Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

Bryan A. Biegel
MRJ Technology Solutions
NASA Ames Research Center, NAS Division

Collaborators
Dr. Conor Rafferty (Lucent Technologies)
Dr. Zhiping Yu, Prof. R.W. Dutton (Stanford University)
Dr. Mario Ancona (Naval Research Laboratory)

biegel@nas.nasa.gov, http://science.nasa.gov/~biegel

Outline
• Motivation
• Density-Gradient Model
• Bipolar Devices (1-D and 2-D)
• MOS Devices (1-D and 2-D)
• Device Modeling with PROPHET
• Conclusions
Quantum Effects in Electronics

Need 2-D/3-D electronic transport model with quantum effects....

Density-Gradient Model

Density-Gradient Model (quantum-corrected drift-diffusion):

\[
\begin{align*}
\frac{\partial n}{\partial t} &= \nabla \cdot \left[D_n \nabla n - n \mu_n \nabla (u + u_{qn}) \right] \\
\frac{\partial p}{\partial t} &= \nabla \cdot \left[D_p \nabla p + p \mu_p \nabla (u + u_{qp}) \right] \\
\end{align*}
\]

Effect of quantum potential:

\[
\begin{align*}
\mu_n &= 2 b_n \left(\frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \right) \\
\mu_p &= -2 b_p \left(\frac{\nabla^2 \sqrt{p}}{\sqrt{p}} \right) \\
b_n &= \frac{-\hbar^2}{12 m_n^* q} \\
b_p &= \frac{\hbar^2}{12 m_p^* q} \\
\end{align*}
\]
P-N Diode (1-D)

Conclusions:
- Lower mass results in more quantum smoothing
- Terminal characteristics of diode unaffected by DG

Bipolar Junction Transistor (2-D)

DG base current 20% *smaller* ⇒ DG current gain is *higher*
Quantum effects *improve* operation?
MOS Capacitor (1-D)

1-D MOS Capacitor Model

Conclusions:
- DG model greatly improves accuracy
- Classical model diverges rapidly below $T_{OX} = 40\text{Å}$

MOS Capacitor Details

- Gate Capacitance vs. Gate Voltage
 - Classical
 - DG
 - Exp. (HP)

- Oxide Thicknesses: 44, 52.5, 79.5, 21, 25.5, 31 Å

- Equation: $C \sim \varepsilon A/T_{OX}$
 - $A = (100 \mu\text{m})^2$
Conclusions:

- MOSFET still works at 30 nm!
- Quantum effects reduce current up to 60%
- Current decrease due to reduced channel charge

- Quantum effects less severe (35Å oxide)
- Computed current 15X measured current!
- Better mobility model needed: $\mu(L, II, CC, N, S, E)$
Ionized Impurity Scattering

Mobility model:
\[\mu_I = \mu_{\text{min}} + \frac{\mu_0 - \mu_{\text{min}}}{1 + \left(\frac{N}{N_{\text{ref}}} \right)^\alpha} \]

DG model works with position-dependent mobility

Transport Model Development Approach

Standard, single-model approach:
- Formulation to results-analysis is LONG
- Code structure restricts future enhancements
- Single-model code eventually discarded

PDE Solver Approach:

Derive physical model

Convert to numerical model

Program

Debug

Enhance numerical methods, gridding, efficiency, graphics

Run simulations

Analyze results

Ideal Device Simulator

I-V

C-V

V(x,y)

V(x,y)

V(x,y)
PROPHET PDE Solver

Features of PROPHET:
- Script-driven: models, parameters, simulations, output
- Operator set: differential, arithmetic, process/device-specific
- Database storage/access of all models, user input
- Gridding: finite difference, finite element; 1-D, 2-D, 3-D
- Linear solver: PETSc (Lucent: internal solver)
- Boundary conditions: Dirichlet, Neumann, anywhere, anytime
- Steady-state and transient capability
- Xgraph output
- New operators usually painless to create

PROPHET Development Examples

- Drift-Diffusion version of DG model: 2 months
 - Solution variables: $\psi, n, p, \psi_q, \psi_p$
- Quasi-Fermi version of DG model: 1 month
 - Solution variables: $\psi, n, p, \sqrt{n}, \sqrt{p}$
- Ionized impurity scattering: 1 hour

MOSFET Structure

Drift-Diffusion Model

Density-Gradient Model
Conclusions

- Described the Density-Gradient transport model
- Simulated quantum effects in electronic devices
 - P-N diode (1-D): no quantum effect (Esaki tunneling next)
 - BJT (2-D): higher current gain (beta analysis)
 - MOS capacitors (1-D): Quantum effects essential (V_T analysis)
 - Small MOSFET (2-D): Current reduction (surface, field mobility)
- Described PROPHET features for device modeling