
The Impact of Hyper-Threading on Processor
Resource Utilization in Production Applications

Subhash Saini, Haoqiang Jin, Robert Hood, David Barker, Piyush Mehrotra and Rupak Biswas
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, CA 94035-1000, USA

{subhash.saini, haoqiang.jin, robert.hood, david.p.barker, piyush.mehrotra, rupak.biswas}@nasa.gov

Abstract—Intel provides Hyper-Threading (HT) in processors
based on its Pentium and Nehalem micro-architecture such as
the Westmere-EP. HT enables two threads to execute on each
core in order to hide latencies related to data access. These two
threads can execute simultaneously, filling unused stages in the
functional unit pipelines. To aid better understanding of HT-
related issues, we collect Performance Monitoring Unit (PMU)
data (instructions retired; unhalted core cycles; L2 and L3
cache hits and misses; vector and scalar floating-point
operations, etc.). We then use the PMU data to calculate a new
metric of efficiency in order to quantify processor resource
utilization and make comparisons of that utilization between
single-threading (ST) and HT modes. We also study
performance gain using unhalted core cycles, code efficiency of
using vector units of the processor, and the impact of HT mode
on various shared resources like L2 and L3 cache. Results
using four full-scale, production-quality scientific applications
from computational fluid dynamics (CFD) used by NASA
scientists indicate that HT generally improves processor
resource utilization efficiency, but does not necessarily
translate into overall application performance gain.

Keywords: Simultaneous Multi-Threading (SMT), Hyper-
Threading (HT), Intel’s Nehalem micro-architecture, Intel
Westmere-EP, Computational Fluid Dynamics (CFD), SGI Altix
ICE 8400EX, Performance Tools, Benchmarking, Performance
Evaluation

I. INTRODUCTION
Current trends in microprocessor design have made high

resource utilization a key requirement for achieving good
performance. For example, while deeper pipelines have led
to 3 GHz processors, each new generation of micro-
architecture technology comes with increased memory
latency and a decrease in relative memory speed. This results
in the processor spending a significant amount of time
waiting for the memory system to fetch data. This “memory
wall” problem continues to remain a major bottleneck and as
a result, sustained performance of most real-world
applications is less than 10% of peak.

Over the years, a number of multithreading techniques
have been employed to hide this memory latency. One
approach is simultaneous multi-threading (SMT), which
exposes more parallelism to the processor by fetching and
retiring instructions from multiple instruction streams,
thereby increasing processor utilization. SMT requires only
some extra hardware instead of replicating the entire core.
Price and performance benefits make it a common design

choice as, for example, in Intel’s Nehalem micro-
architecture, where it is called Hyper-Threading (HT).

As is the case with other forms of on-chip parallelism,
such as multiple cores and instruction-level parallelism,
SMT uses resource sharing to make the parallel
implementation economical. With SMT, this sharing has the
potential for improving utilization of resources such as that
of the floating-point unit through the hiding of latency in the
memory hierarchy. When one thread is waiting for a load
instruction to complete, the core can execute instructions
from another thread without stalling.

The purpose of this paper is to measure the impact of HT
on processor utilization. We accomplish this by computing
processor efficiency and investigating how various shared
resources affect performance of scientific applications in HT
mode. Specifically, we present a new metric for processor
efficiency to characterize its utilization in single threading
(ST) and HT modes for the hex-core Westmere-EP processor
used in SGI Altix ICE 8400EX supercomputer. We also
investigate the effect of memory hierarchy on the
performance of scientific applications in both the modes. We
use four production computational fluid dynamics (CFD)
applications—OVERFLOW, USM3D, Cart3D, and NCC—
that are used extensively by scientists and engineers at
NASA and throughout the aerospace industry.

In order to better understand the performance
characteristics of these codes, we collect Performance
Monitoring Unit (PMU) data (instructions retired; L2 and L3
cache hits and misses; vector and scalar floating-point
operations, etc.) in both ST and HT modes. We analyze the
results to understand the factors influencing the performance
of codes in HT mode.

The remainder of this paper is organized as follows. We
present background and related work in the next section.
Section III discusses HT in the context of the Nehalem
micro-architecture and its Westmere-EP processor. In
Section IV, we detail the architecture of the platform used in
this study—the SGI Altix ICE 8400EX, based on the
Westmere-EP processor. Section V discusses the
experimental setup, including the hardware performance
counters. In Section VI, we describe the benchmarks and
applications used in our study. In Section VII, we discuss
metrics used to measure the effectiveness of HT and the
utilization of processor resources in both ST and HT modes.
Section VIII presents and analyzes the performance results of

our experiments. We discuss other factors that influenced the
results of this study in Section IX, and end with some
conclusions from this work in Section X.

II. BACKGROUND AND RELATED WORK
Intel introduced SMT, called Hyper-Threading (HT), into

its product line in 2002 with new models of their Pentium 4
processors [1-3]. The advantage of HT is its ability to better
utilize processor resources and to hide memory latency.
There have been a few efforts studying the effectiveness of
HT on application performance [4-6]. Boisseau et al.
conducted a performance evaluation of HT on a Dell 2650
dual processor-server based on Pentium 4 using matrix-
matrix multiplication and a 256-particle molecular dynamics
benchmark written in OpenMP [4]. Haung et al.
characterized the performance of Java applications using
Pentium 4 processors with HT [5]. Blackburn et al. studied
the performance of garbage collection in HT mode by using
some of the Pentium 4 performance counters [6]. A key
finding of these investigations was that the Pentium 4’s
implementation of HT was not very advantageous, as the
processor had very limited memory bandwidth and issued
only two instructions per cycle.

Recently, HT was extended to processors that use Intel’s
Nehalem micro-architecture [7]. In these processors,
memory bandwidth was enhanced significantly by
overcoming the front-side bus memory bandwidth bottleneck
and by increasing instruction issuance from two to four per
cycle. Saini et al. conducted a performance evaluation of HT
on small numbers of Nehalem nodes using NPB [8]. Results
showed that for one node, HT provided a slight advantage
only for LU. BT, SP, MG, and LU achieved the greatest
benefit from HT at 4 nodes: factors of 1.54, 1.43, 1.14, and
1.14, respectively, while FT did not achieve any benefit
independent of the number of nodes. Later on Saini et al.
extended their work on HT to measure the relative efficiency
E of the processor in terms of cycle per instruction using the
formula

E = 100*(2*CPIST / CPIHT) – 100

where CPIST and CPIHT are cycle per instruction in ST and
HT modes respectively [9].

In this study we focus on the Westmere-EP Xeon
processor, which is based on the Nehalem micro-
architecture.

The contributions of this paper are as follows:

• We present efficiency, a new performance metric in
terms of instruction per cycle to quantify the
utilization of the processor, by collecting PMU data
in both ST and HT modes using a range of core
counts.

• We analyze the PMU data to identify the factors that
influence the performance of the codes, in particular
focusing on the impact of shared resources, such as

execution units and memory hierarchy, when
executing in HT mode.

III. HYPER-THREADING IN NEHALEM MICRO-
ARCHITECTURE

Hyper-Threading (HT) allows instructions from multiple
threads to run on the same core. When one thread stalls, a
second thread is allowed to proceed. To support HT, the
Nehalem micro-architecture has several advantages over the
Pentium 4. First, the newer design has much more memory
bandwidth and larger caches, giving it the ability to get data
to the core faster. Second, Nehalem is a much wider
architecture than Pentium 4. It supports two threads per core,
presenting the abstraction of two independent logical cores.
The physical core contains a mixture of resources, some of
which are shared between threads [2]:

• replicated resources for each thread, such as register
state, return stack buffer (RSB), and the instruction
queue;

• partitioned resources tagged by the thread number,
such as load buffer, store buffer, and reorder buffer;

• shared resources, such as L1, L2, and L3 cache; and
• shared resources unaware of the presence of

threads, such as execution units.

The RSB is an improved branch target prediction
mechanism. Each thread has a dedicated RSB to avoid any
cross-contamination. Such replicated resources should not
have an impact on HT performance. Partitioned resources are
statically allocated between the threads and reduce the
resources available to each thread. However there is no
competition for these resources. On the other hand, the two
threads do compete for shared resources and the performance
depends on the dynamic behavior of the threads. Some of the
shared resources are unaware of HT. For example, the
scheduling of instructions to execution units is independent
of threads, but there are limits on the number of instructions
from each thread that can be queued.

Figure 1 is a schematic description of HT for the
Nehalem micro-architecture. In the diagram, the rows depict
each of the Westmere-EP processor’s six execution units—
two floating-point units (FP0 and FP1), one load unit (LD0),
one store unit (ST0), one load address unit (LA0), and one
branch unit (BR0). It is a sixteen-stage pipeline. Each box
represents a single micro-operation running on an execution
unit.

Figure 1(a) shows the ST mode (no HT) in a core where
the core is executing only one thread (Thread 0 shown in
green) and white space denotes unfilled stages in the
pipeline. The peak execution bandwidth of the Nehalem
micro-architecture is four micro-operations per cycle. Often
ST does not utilize the execution units optimally and
operates at less than peak bandwidth, as indicated by the
large number of idle (white) execution units.

Figure 1. Hyper Threading on the sixteen-stage pipeline Nehalem

architecture with six execution units.
Figure 1(b) shows the HT feature in one of the processor

cores. This core in HT mode executes the micro-operations,
from both threads (Thread 0 and Thread 1 shown in green
and blue, respectively). This arrangement can operate closer
to peak bandwidth, as indicated by the smaller number of
idle (white) execution units. In HT mode, the processor can
utilize execution units more efficiently.

IV. COMPUTING PLATFORM

This study was conducted using NASA’s Pleiades super-
computer, an SGI Altix ICE 8400EX system located at
NASA Ames Research Center. Pleiades comprises of 10,752
nodes interconnected with an InfiniBand (IB) network in a
hypercube topology. The nodes are based on three different
Intel Xeon processors: Harpertown, Nehalem-EP, and
Westmere-EP. In this study, we used the Westmere-EP based
nodes [10]. This subset of Pleiades is interconnected via 4X
Quad Data Rate (QDR) IB switches. As shown in Figure 2,
the Westmere-EP based nodes have two Xeon X5670
processors, each with six cores. Each processor is clocked at
2.93 GHz, with a peak performance of 70.32 Gflop/s. The
total peak performance of the node is therefore 140.64
Gflop/s.

Each Westmere-EP processor has two parts: “core” and
“uncore”. The core part consists of six cores with per-core
L1 and L2 caches. The uncore part has a shared L3 cache, an
integrated memory controller, and QuickPath Interconnect
(QPI). Each core has 64 KB of L1 cache (32 KB data and 32
KB instruction) and 256 KB of L2 cache. All six cores share
12 MB of L3 cache. The on-chip memory controller supports
three DDR3 channels running at 1333 MHz, with a peak-
memory bandwidth per socket of 32 GB/s (and twice that per
node). Each processor has two QPI links: one connects the
two processors of a node to form a non-uniform-memory
access (NUMA) architecture, while the other connects to the
I/O hub. Each QPI link runs at 6.4 GT/s (“T” for
transactions), at which rate 2 bytes can be transferred in each
direction, for an aggregate of 25.6 GB/s. HT was enabled on
each processor for our experiments. Pleiades utilizes SUSE
Linux Enterprise Server (SLES) based on the 2.6.32 Linux

kernel and SGI overlays as its operating system and has a
Lustre file system for I/O.

Figure 2. Configuration of an Intel Westmere-EP node.

V. EXPERIMENTAL SETUP AND COUNTERS
In this section we give a brief description of the

experimental setup for collecting and analyzing the data
based on the hardware performance counters. We also
describe the performance counters used in our study.

A. Experimental Setup
In this work, we used the SGI Message Passing Toolkit

(MPT) version 1.25 and the Intel compiler version 11.1 [12].
We used op_scope, a tool developed by Supersmith to
collect low-level performance data, e.g. floating-point
operations, instruction counts, clock cycles, cache
misses/hits, etc. [18]. The tool relies on the Performance
Application Programming Interface (PAPI) [13] to access
hardware performance counters. In the present study,
op_scope was built with PAPI version 4.1.0.

The experiments were performed using the same number
of physical resources for both ST and HT modes; that is, for
a given number of physical cores, say n, we used n MPI
processes in ST mode but doubled it to 2n MPI processes in
HT mode. The main reason for keeping the number of cores
used constant while toggling HT was to approximate the
situation faced by users: whether or not they should use HT
when running an application on a given set of resources.

Note that this approach raises two issues for the
remainder of the analysis. First, we are making an implicit
assumption that the codes scale perfectly, i.e., there is no
performance loss or gain in going from n MPI processes (in
ST mode) to 2n MPI processes (in HT mode). Second, this
approach also changes the amount of work done per MPI
process and the overall communication pattern, which we are
not considering. With ST, there are a maximum of 12 MPI
processes communicating with other nodes while the number
doubles in HT mode, thereby potentially creating a
bottleneck at the Host Channel Adaptor (HCA), a physical
network card that connects a node to the IB network fabric.
A similar communication bottleneck can also occur at the
inter IRU links. This effect is more pronounced at a higher
number of cores especially for MPI collectives such as

MPI_Allreduce and MPI_Bcast. We will not be able to fully
address the network-dependent effects in this study since we
did not gather any network data for MPI communication. We
are currently examining mechanisms for differentiating
hardware counter data from inside and outside
communication routines.

A tool called dplace from SGI was used to bind a related
set of processes to specific cores to prevent process
migration. In addition, if only a part of the node was used in
a run, it was ensured that both ST and HT modes used the
same set of cores. Also, in order to reduce the impact of the
initialization phase of an application (reading the input data,
setting up the computational grid, etc.) on the results, each
case was run twice—once for the first iteration only and
another for all iterations. Results from the first run were then
subtracted from the second run for both timing and hardware
counter data.

B. Westmere-EP Performance Counter Events

Hardware counter data was collected from the
Performance Monitor Unit (PMU) of the Westmere-EP
processor. PMU provides seven counters per core; 3 fixed
and 4 general-purpose [10]. PAPI users can access 117
native events. We narrowed these 117 down to 8 events that
were appropriate for the present study; Table 1 shows the
names and descriptions of the events we used. The counter
data presented in the later sections is an average of the values
collected for all the MPI processes.

TABLE I. Intel Westmere-EP events.

Name Description

UNHALTED_CORE_CYCLES Clock cycles
when not halted

INSTRUCTIONS_RETIRED
Number of
instructions
retired

FP_COMP_OPS_EXE:SSE_FP_PACKED
Number of
packed FP uops
executed

FP_COMP_OPS_EXE:SSE_FP_SCALAR
Number of
scalar FP uops
executed

L2_RQSTS:LD_HIT
Number of loads
that hit the L2
cache

L2_RQSTS:LD_MISS
Number of loads
that miss the L2
cache

LLC_REFERENCES
Last level cache
demand requests
from this core

LLC_MISSES

Last level cache
demand requests
from this core
that missed the
LLC

VI. APPLICATIONS USED IN THE STUDY
Here is a brief overview of the codes that we used in this

study.

Cart3D is an unstructured high fidelity, inviscid CFD
application that solves the Euler equations of fluid dynamics
[14]. It includes a solver called Flowcart, which uses a
second-order, cell-centered, finite-volume upwind spatial
discretization scheme, in conjunction with a multi-grid
accelerated Runge-Kutta method for steady-state cases. We
used the geometry of the Space Shuttle Launch Vehicle
(SSLV) for the simulations in this work. The SSLV uses 24
million cells for computation, and the input dataset is 1.8
GB. The application (in this case, the MPI version) requires
16 GB of memory to run.

OVERFLOW is a general-purpose Navier-Stokes solver
for CFD problems [15]. The Fortran90 MPI version has
130,000 lines of code. The application uses an overset grid
methodology to perform high-fidelity viscous simulations
around realistic aerospace configurations. The main
computational logic of the sequential code consists of a time
loop and a nested grid loop. The code also uses finite
differences in space with implicit time stepping, and overset
structured grids to accommodate arbitrarily complex moving
geometries. The dataset used here is a wing-body-nacelle-
pylon geometry (DLRF6), with 23 zones and 36 million grid
points. The input dataset is 1.6 GB in size, and the solution
file is 2 GB.

NCC, the National Combustion Code, is an unstructured-
grid Navier-Stokes CFD application used to develop new
physical models for turbulence, chemistry, spray, and
turbulence-chemistry, as well as turbulence-spray
interactions [16]. It employs a cell-centered finite-volume
spatial discretization and pseudo-time preconditioning. An
explicit four-stage Runge-Kutta scheme is used to advance
the solution in pseudo-time for steady state or time-accurate
simulations. Domain decomposition to divide the total
computational domain into spatial zones is performed by
using the METIS partitioner. Each zone is solved on a
separate core and MPI is used for inter-core communication.
The test case used is H2C4 fuel injector geometry consisting
of seven individual injectors in a radial array each with four
gaseous hydrogen injection ports. A 3.49 million element
tetrahedral grid is used to model the injector and cylindrical
duct used in the experiment. Each NCC run consisted of 350
pseudo-time iterations.

USM3D is a 3-D unstructured tetrahedral, cell-centered,
finite-volume Euler and Navier-Stokes flow solver [17].
Spatial discretization is accomplished using an analytical
reconstruction process for computing solution gradients
within tetrahedral cells. The solution is advanced in time to a
steady-state condition by an implicit Euler time-stepping
scheme. A single-block, tetrahedral, unstructured grid is
partitioned into a user-specified number of contiguous
partitions, each containing nearly the same number of grid
cells. Grid partitioning is again accomplished using METIS.

The test case used 10 million tetrahedral elements, requiring
about 16 GB of memory and 10 GB of disk space.

VII. PERFORMANCE METRICS
From the user’s point of view, the impact of HT is

typically measured by calculating the relative speed up
attained, e.g. the code sped up by x% using HT. Using PMU
counters, we calculate this performance gain as:

P = (CST – CHT) / CST,

where CST and CHT are UNHALTED_CORE_CYLES in ST
and HT modes, respectively.

From the application point of view, the number unhalted
core cycles is an important metric for code optimization as it
reflects the total execution time. The goal of any code
optimization is to minimize the (a) cycles that are stalled by
improving code and data locality, (b) minimizing branches or
using more predictable branching, and (c) using vector
instructions and/or faster and more efficient algorithms.

In order to measure the core-level effects of HT, we
define a quantity called efficiency that reflects the utilization
level of the core’s execution units. In particular, we calculate
the fraction of available micro-operation slots that are being
used to completely execute an instruction. If the fraction is
high, the execution units are being kept busy doing useful
work.

The total number of available micro-operation slots
during an execution on a single core is

S = µ ⋅ C,

where C is the number of cycles executed on the core and µ
is the number of micro-operation slots available per cycle,
e.g., µ = 4 in the Nehalem microarchitecture. If I is the
number of instructions retired by the core during execution,
then the efficiency is

E = I / S

The theoretical maximum value of E is unity and reflects
the case where each micro-operation slot is being used to
retire an instruction. In practice, however, some instructions
will result in multiple micro-operations being issued. In
addition, there will often be empty slots because values
needed for a micro-operation are not available yet. Thus,
typical efficiencies will be less than one.

With our experimental setup, we can use the PMU
counters, which are per-thread counters, to calculate
efficiency during a single-threaded run as:

INSTRUCTIONS_RETIRED EST = 4 ⋅ UNHALTED_CORE_CYCLES

,

When running with HT, we note that since the core is
retiring instructions from two threads we need to add the per-
thread INSTRUCTIONS_RETIRED hardware counter for
each thread. The two UNHALTED_CORE_CYCLES

counters, on the other hand, are usually both incremented for
each cycle, as the core is halted relatively infrequently. Thus,
either counter can be used to reflect the number of cycles
executed on the core. We calculate the efficiency for the
whole core in HT mode as:

2 ⋅ INSTRUCTIONS_RETIRED
EHT = 4 ⋅ UNHALTED_CORE_CYCLES ,

because the instructions retired counter value reflects the
average across all threads in the computation.

VIII. RESULTS
In this section we present results for performance gain

and efficiency, and then explain those results in terms of
vectorization and memory hierarchy effects.

A. Efficiency and Performance Gain
To begin our analysis of hyper-threading, we examine

four metrics for the four applications in the study. Each of
the graphs in this section shows four plots:

• HT efficiency (EHT as defined in the last section),
• ST efficiency (EST),
• efficiency difference (EHT – EST), which is labeled

with “Efficiency difference (HT–ST)”, and
• performance gain (P).

1) NCC

Figure 3 shows the plots for NCC. Efficiency in HT
mode is always higher than with ST. Efficiency increases
from 35.3% to 40.5% and 39.3% to 44.3% in ST and HT
modes, respectively, across the core counts. The difference
between the HT and ST efficiency increases from 4% at 24
cores to 5.3% at 96 cores and then decreases to 3.8% at 384
cores. The HT efficiency correlates with the performance
gain, which increases with larger core count because data
starts fitting in L1 data cache. NCC shows super-linear
scaling in ST mode and has enhanced super-scaling in HT
mode as data for both threads fits into L2 cache.

Figure 3. Efficiency and percentage performance gain for NCC.

2) USM3D

Figure 4 presents the data for USM3D. We do not show
results for 256 cores since we do not have a grid for 512
processes. (The data point requires that the HT run use 512
processes on 256 cores). As with NCC, efficiency in HT
mode is always higher than with ST. Efficiency in both ST
and HT modes decreases from 32 to 64 cores and then
increases to 128 cores. The difference between the HT and
ST efficiency decreases from 1.9% at 32 cores to 0.9% at 64
cores and then increases to 3.3% at 128 cores. Performance
gain is 11% and remains almost constant.

Figure 4. Efficiency and performance gain for USM3D.

3) Cart3D

Figure 5 shows the graphs for Cart3D. Again, efficiency
in HT mode is always higher than in ST mode. Performance
gain is 14%, 7%, 22%, and 15% for 24, 48, 96, and 192
cores, respectively. There is excellent anti-correlation
between HT efficiency and performance gain.

Figure 5. Efficiency and percentage performance gain for Cart3D.

4) OVERFLOW

The results for OVERFLOW are plotted in Figure 6. As
with the other applications, efficiency in HT mode is always
higher than the ST mode. Efficiency in ST and HT modes as
well as the difference between the two increases as the

number of cores increases. The reason for this improvement
is that more data fits into L2 cache with increasing core
count. There is a good correlation between efficiency and
performance gain. But efficiency does not explain the
magnitude of performance gain.

Figure 6. Efficiency and percentage performance gain for OVERFLOW.

Figure 7 recaps the performance gain in HT mode for
four applications–NCC, USM3D, OVERFLOW and Cart3D.
OVERFLOW is the only application that does not benefit
from HT. The other three applications do benefit from HT.

Figure 7. Performance gain in HT mode for applications.

B. Effect of Code Vectorization
In our observations, one of the factors influencing the

performance of HT is the degree of vectorization in the
application code. We compute the percentage of
vectorization from two different hardware counters:

• FP_COMP_OPS_EXE:SSE_FP_PACKED that gives
the number of vector micro-operations executed, and

• FP_COMP_OPS_EXE:SSE_FP_SCALAR that gives
the number of scalar micro-operations executed.

Figure 8 shows the percentage of vector instructions
(over all floating point instructions) for the codes used in the
study. For each code, this percentage was fairly consistent

(within 1%) across the range of core counts. In comparing
the vectorization percentage with performance gain, we
observe that high vectorization correlates to a negative HT
impact, as in the case of OVERFLOW as shown in Figure 7.
However, it does not necessarily follow that at lower
percentages of vectorization, there is a correlation between
the degree of vectorization and performance gain. In
particular, NCC shows the best overall gain, but lies between
USM3D and Cart3D in vectorization percentage. In order to
understand this behavior, we need to explore the
implementation of HT more closely.

Figure 8. Percentage of vectorization of codes.

The main benefit of HT comes from the ability of
execution units in the core, such as the floating-point units
(FPU), to handle instructions from more than one thread
simultaneously. The FPU is a shared resource that is
unaware of the multiple threads. From its perspective, it is
merely handling a stream of instructions organized in a
pipeline of the six execution units—during each cycle, it can
start executing the micro-operation in the next stage. Note
that this will often lead to gaps (as shown earlier in Figure 1)
where there is no micro-operation to execute. This could be,
for example, due to a wait for a load instruction to complete.
With HT, such gaps in the FPU’s pipeline can be filled with
micro-operations from a second thread—thus making for
better utilization of the FPU.

Pitted against any potential benefit due to HT is the
additional cost of executing with multiple threads. There is
almost certainly going to be a time penalty due to increased
contention in the memory hierarchy. The bottom line is that
we will only see an overall benefit for HT if the time saved
by utilizing the idle resources in the pipeline is greater than
the extra time needed due to memory hierarchy contention.
With a high level of vectorization, the number of execution
gaps is very small and there is possibly insufficient
opportunity to make up any penalty due to increased
contention in HT. With a low level of vectorization there is
potential for benefit. Thus, the level of increased memory

hierarchy and network contention will determine whether
there is any HT benefit.

C. Effect of Memory Hierarchy
In this subsection we focus on analyzing the effect of the

memory hierarchy on performance when running in HT
mode. If sufficient resources (cache and memory bandwidth)
are available, sharing them across multiple threads in HT
mode will result in better performance than with ST.
However, we expect that if such sharing increases contention
between the threads to the extent that data needs to be
accessed from the next level of cache for each of the threads,
there will, in general, be no performance benefit of running
in HT mode. Below, we analyze hardware-counter based
data related to cache and memory accesses in order to
identify application characteristics that can provide a
performance boost with HT.

We present two kinds of graphs for each application,
namely

1. Percentage of data from each source (L2 cache, L3 cache,
and main memory – MM) in ST mode, as:

 % data from L2 = L2H / L2R ⋅ 100,
 % data from L3 = L3H / L3R ⋅ L2M / L2R ⋅ 100,
 % data from MM = L3M / L3R ⋅ L2M / L2R ⋅ 100,

2. Percentage difference in ST and HT mode (ST–HT) from
each data source as listed above as

 Difference of % data from XX =
 (% data from XX in ST mode) –
 (% data from XX in HT mode),

where XX = L2, L3, or MM.

In the above formulas, L2H (L2 cache hit), L2M (L2
cache miss), L3R (L3 cache reference), and L3M (L3 cache
miss) correspond to the following measured counter data,
respectively: L2_RQSTS:LD_HIT, L2_RQSTS:LD_MISS,
LLC_REFERENCES, and LLC_MISSES. We calculate L2R
(L2 cache reference) from L2H+L2M and L3H (L3 cache
hit) from L3R-L3M. We assume all the L3 cache misses hit
the main memory.

We use these graphs to explain how using HT impacts
the four applications. For each application, the first graph
allows us to identify the primary source of the data. If the
second graph shows that the difference in the ST and HT
percentage for the primary data source is high, it implies that
in HT mode the two threads have to go to the next level of
the memory hierarchy more often, thus incurring extra
latency costs. Our proposition is that a low value for this
difference should result in a performance gain for HT mode.
Our overall proposition is that a code benefits from HT if the
primary source of data can accommodate the request in HT
mode also.

1) NCC

Figure 9 shows the percentage of data from each source
for NCC in ST mode. The amount of data coming from L2
cache, L3 cache, and main memory is 69-79%, 7-13%, and
15-20%, respectively. The percentage of data coming from
L2 cache decreases with increasing number of cores because
a larger portion of the process’s data fits into L1 cache.

Figure 9. Percentage of data from each source for NCC.

Figure 10 shows the percentage difference between ST
and HT modes for the three data sources for NCC, along
with the performance gain for HT over ST. The percentage
difference between ST and HT for NCC from L2 cache, L3
cache, and main memory is 20% to 50%, -44% to -22%, and
-6% to 2%, respectively. In particular, the percentage
difference for the primary source of data, L2 cache, steadily
decreases from 50% to 20% across the range of cores. There
is an anti-correlation between the performance gain and the
percentage difference between ST and HT for L2 cache. That
is, with increasing cores, the L2 cache can better
accommodate both threads in HT mode resulting in more
performance gain in this mode.

Figure 10. Performance gain and percentage difference between ST and
HT for NCC.

2) Cart3D

Figure 11 shows the percentage of data from each source
for Cart3D. In ST mode, 61% to 65%, 5% to 8%, and 27% to
34% of the data comes from L2 cache, L3 cache, and main
memory, respectively. Hence, the primary source of data is
L2 cache.

Figure 11. Percentage of data from each source for Cart3D.

Figure 12 shows the percentage difference between ST
and HT modes for the three data sources for Cart3D along
with the performance gain by HT over ST. As was the case
with NCC, there is an anti-correlation between the
performance gain and the percentage difference between ST
and HT for the primary data source—L2 cache.

Figure 12. Performance gain and percentage difference between ST and
HT for Cart3D.

3) USM3D

Figure 13 shows that main memory (MM) is the source
for almost 80% of the data for USM3D across the whole
range of cores tested. Note that USM3D is an unstructured
code with tetrahedral meshes involving indirect addressing.
It usually cannot reuse the data from L2 or L3 cache and thus
has to fetch data from main memory. Thus, the various cache
levels do not seem to play any significant role for this
application.

Figure 13. Percentage of data from each source for USM3D.

Figure 14 shows the percentage difference between ST and
HT modes for L2 cache, L3 cache and main memory for
USM3D. The differences are small, indicating that as we
expected, even in HT mode most of data comes from the
main memory. Since the code is only 20% vectorized and
most of the data (80%) comes from main memory, there is
an opportunity to hide memory latency of one thread while
the second thread utilizes the floating-point units in the HT
mode. This results in better performance gain. As was the
case with the two previous applications, there is an anti-
correlation between the performance gain and the percentage
difference between ST and HT for the primary data source—
in this case main memory.

Figure 14. Performance gain and percentage difference between ST and

HT for USM3D.
4) OVERFLOW

Figure 15 shows the percentage of data from each source
for OVERFLOW in ST mode. For ST, the amount of data
coming from L2 cache, L3 cache, and main memory is 44-
71%, 18-31%, and 12-25%, respectively. As the number of
cores increases, more data fits into L2 cache. As a result, a
higher percentage of data comes from it.

Figure 15. Percentage of data from each source for OVERFLOW.

Figure 16 shows the percentage difference between ST and
HT modes for L2 cache, L3 cache, and main memory for
OVERFLOW. As was seen in the other applications, there is
an anti-correlation between performance gain and the
percentage difference between ST and HT for the primary
data source—in this case L2 cache. Note also that the
secondary data source (L3 cache) has a negative difference
between ST and HT. This means that HT causes more L3
requests than ST. Since the L3 latency is higher, this
degrades the overall performance.

Figure 16. Performance gain and percentage difference between ST and

HT for OVERFLOW.

IX. IMPACT OF APPLICATION CHARACTERISTIC
The applications we investigated in this paper fall into

two broad classes at the highest level: those utilizing
structured meshes (OVERFLOW) and those utilizing
unstructured meshes (NCC, Cart3D, and USM3D). The three
unstructured applications use a similar strategy for sub-
domain partitioning of the grids except that Cart3D uses
unstructured Cartesian grids and load-balancing is done via
space-filling curves whereas USM3D and NCC use
tetrahedral grids and partitioning is accomplished using
METIS. In this study we found that unstructured-grid
applications benefit by running them in HT mode whereas
structured-grid applications do not. In order to understand
this performance behavior, we briefly describe the
characteristics of these two classes of applications.

Structured applications access adjacent elements of the
underlying data structures and this spatial locality of data

allow them to be optimized for cache by the compiler. Such
codes also tend to be associated with a high degree of
vectorization. The success of vectorization puts increased
pressure on the memory hierarchy and can result in stalls that
lower our measure of efficiency. Adding a second thread to
that core with HT increases the demands on memory and
communication resources, and does not result in any
performance benefits.

Unstructured applications, on the other hand, involve
indirect addressing and adjacent elements are often not
accessed in sequence. Also, the compiler is usually unable to
vectorize the codes, which results in sub-optimal utilization
of floating-point execution units and gives opportunities for
HT to utilize the resources. Thus, we expect hyper-threading
to provide a boost in performance as long as there is no
significant increase in the contention for the memory
hierarchy or communication resources.

X. CONCLUSIONS
In this paper we have studied the effect of hyper-

threading on four applications of interest to NASA: Cart3D,
NCC, USM3D, and OVERFLOW. While the first three
showed performance boosts from using HT, OVERFLOW
did not.

In order to explain the differences in performance that we
saw, we introduced an efficiency metric to quantify
processor resource utilization. Using the metric, we find that
efficiency in hyper-threaded mode is higher than in single-
threaded mode across all core counts for all four
applications. Since OVERFLOW did not see any
improvement from HT, there must be other factors
influencing performance. In particular, vectorization plays a
key role, as OVERFLOW was by far the most highly
vectorized of the codes in the study.

HT increases competition for resources in the memory
hierarchy, such as memory bandwidth. Moreover, HT
performance is affected by increased communication
pressure as additional processes compete for network
resources such as HCA chips and IB switches. One factor
that affects the results of our experiments is that we
conducted a strong scaling study. Also, in the analysis we
have assumed that the applications scale perfectly from n to
2n ranks, and thus the entire performance impact in going
from ST to HT mode is from the use of hyper-threading. We
have not taken into account the changes in communication in
our analysis of the results.

We found that unstructured-grid applications like NCC,
Cart3D, and USM3D benefit from HT whereas the
structured-grid application (OVERFLOW) did not. The
unstructured codes usually have a low percentage of
vectorization and could get a performance boost from HT
provided competition from an additional thread does not
cause load instructions to go deeper in the memory hierarchy
to be satisfied. We also found an anti-correlation between the
performance gain in HT mode and the primary data source
for the four applications used in the present study.

As future work, we propose to quantify the impact of
scaling and communication in HT mode. We also intend to
investigate the impact of power and thermal efficiencies in
HT mode.

ACKNOWLEDGMENT
We gratefully acknowledge Sharad Gavali’s help with

running NCC, and stimulating discussions with Johnny
Chang, Jahed Djomehri and Kenichi Taylor.

REFERENCES
[1] Intel Pentium 4 Processor Extreme Edition Supporting Hyper-

Threading Technology,
http://www.intel.com/products/processor/pentium4htxe/index.htm

[2] Intel Hyper-Threading Technology (Intel HT Technology),
http://www.intel.com/technology/platform-technology/hyper-
threading/

[3] D. Marr, et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal, Volume 06, Issue 01
February 14, 2002.
http://www.intel.com/technology/itj/archive/2002.htm

[4] J. Boisseau, K. Milfeld, and C. Guiang. “Exploring the Effects of
Hyperthreading on Scientific Applications,” presented in Technical
session number 7B, 45th Cray User Group Conference, , Columbus,
Ohio, May 2003. http://www.cug.org/7-
archives/previous_conferences/2003/CUG2003/pages/1-
program/final_program/20.tuesday.htm

[5] W. Huang, J. Lin, Z. Zhang, and J. M. Chang. “Performance
Characterization of Java Applications on SMT Processors,”
International Symp. on Performance Analysis of Systems and
Software (ISPASS), March 2005,

[6] S. Blackburn, P. Cheng, and K. McKinley. “Myths and Realities: The
Performance Impact of Garbage Collection,” Proc. SIGMETRICS
’04, June 2004.

[7] Intel® Microarchitecture (Nehalem),
www.intel.com/technology/architecture-silicon/next-gen/.

[8] S. Saini, A. Naraikin, R. Biswas, D. Barkai, and T. Sandstrom, “Early
Performance Evaluation of a Nehalem Cluster Using Scientific and
Engineering Applications,” Proc. ACM/IEEE SC09, Portland,
Oregon, Nov. 2009.

[9] S. Saini, P. Mehrotra, K. Taylor, M. Aftosmis, and R. Biswas,
“Performance Analysis of CFD Application Cart3D Using MPInside
and Performance Monitor Unit Data on Nehalem and Westmere
Based Supercomputers,” 13th IEEE Intl. Conf. on High Performance
Computing and Communications, Banff, Canada, Sep. 2011.

[10] Intel Westmere,
http://ark.intel.com/ProductCollection.aspx?codeName=33174

[11] SGI Altix ICE 8400: http://www.sgi.com/products/servers/altix/ice/
[12] Message Passing Toolkit (MPT) User’s Guide,

http://techpubs.sgi.com/library/manuals/3000/007-3773-003/pdf/007-
3773-003.pdf

[13] PAPI 4.1.1 Release, http://icl.cs.utk.edu/papi/news/news.html?id=203
[14] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. “High Resolution

Aerospace Applications using the NASA Columbia Supercomputer,”
Proc. ACM/IEEE SC05, Seattle, Washington, Nov. 2005.

[15] OVERFLOW: http://aaac.larc.nasa.gov/~buning/
[16] A. Quealy, R. Ryder, A. Norris, and N-S. Liu. “National Combustion

Code: Parallel Implementation and Performance,” 38th AIAA
Aerospace Sciences Mtg., Reno, Nevada, Jan. 2000.

[17] USM3D, http://aaac.larc.nasa.gov/tsab/usm3d/usm3d_52_man.html
[18] op_scope, Supermith, Inc., Pebble Beach, CA,

http://supersmith.com/op_scope

