf. [1]). The type of motion is difficult to predict in
general, depending upon the body shape and orientation, the initial angular rate, the ratio
of material to air density, etc. The details of the dynamic drag variation for a single trajectory
is similarly complex, and characterized by large changes in magnitude as the body orientation
changes. The approach here follows [I]; first develop upper and lower bounds on the drag
variation, then focus on nominal or stochastic models.

The dynamic modeling determines an appropriate “effective” aerodynamic frontal area,
A, to use in the drag models (Eqns. @], and . This effective area is essentially a static
projection of the rotating total area onto the direction of the velocity vector, i.e. dynamic
effects such as hysteresis are ignored. In Fig. {4| the effective frontal area is also specified
as the reference area in the drag coefficient. While this is ideal, it is difficult to achieve in
practice for general shapes, which may have multiple stability points or preferred axes of
rotation. A practical alternative is to consider the reference area S as the total wetted area
of the body, and then seek an effective bounding area ratio %.

Figure presents the exposed frontal area variation for a bluff body rotating about
a fixed axis at a constant rotation rate w. Rotation at a constant rate is considered a
limiting behavior. The frontal area varies sinusoidally at a frequency of 2w between the
maximum and minimum areas. This ideal is a reasonable representation of the behavior
of general rotating bodies. The exposed frontal area for a similar bluff body oscillating
with angular rate w about a stability point is presented in Fig. [fb. The amplitude of the
oscillation is represented by the area A,. As with constant rotation, the frontal area varies
sinusoidally between a maximum and minimum with frequency 2w. As a practical limit, the
minimum drag orientation for an oscillating body is the minimum frontal area (“edge-on”)
configuration. Hence, when considering the extreme behavior, tumbling and oscillation are
characterized similarly. If we define the effective aerodynamic area as the average area over a
cycle of motion then the largest possible effective area is the maximum area (statically-stable
orientation), and the minimum is one half the sum of the maximum and minimum areas. If
we consider the limit where the minimum edge-on area approaches zero then we see that the
bounding effective areas simplify to the maximum frontal area, and one half the maximum
frontal area.

As with the drag model development, parallelepiped shapes are used to simplify the
analysis of the effective area ratio. Based on the bounding analysis above, we only need
to estimate the ratio of the maximum possible frontal area to the total area. For a paral-
lelepiped, the total area is given by

S = 2ARh* + 2ARht + 2ht (13)

where h is the height of the piece perpendicular to the velocity vector, and ¢ is the dimension
in the wind direction. By our definition of a bluff-body flow configuration, ¢t < h, hence we
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Figure 5: Idealized sinusoidal variation of frontal area for dynamic trajectories.

have two limiting configurations: ¢ < h, and ¢t &~ h. With very thin pieces (t < h), the ratio
of maximum frontal area to total area can be approximated as A,,q./S = 1/2. For pieces of
commensurate depth and height, the area ratio simplifies to

Ama:ﬂ_ AR
S  2+4+4A4AR

which varies between 1/6 and 1/4 depending upon the shape. Thus, the upper bound of
Apaz/S = 1/2is provided by thin pieces, while the lower bound of A,,.,/S = 1/6 is provided
by a cube.

Combining the two geometric bounding analyses provides the desired bounds for the
effective aerodynamic area of dynamic bluff bodies. The upper bound (largest drag) takes
a value of (A4/S5), = 1/2, and is characterized by thin, stable shapes. The lower bound
(lowest drag) takes a value of (A/S), = 1/12, and is characterized by rotating cubes. Note
that these extremes refer to the drag coefficient, and are the result of both the dynamics and
the accounting required to use total area as the reference area. A cube and an equivalent
thin sheet will still produce the same drag force due to the larger total area for the cube.
These extremes are examined in Fig. [0] using two of the shapes from the gallery in Fig. [1}
Unconstrained 6-DOF trajectories were computed for SSLV tile gap filler, an extremely thin
parallelepiped with aspect ratios between 3 and 6, and also for a cube shape. Both sets of
trajectories were computed for release conditions of Mach 2.5. As expected, the cube shape
shows a drag coefficient approaching the lower bound, and there is little variation. The thin
gap filler results approach the upper bound for drag coefficient, and show a large variation
as the debris rotates between bluff-body and edge-on orientations.

The results presented in Fig. 0| highlight that the upper bounding curve for drag coefficient
can be conservative. Recall that the drag prediction itself is a conservative upper bound
based on an infinite aspect ratio body. This, combined with the accounting of total area
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Figure 6: Drag model compared to computed 6-DOF trajectories for two geometric extremes. Release
Mach number is 2.5. Range data for cubes from [3].

used in the drag coefficient leads to the conservative estimate. If there is a knowledge of the
dimensions of the body, then an improved estimate can be constructed using the parameter
t/h € [0,1]. The following variation for the upper bounding curve is proposed

(3.3

This improvement is included in Fig. [7| for the cube shape (£/h = 1). Note that the intention
is to provide an equal increment between the lower and upper boundaries and the nominal
trajectory data, in order to facilitate the development of nominal and stochastic models.

The analysis presented above incorporates corrections based solely on the geometry of
the shape. A general method of predicting the dynamics (tumbling, small oscillations, large
oscillations, ...) under general flow conditions is not available, and as such a dynamic cor-
rection to the drag coefficient is not offered.

2.5 Examples

The following examples demonstrate the predictive capability of the drag coefficient mod-
eling against several of the shapes from Fig. [I] under various ascent conditions. While ex-
amining the variation of drag coefficient with Mach number is useful, an additional metric
is the prediction of velocity against distance during deceleration in a uniform flowfield. This
integrated velocity accounts for the drop in dynamic pressure during an unconstrained tra-
jectory for a debris piece. Figure |8 presents the drag coefficient and integrated velocity
variation for an acreage foam divot (t/h = t/D = 0.25) released at Mach 2.5. Computed
trajectories are compared to the bounding model curves. A similar comparison for a Mach
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Figure 7: Corrrected drag model (Eqn. compared to 6-DOF trajectories for a cube shape (t/h = 1).
Release Mach number is 2.5. Range data for cubes from [3].

5.0 release is presented in Fig. [9] and for an idealized frustum shape released at Mach 2.5
in Fig. [0, An idealized foam frustum is known to be stable in a bluff-body orientation at
Mach 2.5, and hence the integrated velocity for the computed 6-DOF trajectories lie towards
the upper-boundary model results. This result provides a positive consistency check on the
analysis.
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Figure 8: Drag model compared to computed 6-DOF trajectories for an acreage divot (¢t/h =t/D = 0.25).
Release Mach number is 2.5.

Similar comparisons for various ice debris shapes (hemisphere, feedline bellows, quarter-
sphere) are presented in Figs. for subsonic and supersonic release conditions.
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Figure 9: Drag model compared to computed 6-DOF trajectories for an acreage divot (¢/h =t/D = 0.25).

Release Mach number is 5.0.
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Figure 10: Drag model compared to computed 6-DOF trajectories for an idealized frustum divot (t/h =

t/D = 0.2). Release Mach number is 2.5.

2.6 Comparison with Frustum Drag Model

In [I] a drag model tailored to the dynamic behavior of ET acreage foam divots is de-
scribed. This drag model is based on the aerodynamics of idealized frustum shapes with a
bevel angle of 45°. The conversion of the geometric properties for a general acreage foam
divot to an area scaling which can be used with the frustum drag model is complicated,
however, this procedure can provide a more refined estimate of the drag behavior than the
generic bluff-body analysis described herein. Figure [14] presents a comparison of the inte-
grated velocity prediction for the generic model and the refined frustum model for the flange
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Figure 11: Drag model compared to computed 6-DOF trajectories for an ice hemisphere (¢/h =t/D = 0.5).
Release Mach number is 2.75.
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Figure 12: Drag model compared to computed 6-DOF trajectories for a 2 inch long feedline bellows ice
shape (¢t/h = 0.5). Release Mach number is 2.75.

and idealized frustum foam divots. The uncertainty in the predictions using the frustum
drag model are lower in both cases.

2.7 Summary

The upper and lower bounding curves for the approximate drag model show a very good
predictive capability for a variety of shapes and dynamic trajectories. The nominal behavior
of the computed 6-DOF trajectories is well represented by the average of the upper and
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Figure 13: Drag model compared to computed 6-DOF trajectories for an ice quarter-sphere (t/h = 1.0).
Release Mach number is 0.5.
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Figure 14: Drag model compared to computed 6-DOF trajectories and frustum drag model for foam acreage
divots. Release Mach number is 2.5.

lower bounds. A stochastic analysis can easily be supported by assuming an appropriate
probability density function between the bounding curves.
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