CAD INTERFACE, STRAND GRID TECHNOLOGY AND OTHER NEW DEVELOPMENTS IN CHIMERA GRID TOOLS 2.0

William M. Chan
NASA Ames Research Center

8th Symposium on Overset Composite Grids and Solution Technology, Houston, Texas, October 2-5, 2006

OVERVIEW

Chimera Grid Tools (CGT) is a collection of software tools for performing grid generation, flow solver input preparation, and solution analysis using overset grid methods

Version 2.0 Highlights

- CAD Interface Using CAPRI Library
- Strand Grid Technology
- OVERGRID Main Development
- CGT Main Development

CAPRI OVERVIEW

- Single interface to native solid model CAD parts from different vendors
- Solid model concept: volumes, faces, edges, points
- Generic functions to interface with solid model
- Easy to implement into existing grid generators and GUI
- Require native CAD license and CAPRI license to run (http://www.cadnexus.com)

GRID POINT DISTRIBUTION ON CAD2SRF TRIANGULATION

Appropriate for geometry description and flow solvers based on cut-cells at the surface but not appropriate as a computational grid

FROM SURFACE TRIANGULATION TO GRIDS

Surface triangulation and edge curves

Cut-cell Flow Solver
SRF2CAD MODULE IN CHIMERA GRID TOOLS

- First generate structured grid onto triangulation (surfgrid)
- Triangulation stencil contains CAD volume tags and face tags
- surfgrid calls srf2cad with CAD volume and face tags at each grid point
- srf2cad projects all grid points onto CAD model using inverse evaluation function from CAPRI
- Can be used for grid generation and adaptation

GRID GENERATION SCRIPT FOR AXISYMMETRIC BODIES

- A special case of prismatic volume grid with straight lines (strands) in the body-normal direction
- Each strand defined by a direction vector and a grid point distribution function
- All strands share same length and grid point distribution
- Each strand may be clipped at a cut-off index from negative volume trimming and hole cuts
- Viscous spacing at wall stretched to larger spacing at outer boundary

SURFACE TRIANGULATION GRID POINT CLUSTERING REQUIREMENTS FOR STRAND GRID

The quality of the strand grid is highly dependent on the quality of the given initial surface triangulation

- Near-body viscous flow resolved by strand grid
- Off-body space covered by AMR Cartesian grids
STRAND GRID DEVELOPMENT TASKS

- Develop methods to provide better volume coverage
- Clip strands that are adjacent to negative volume prisms
- Develop visualization tool for strand grid and off-body Cartesian grids

BETTER VOLUME COVERAGE BY STRAND VECTOR ADJUSTMENTS

- Direction vector initially given by local surface normal
- Adjust/smooth to bend towards convex corner regions for volume coverage
- Remove small negative cell volumes
- Smooth out cell volumes at interface to off-body Cartesian grids (not yet implemented)

STRAND CLIPPING DUE TO NEGATIVE VOLUMES

Crossing of strands can result in negative prism cell volumes

STRAND PROTRUSION INSIDE SOLID BOUNDARIES

- Task: For each strand, find intersection(s) with all triangles (from same body, or neighboring bodies)

STRUCTURED AUXILIARY MESH (SAM) SEARCH ALGORITHM FOR STRAND CLIPPING

- Determine bounding box around surface geometry
- Determine number of Cartesian cells (buckets) in each direction
- For each bucket, build list of triangles that fall inside or intersect cell
- Can be faster than Alternating Digital Tree searches

LINE SEGMENT - TRIANGLE INTERSECTION SEARCH USING SAM ALGORITHM

- Number of line segment tests = Number of surface verts
- Line-box intersection -> line-triangle intersection -> Trim line segment from first grid point below intersection point to outer boundary -> minimum hole cut

RECENT DEVELOPMENTS IN OVERGRID GUI

Solution viewer - cut plane on Cartesian grids, log of scalars, velocity vectors
Dynamics animation - show snap shots of CG track, component orientation, force/moment vectors

CAD interface - hook to cad2srft to ‘read’ CAD part and display as triangulation
Triangulations - display open and bad normal edges, operate by comp. ID, separate faces by sharp edge and disjointedness criteria
Calculators - 6-dof parameters unit conversion and non-dimensionalization
Hybrid grid - strand and AMR Cartesian grids visualizer

STRAND CLIPPING BETWEEN COMPONENTS

Dynamics animation - showsnap shots of CG track, component orientation, force/moment vectors

STRAND GRID VISUALIZATION USING OVERGRID

Strand bundles
Prism stack
Surface shell
Off-surface shell
Constant plane cut

STRAND AND AMR CARTESIAN GRID CUT-PLANE VISUALIZATION USING OVERGRID

AMR grids - filled
iblanked prism cells with overlaid un-cut Cartesian grid
Surface triangle index on iblanked prism cells

CGT 2.0 MAIN ENHANCEMENTS, FUTURE WORK AND RECENT APPLICATIONS

CAD Interface - via CAPRI calls, cad2srft and srftcad modules, callable from overgrid and surgrid, respectively
Strand grid - near-body grid generation module (W. Chan), used with AMR off-body Cartesian grid module (from A. Wissink, Loret/Army)
USURP - automated force/moment computation using weighted surface quads (code by D. Boger, Penn State)
OVERPLOT/OVERHIST - compatibility with new FOMOCO history file format from OVERFLOW 2.02+ (pressure/viscous moment breakdown)
SCRIPTLIB - cap over singular axis, create analytic curve, create cylinder grids, create hyperbolic surface grids, create X-ray hole cut, create full-body grid system from half-body system
Version 2.0 - anticipated release date: late fall 2006
Future work - CAD to abut. structured patches (quilts by J. Dannenhoffer)
Space Shuttle Attach Hardware
Apollo Abort Simulation
Crew Launch/Exploration Vehicles

STRAND GRID GENERATION AND SAM SEARCH PERFORMANCE

Single processor AMD Opteron 244, 1.8 GHz, 1Mb cache

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SAM dimensions</th>
<th>Build time CPUsec</th>
<th>Search time CPUsec</th>
<th>Tot. grid gen.time CPUsec</th>
<th>No. of surface verts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Struts</td>
<td>4x3x3</td>
<td>8.5e-3</td>
<td>66.3e-3</td>
<td>243.8e-3</td>
<td>1320</td>
</tr>
<tr>
<td>SSLV Attach.</td>
<td>8x11x4</td>
<td>0.355</td>
<td>2.58</td>
<td>4.47</td>
<td>15240</td>
</tr>
<tr>
<td>1 Dart</td>
<td>16x4x4</td>
<td>0.61</td>
<td>3.34</td>
<td>18.3</td>
<td>19827</td>
</tr>
<tr>
<td>2 Darts</td>
<td>27x6x6</td>
<td>2.55</td>
<td>9.75</td>
<td>42.3</td>
<td>39654</td>
</tr>
<tr>
<td>Wing/body</td>
<td>28x20x4</td>
<td>30</td>
<td>96</td>
<td>199</td>
<td>127149</td>
</tr>
<tr>
<td>Kiowa</td>
<td>43x11x16</td>
<td>191</td>
<td>343</td>
<td>669</td>
<td>329942</td>
</tr>
</tbody>
</table>