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Abstract—Intel provides Hyper-Threading (HT) in processors 
based on its Pentium and Nehalem micro-architecture such as 
the Westmere-EP. HT enables two threads to execute on each 
core in order to hide latencies related to data access. These two 
threads can execute simultaneously, filling unused stages in the 
functional unit pipelines. To aid better understanding of HT-
related issues, we collect Performance Monitoring Unit (PMU) 
data (instructions retired; unhalted core cycles; L2 and L3 
cache hits and misses; vector and scalar floating-point 
operations, etc.). We then use the PMU data to calculate a new 
metric of efficiency in order to quantify processor resource 
utilization and make comparisons of that utilization between 
single-threading (ST) and HT modes. We also study 
performance gain using unhalted core cycles, code efficiency of 
using vector units of the processor, and the impact of HT mode 
on various shared resources like L2 and L3 cache. Results 
using four full-scale, production-quality scientific applications 
from computational fluid dynamics (CFD) used by NASA 
scientists indicate that HT generally improves processor 
resource utilization efficiency, but does not necessarily 
translate into overall application performance gain. 

Keywords: Simultaneous Multi-Threading (SMT), Hyper-
Threading (HT), Intel’s Nehalem micro-architecture, Intel 
Westmere-EP, Computational Fluid Dynamics (CFD), SGI Altix 
ICE 8400EX, Performance Tools, Benchmarking, Performance 
Evaluation 

I.  INTRODUCTION  
Current trends in microprocessor design have made high 

resource utilization a key requirement for achieving good 
performance. For example, while deeper pipelines have led 
to 3 GHz processors, each new generation of micro-
architecture technology comes with increased memory 
latency and a decrease in relative memory speed. This results 
in the processor spending a significant amount of time 
waiting for the memory system to fetch data. This “memory 
wall” problem continues to remain a major bottleneck and as 
a result, sustained performance of most real-world 
applications is less than 10% of peak. 

Over the years, a number of multithreading techniques 
have been employed to hide this memory latency. One 
approach is simultaneous multi-threading (SMT), which 
exposes more parallelism to the processor by fetching and 
retiring instructions from multiple instruction streams, 
thereby increasing processor utilization. SMT requires only 
some extra hardware instead of replicating the entire core. 
Price and performance benefits make it a common design 

choice as, for example, in Intel’s Nehalem micro-
architecture, where it is called Hyper-Threading (HT).  

As is the case with other forms of on-chip parallelism, 
such as multiple cores and instruction-level parallelism, 
SMT uses resource sharing to make the parallel 
implementation economical. With SMT, this sharing has the 
potential for improving utilization of resources such as that 
of the floating-point unit through the hiding of latency in the 
memory hierarchy. When one thread is waiting for a load 
instruction to complete, the core can execute instructions 
from another thread without stalling. 

The purpose of this paper is to measure the impact of HT 
on processor utilization. We accomplish this by computing 
processor efficiency and investigating how various shared 
resources affect performance of scientific applications in HT 
mode. Specifically, we present a new metric for processor 
efficiency to characterize its utilization in single threading 
(ST) and HT modes for the hex-core Westmere-EP processor 
used in SGI Altix ICE 8400EX supercomputer. We also 
investigate the effect of memory hierarchy on the 
performance of scientific applications in both the modes. We 
use four production computational fluid dynamics (CFD) 
applications—OVERFLOW, USM3D, Cart3D, and NCC—
that are used extensively by scientists and engineers at 
NASA and throughout the aerospace industry. 

In order to better understand the performance 
characteristics of these codes, we collect Performance 
Monitoring Unit (PMU) data (instructions retired; L2 and L3 
cache hits and misses; vector and scalar floating-point 
operations, etc.) in both ST and HT modes. We analyze the 
results to understand the factors influencing the performance 
of codes in HT mode. 

The remainder of this paper is organized as follows. We 
present background and related work in the next section. 
Section III discusses HT in the context of the Nehalem 
micro-architecture and its Westmere-EP processor. In 
Section IV, we detail the architecture of the platform used in 
this study—the SGI Altix ICE 8400EX, based on the 
Westmere-EP processor. Section V discusses the 
experimental setup, including the hardware performance 
counters. In Section VI, we describe the benchmarks and 
applications used in our study. In Section VII, we discuss 
metrics used to measure the effectiveness of HT and the 
utilization of processor resources in both ST and HT modes. 
Section VIII presents and analyzes the performance results of 



our experiments. We discuss other factors that influenced the 
results of this study in Section IX, and end with some 
conclusions from this work in Section X. 

II. BACKGROUND AND RELATED WORK 
Intel introduced SMT, called Hyper-Threading (HT), into 

its product line in 2002 with new models of their Pentium 4 
processors [1-3]. The advantage of HT is its ability to better 
utilize processor resources and to hide memory latency. 
There have been a few efforts studying the effectiveness of 
HT on application performance [4-6]. Boisseau et al. 
conducted a performance evaluation of HT on a Dell 2650 
dual processor-server based on Pentium 4 using matrix-
matrix multiplication and a 256-particle molecular dynamics 
benchmark written in OpenMP [4]. Haung et al. 
characterized the performance of Java applications using 
Pentium 4 processors with HT [5]. Blackburn et al. studied 
the performance of garbage collection in HT mode by using 
some of the Pentium 4 performance counters [6]. A key 
finding of these investigations was that the Pentium 4’s 
implementation of HT was not very advantageous, as the 
processor had very limited memory bandwidth and issued 
only two instructions per cycle.  

Recently, HT was extended to processors that use Intel’s 
Nehalem micro-architecture [7]. In these processors, 
memory bandwidth was enhanced significantly by 
overcoming the front-side bus memory bandwidth bottleneck 
and by increasing instruction issuance from two to four per 
cycle. Saini et al. conducted a performance evaluation of HT 
on small numbers of Nehalem nodes using NPB [8]. Results 
showed that for one node, HT provided a slight advantage 
only for LU. BT, SP, MG, and LU achieved the greatest 
benefit from HT at 4 nodes: factors of 1.54, 1.43, 1.14, and 
1.14, respectively, while FT did not achieve any benefit 
independent of the number of nodes. Later on Saini et al. 
extended their work on HT to measure the relative efficiency 
E of the processor in terms of cycle per instruction using the 
formula 

E = 100*(2*CPIST  / CPIHT) – 100 

where CPIST   and CPIHT are cycle per instruction in ST and 
HT modes respectively [9]. 

In this study we focus on the Westmere-EP Xeon 
processor, which is based on the Nehalem micro-
architecture.  

The contributions of this paper are as follows:  

• We present efficiency, a new performance metric in 
terms of instruction per cycle to quantify the 
utilization of the processor, by collecting PMU data 
in both ST and HT modes using a range of core 
counts.  

• We analyze the PMU data to identify the factors that 
influence the performance of the codes, in particular 
focusing on the impact of shared resources, such as 

execution units and memory hierarchy, when 
executing in HT mode. 

III. HYPER-THREADING IN NEHALEM MICRO-
ARCHITECTURE 

Hyper-Threading (HT) allows instructions from multiple 
threads to run on the same core. When one thread stalls, a 
second thread is allowed to proceed. To support HT, the 
Nehalem micro-architecture has several advantages over the 
Pentium 4. First, the newer design has much more memory 
bandwidth and larger caches, giving it the ability to get data 
to the core faster. Second, Nehalem is a much wider 
architecture than Pentium 4. It supports two threads per core, 
presenting the abstraction of two independent logical cores. 
The physical core contains a mixture of resources, some of 
which are shared between threads [2]: 

• replicated resources for each thread, such as register 
state, return stack buffer (RSB), and the instruction 
queue;  

• partitioned resources tagged by the thread number, 
such as load buffer, store buffer, and reorder buffer;  

• shared resources, such as L1, L2, and L3 cache; and 
• shared resources unaware of the presence of 

threads, such as execution units.  

The RSB is an improved branch target prediction 
mechanism. Each thread has a dedicated RSB to avoid any 
cross-contamination. Such replicated resources should not 
have an impact on HT performance. Partitioned resources are 
statically allocated between the threads and reduce the 
resources available to each thread. However there is no 
competition for these resources. On the other hand, the two 
threads do compete for shared resources and the performance 
depends on the dynamic behavior of the threads. Some of the 
shared resources are unaware of HT. For example, the 
scheduling of instructions to execution units is independent 
of threads, but there are limits on the number of instructions 
from each thread that can be queued. 

Figure 1 is a schematic description of HT for the 
Nehalem micro-architecture. In the diagram, the rows depict 
each of the Westmere-EP processor’s six execution units—
two floating-point units (FP0 and FP1), one load unit (LD0), 
one store unit (ST0), one load address unit (LA0), and one 
branch unit (BR0). It is a sixteen-stage pipeline. Each box 
represents a single micro-operation running on an execution 
unit.  

Figure 1(a) shows the ST mode (no HT) in a core where 
the core is executing only one thread (Thread 0 shown in 
green) and white space denotes unfilled stages in the 
pipeline. The peak execution bandwidth of the Nehalem 
micro-architecture is four micro-operations per cycle. Often 
ST does not utilize the execution units optimally and 
operates at less than peak bandwidth, as indicated by the 
large number of idle (white) execution units.  



 
Figure 1.  Hyper Threading on the sixteen-stage pipeline Nehalem 

architecture with six execution units. 
Figure 1(b) shows the HT feature in one of the processor 

cores. This core in HT mode executes the micro-operations, 
from both threads (Thread 0 and Thread 1 shown in green 
and blue, respectively). This arrangement can operate closer 
to peak bandwidth, as indicated by the smaller number of 
idle (white) execution units. In HT mode, the processor can 
utilize execution units more efficiently.  

IV. COMPUTING PLATFORM 

This study was conducted using NASA’s Pleiades super- 
computer, an SGI Altix ICE 8400EX system located at 
NASA Ames Research Center. Pleiades comprises of 10,752 
nodes interconnected with an InfiniBand (IB) network in a 
hypercube topology. The nodes are based on three different 
Intel Xeon processors: Harpertown, Nehalem-EP, and 
Westmere-EP. In this study, we used the Westmere-EP based 
nodes [10]. This subset of Pleiades is interconnected via 4X 
Quad Data Rate (QDR) IB switches. As shown in Figure 2, 
the Westmere-EP based nodes have two Xeon X5670 
processors, each with six cores. Each processor is clocked at 
2.93 GHz, with a peak performance of 70.32 Gflop/s. The 
total peak performance of the node is therefore 140.64 
Gflop/s.  

Each Westmere-EP processor has two parts: “core” and 
“uncore”. The core part consists of six cores with per-core 
L1 and L2 caches. The uncore part has a shared L3 cache, an 
integrated memory controller, and QuickPath Interconnect 
(QPI). Each core has 64 KB of L1 cache (32 KB data and 32 
KB instruction) and 256 KB of L2 cache. All six cores share 
12 MB of L3 cache. The on-chip memory controller supports 
three DDR3 channels running at 1333 MHz, with a peak-
memory bandwidth per socket of 32 GB/s (and twice that per 
node). Each processor has two QPI links: one connects the 
two processors of a node to form a non-uniform-memory 
access (NUMA) architecture, while the other connects to the 
I/O hub. Each QPI link runs at 6.4 GT/s (“T” for 
transactions), at which rate 2 bytes can be transferred in each 
direction, for an aggregate of 25.6 GB/s. HT was enabled on 
each processor for our experiments. Pleiades utilizes SUSE 
Linux Enterprise Server (SLES) based on the 2.6.32 Linux 

kernel and SGI overlays as its operating system and has a 
Lustre file system for I/O.  

 
Figure 2.  Configuration of an Intel Westmere-EP node. 

V. EXPERIMENTAL SETUP AND COUNTERS  
In this section we give a brief description of the 

experimental setup for collecting and analyzing the data 
based on the hardware performance counters. We also 
describe the performance counters used in our study. 

A.  Experimental Setup 
In this work, we used the SGI Message Passing Toolkit 

(MPT) version 1.25 and the Intel compiler version 11.1 [12]. 
We used op_scope, a tool developed by Supersmith to 
collect low-level performance data, e.g. floating-point 
operations, instruction counts, clock cycles, cache 
misses/hits, etc. [18]. The tool relies on the Performance 
Application Programming Interface (PAPI) [13] to access 
hardware performance counters. In the present study, 
op_scope was built with PAPI version 4.1.0. 

The experiments were performed using the same number 
of physical resources for both ST and HT modes; that is, for 
a given number of physical cores, say n, we used n MPI 
processes in ST mode but doubled it to 2n MPI processes in 
HT mode. The main reason for keeping the number of cores 
used constant while toggling HT was to approximate the 
situation faced by users: whether or not they should use HT 
when running an application on a given set of resources.  

Note that this approach raises two issues for the 
remainder of the analysis. First, we are making an implicit 
assumption that the codes scale perfectly, i.e., there is no 
performance loss or gain in going from n MPI processes (in 
ST mode) to 2n MPI processes (in HT mode). Second, this 
approach also changes the amount of work done per MPI 
process and the overall communication pattern, which we are 
not considering. With ST, there are a maximum of 12 MPI 
processes communicating with other nodes while the number 
doubles in HT mode, thereby potentially creating a 
bottleneck at the Host Channel Adaptor (HCA), a physical 
network card that connects a node to the IB network fabric. 
A similar communication bottleneck can also occur at the 
inter IRU links. This effect is more pronounced at a higher 
number of cores especially for MPI collectives such as 



MPI_Allreduce and MPI_Bcast. We will not be able to fully 
address the network-dependent effects in this study since we 
did not gather any network data for MPI communication. We 
are currently examining mechanisms for differentiating 
hardware counter data from inside and outside 
communication routines. 

A tool called dplace from SGI was used to bind a related 
set of processes to specific cores to prevent process 
migration. In addition, if only a part of the node was used in 
a run, it was ensured that both ST and HT modes used the 
same set of cores. Also, in order to reduce the impact of the 
initialization phase of an application (reading the input data, 
setting up the computational grid, etc.) on the results, each 
case was run twice—once for the first iteration only and 
another for all iterations. Results from the first run were then 
subtracted from the second run for both timing and hardware 
counter data.  

B. Westmere-EP Performance Counter Events 

Hardware counter data was collected from the 
Performance Monitor Unit (PMU) of the Westmere-EP 
processor. PMU provides seven counters per core; 3 fixed 
and 4 general-purpose [10]. PAPI users can access 117 
native events. We narrowed these 117 down to 8 events that 
were appropriate for the present study; Table 1 shows the 
names and descriptions of the events we used. The counter 
data presented in the later sections is an average of the values 
collected for all the MPI processes. 

 
TABLE I.  Intel Westmere-EP events. 

Name Description 

UNHALTED_CORE_CYCLES Clock cycles 
when not halted 

INSTRUCTIONS_RETIRED 
Number of 
instructions 
retired 

FP_COMP_OPS_EXE:SSE_FP_PACKED 
Number of 
packed FP uops 
executed 

FP_COMP_OPS_EXE:SSE_FP_SCALAR 
Number of 
scalar FP uops 
executed 

L2_RQSTS:LD_HIT 
Number of loads 
that hit the L2 
cache 

L2_RQSTS:LD_MISS 
Number of loads 
that miss the L2 
cache 

LLC_REFERENCES 
Last level cache 
demand requests 
from this core 

LLC_MISSES 

Last level cache 
demand requests 
from this core 
that missed the 
LLC 

VI. APPLICATIONS USED IN THE STUDY 
Here is a brief overview of the codes that we used in this 

study.  

Cart3D is an unstructured high fidelity, inviscid CFD 
application that solves the Euler equations of fluid dynamics 
[14]. It includes a solver called Flowcart, which uses a 
second-order, cell-centered, finite-volume upwind spatial 
discretization scheme, in conjunction with a multi-grid 
accelerated Runge-Kutta method for steady-state cases. We 
used the geometry of the Space Shuttle Launch Vehicle 
(SSLV) for the simulations in this work. The SSLV uses 24 
million cells for computation, and the input dataset is 1.8 
GB. The application (in this case, the MPI version) requires 
16 GB of memory to run. 

OVERFLOW is a general-purpose Navier-Stokes solver 
for CFD problems [15]. The Fortran90 MPI version has 
130,000 lines of code. The application uses an overset grid 
methodology to perform high-fidelity viscous simulations 
around realistic aerospace configurations. The main 
computational logic of the sequential code consists of a time 
loop and a nested grid loop. The code also uses finite 
differences in space with implicit time stepping, and overset 
structured grids to accommodate arbitrarily complex moving 
geometries. The dataset used here is a wing-body-nacelle-
pylon geometry (DLRF6), with 23 zones and 36 million grid 
points. The input dataset is 1.6 GB in size, and the solution 
file is 2 GB. 

NCC, the National Combustion Code, is an unstructured-
grid Navier-Stokes CFD application used to develop new 
physical models for turbulence, chemistry, spray, and 
turbulence-chemistry, as well as turbulence-spray 
interactions [16]. It employs a cell-centered finite-volume 
spatial discretization and pseudo-time preconditioning. An 
explicit four-stage Runge-Kutta scheme is used to advance 
the solution in pseudo-time for steady state or time-accurate 
simulations. Domain decomposition to divide the total 
computational domain into spatial zones is performed by 
using the METIS partitioner. Each zone is solved on a 
separate core and MPI is used for inter-core communication. 
The test case used is H2C4 fuel injector geometry consisting 
of seven individual injectors in a radial array each with four 
gaseous hydrogen injection ports. A 3.49 million element 
tetrahedral grid is used to model the injector and cylindrical 
duct used in the experiment. Each NCC run consisted of 350 
pseudo-time iterations. 

USM3D is a 3-D unstructured tetrahedral, cell-centered, 
finite-volume Euler and Navier-Stokes flow solver [17]. 
Spatial discretization is accomplished using an analytical 
reconstruction process for computing solution gradients 
within tetrahedral cells. The solution is advanced in time to a 
steady-state condition by an implicit Euler time-stepping 
scheme. A single-block, tetrahedral, unstructured grid is 
partitioned into a user-specified number of contiguous 
partitions, each containing nearly the same number of grid 
cells. Grid partitioning is again accomplished using METIS. 



The test case used 10 million tetrahedral elements, requiring 
about 16 GB of memory and 10 GB of disk space. 

VII. PERFORMANCE METRICS 
From the user’s point of view, the impact of HT is 

typically measured by calculating the relative speed up 
attained, e.g. the code sped up by x% using HT. Using PMU 
counters, we calculate this performance gain as:  

P = (CST – CHT) / CST, 

where CST and CHT are UNHALTED_CORE_CYLES in ST 
and HT modes, respectively.  

From the application point of view, the number unhalted 
core cycles is an important metric for code optimization as it 
reflects the total execution time. The goal of any code 
optimization is to minimize the (a) cycles that are stalled by 
improving code and data locality, (b) minimizing branches or 
using more predictable branching, and (c) using vector 
instructions and/or faster and more efficient algorithms.  

In order to measure the core-level effects of HT, we 
define a quantity called efficiency that reflects the utilization 
level of the core’s execution units. In particular, we calculate 
the fraction of available micro-operation slots that are being 
used to completely execute an instruction. If the fraction is 
high, the execution units are being kept busy doing useful 
work. 

The total number of available micro-operation slots 
during an execution on a single core is 

S = µ ⋅ C, 

where C is the number of cycles executed on the core and µ 
is the number of micro-operation slots available per cycle, 
e.g., µ = 4 in the Nehalem microarchitecture. If I is the 
number of instructions retired by the core during execution, 
then the efficiency is 

E = I / S  

The theoretical maximum value of E is unity and reflects 
the case where each micro-operation slot is being used to 
retire an instruction. In practice, however, some instructions 
will result in multiple micro-operations being issued. In 
addition, there will often be empty slots because values 
needed for a micro-operation are not available yet. Thus, 
typical efficiencies will be less than one.  

With our experimental setup, we can use the PMU 
counters, which are per-thread counters, to calculate 
efficiency during a single-threaded run as:  

INSTRUCTIONS_RETIRED EST = 4 ⋅ UNHALTED_CORE_CYCLES 
 
,  

When running with HT, we note that since the core is 
retiring instructions from two threads we need to add the per-
thread INSTRUCTIONS_RETIRED hardware counter for 
each thread. The two UNHALTED_CORE_CYCLES 

counters, on the other hand, are usually both incremented for 
each cycle, as the core is halted relatively infrequently. Thus, 
either counter can be used to reflect the number of cycles 
executed on the core. We calculate the efficiency for the 
whole core in HT mode as: 

2 ⋅ INSTRUCTIONS_RETIRED 
EHT = 4 ⋅ UNHALTED_CORE_CYCLES , 

because the instructions retired counter value reflects the 
average across all threads in the computation.  

VIII. RESULTS 
In this section we present results for performance gain 

and efficiency, and then explain those results in terms of 
vectorization and memory hierarchy effects.  

A.  Efficiency and Performance Gain  
To begin our analysis of hyper-threading, we examine 

four metrics for the four applications in the study. Each of 
the graphs in this section shows four plots:  

• HT efficiency (EHT as defined in the last section), 
• ST efficiency (EST), 
• efficiency difference (EHT – EST), which is labeled 

with “Efficiency difference (HT–ST)”, and  
• performance gain (P). 

1) NCC 

Figure 3 shows the plots for NCC. Efficiency in HT 
mode is always higher than with ST. Efficiency increases 
from 35.3% to 40.5% and 39.3% to 44.3% in ST and HT 
modes, respectively, across the core counts. The difference 
between the HT and ST efficiency increases from 4% at 24 
cores to 5.3% at 96 cores and then decreases to 3.8% at 384 
cores. The HT efficiency correlates with the performance 
gain, which increases with larger core count because data 
starts fitting in L1 data cache. NCC shows super-linear 
scaling in ST mode and has enhanced super-scaling in HT 
mode as data for both threads fits into L2 cache. 

 
Figure 3.  Efficiency and percentage performance gain for NCC. 



2) USM3D 

Figure 4 presents the data for USM3D. We do not show 
results for 256 cores since we do not have a grid for 512 
processes. (The data point requires that the HT run use 512 
processes on 256 cores). As with NCC, efficiency in HT 
mode is always higher than with ST. Efficiency in both ST 
and HT modes decreases from 32 to 64 cores and then 
increases to 128 cores. The difference between the HT and 
ST efficiency decreases from 1.9% at 32 cores to 0.9% at 64 
cores and then increases to 3.3% at 128 cores. Performance 
gain is 11% and remains almost constant.   

 
Figure 4.  Efficiency and performance gain for USM3D. 

3) Cart3D 

Figure 5 shows the graphs for Cart3D. Again, efficiency 
in HT mode is always higher than in ST mode. Performance 
gain is 14%, 7%, 22%, and 15% for 24, 48, 96, and 192 
cores, respectively. There is excellent anti-correlation 
between HT efficiency and performance gain.  

 
Figure 5.  Efficiency and percentage performance gain for Cart3D. 

4) OVERFLOW 

The results for OVERFLOW are plotted in Figure 6. As 
with the other applications, efficiency in HT mode is always 
higher than the ST mode. Efficiency in ST and HT modes as 
well as the difference between the two increases as the 

number of cores increases. The reason for this improvement 
is that more data fits into L2 cache with increasing core 
count.  There is a good correlation between efficiency and 
performance gain. But efficiency does not explain the 
magnitude of performance gain. 

 
Figure 6.  Efficiency and percentage performance gain for OVERFLOW. 

Figure 7 recaps the performance gain in HT mode for 
four applications–NCC, USM3D, OVERFLOW and Cart3D. 
OVERFLOW is the only application that does not benefit 
from HT.  The other three applications do benefit from HT.  

 
Figure 7.  Performance gain in HT mode for applications. 

B. Effect of Code Vectorization 
In our observations, one of the factors influencing the 

performance of HT is the degree of vectorization in the 
application code. We compute the percentage of 
vectorization from two different hardware counters:  

• FP_COMP_OPS_EXE:SSE_FP_PACKED that gives 
the number of vector micro-operations executed, and  

• FP_COMP_OPS_EXE:SSE_FP_SCALAR that gives 
the number of scalar micro-operations executed.  

Figure 8 shows the percentage of vector instructions 
(over all floating point instructions) for the codes used in the 
study. For each code, this percentage was fairly consistent 



(within 1%) across the range of core counts. In comparing 
the vectorization percentage with performance gain, we 
observe that high vectorization correlates to a negative HT 
impact, as in the case of OVERFLOW as shown in Figure 7. 
However, it does not necessarily follow that at lower 
percentages of vectorization, there is a correlation between 
the degree of vectorization and performance gain. In 
particular, NCC shows the best overall gain, but lies between 
USM3D and Cart3D in vectorization percentage. In order to 
understand this behavior, we need to explore the 
implementation of HT more closely. 

 

Figure 8.  Percentage of vectorization of codes. 

The main benefit of HT comes from the ability of 
execution units in the core, such as the floating-point units 
(FPU), to handle instructions from more than one thread 
simultaneously. The FPU is a shared resource that is 
unaware of the multiple threads. From its perspective, it is 
merely handling a stream of instructions organized in a 
pipeline of the six execution units—during each cycle, it can 
start executing the micro-operation in the next stage. Note 
that this will often lead to gaps (as shown earlier in Figure 1) 
where there is no micro-operation to execute. This could be, 
for example, due to a wait for a load instruction to complete. 
With HT, such gaps in the FPU’s pipeline can be filled with 
micro-operations from a second thread—thus making for 
better utilization of the FPU. 

Pitted against any potential benefit due to HT is the 
additional cost of executing with multiple threads. There is 
almost certainly going to be a time penalty due to increased 
contention in the memory hierarchy. The bottom line is that 
we will only see an overall benefit for HT if the time saved 
by utilizing the idle resources in the pipeline is greater than 
the extra time needed due to memory hierarchy contention. 
With a high level of vectorization, the number of execution 
gaps is very small and there is possibly insufficient 
opportunity to make up any penalty due to increased 
contention in HT. With a low level of vectorization there is 
potential for benefit. Thus, the level of increased memory 

hierarchy and network contention will determine whether 
there is any HT benefit. 

C.  Effect of Memory Hierarchy  
In this subsection we focus on analyzing the effect of the 

memory hierarchy on performance when running in HT 
mode. If sufficient resources (cache and memory bandwidth) 
are available, sharing them across multiple threads in HT 
mode will result in better performance than with ST. 
However, we expect that if such sharing increases contention 
between the threads to the extent that data needs to be 
accessed from the next level of cache for each of the threads, 
there will, in general, be no performance benefit of running 
in HT mode. Below, we analyze hardware-counter based 
data related to cache and memory accesses in order to 
identify application characteristics that can provide a 
performance boost with HT.  

We present two kinds of graphs for each application, 
namely 

1. Percentage of data from each source (L2 cache, L3 cache, 
and main memory – MM) in ST mode, as:  

           % data from L2   = L2H / L2R ⋅ 100, 
 % data from L3    = L3H / L3R ⋅ L2M / L2R ⋅ 100, 
  % data from MM = L3M / L3R ⋅ L2M / L2R ⋅ 100, 

2. Percentage difference in ST and HT mode (ST–HT) from 
each data source as listed above as 

           Difference of  % data from XX  =  
          (% data from XX in ST mode)  –  
         (% data from XX in HT mode),  

where XX = L2, L3, or MM. 

In the above formulas, L2H (L2 cache hit), L2M (L2 
cache miss), L3R (L3 cache reference), and L3M (L3 cache 
miss) correspond to the following measured counter data, 
respectively: L2_RQSTS:LD_HIT, L2_RQSTS:LD_MISS, 
LLC_REFERENCES, and LLC_MISSES. We calculate L2R 
(L2 cache reference) from L2H+L2M and L3H (L3 cache 
hit) from L3R-L3M. We assume all the L3 cache misses hit 
the main memory. 

We use these graphs to explain how using HT impacts 
the four applications. For each application, the first graph 
allows us to identify the primary source of the data. If the 
second graph shows that the difference in the ST and HT 
percentage for the primary data source is high, it implies that 
in HT mode the two threads have to go to the next level of 
the memory hierarchy more often, thus incurring extra 
latency costs. Our proposition is that a low value for this 
difference should result in a performance gain for HT mode. 
Our overall proposition is that a code benefits from HT if the 
primary source of data can accommodate the request in HT 
mode also.  

 



1) NCC 

Figure 9 shows the percentage of data from each source 
for NCC in ST mode. The amount of data coming from L2 
cache, L3 cache, and main memory is 69-79%, 7-13%, and 
15-20%, respectively. The percentage of data coming from 
L2 cache decreases with increasing number of cores because 
a larger portion of the process’s data fits into L1 cache.  

 
Figure 9.  Percentage of data from each source for NCC. 

Figure 10 shows the percentage difference between ST 
and HT modes for the three data sources for NCC, along 
with the performance gain for HT over ST. The percentage 
difference between ST and HT for NCC from L2 cache, L3 
cache, and main memory is 20% to 50%, -44% to -22%, and 
-6% to 2%, respectively. In particular, the percentage 
difference for the primary source of data, L2 cache, steadily 
decreases from 50% to 20% across the range of cores. There 
is an anti-correlation between the performance gain and the 
percentage difference between ST and HT for L2 cache. That 
is, with increasing cores, the L2 cache can better 
accommodate both threads in HT mode resulting in more 
performance gain in this mode. 

 

Figure 10.  Performance gain and percentage difference between ST and 
HT for NCC. 

2) Cart3D 

Figure 11 shows the percentage of data from each source 
for Cart3D. In ST mode, 61% to 65%, 5% to 8%, and 27% to 
34% of the data comes from L2 cache, L3 cache, and main 
memory, respectively. Hence, the primary source of data is 
L2 cache.  

 
Figure 11.  Percentage of data from each source for Cart3D. 

Figure 12 shows the percentage difference between ST 
and HT modes for the three data sources for Cart3D along 
with the performance gain by HT over ST. As was the case 
with NCC, there is an anti-correlation between the 
performance gain and the percentage difference between ST 
and HT for the primary data source—L2 cache.  

 

Figure 12.  Performance gain and percentage difference between ST and 
HT for Cart3D. 

3) USM3D 

Figure 13 shows that main memory (MM) is the source 
for almost 80% of the data for USM3D across the whole 
range of cores tested. Note that USM3D is an unstructured 
code with tetrahedral meshes involving indirect addressing. 
It usually cannot reuse the data from L2 or L3 cache and thus 
has to fetch data from main memory. Thus, the various cache 
levels do not seem to play any significant role for this 
application.  



 
Figure 13.  Percentage of data from each source for USM3D. 

Figure 14 shows the percentage difference between ST and 
HT modes for L2 cache, L3 cache and main memory for 
USM3D. The differences are small, indicating that as we 
expected, even in HT mode most of data comes from the 
main memory.  Since the code is only 20% vectorized and 
most of the data (80%) comes from main memory, there is 
an opportunity to hide memory latency of one thread while 
the second thread utilizes the floating-point units in the HT 
mode. This results in better performance gain. As was the 
case with the two previous applications, there is an anti-
correlation between the performance gain and the percentage 
difference between ST and HT for the primary data source—
in this case main memory. 

 
Figure 14.  Performance gain and percentage difference between ST and 

HT for USM3D. 
4) OVERFLOW 

Figure 15 shows the percentage of data from each source 
for OVERFLOW in ST mode. For ST, the amount of data 
coming from L2 cache, L3 cache, and main memory is 44-
71%, 18-31%, and 12-25%, respectively.  As the number of 
cores increases, more data fits into L2 cache. As a result, a 
higher percentage of data comes from it.  

 
Figure 15.  Percentage of data from each source for OVERFLOW. 

Figure 16 shows the percentage difference between ST and 
HT modes for L2 cache, L3 cache, and main memory for 
OVERFLOW. As was seen in the other applications, there is 
an anti-correlation between performance gain and the 
percentage difference between ST and HT for the primary 
data source—in this case L2 cache. Note also that the 
secondary data source (L3 cache) has a negative difference 
between ST and HT. This means that HT causes more L3 
requests than ST. Since the L3 latency is higher, this 
degrades the overall performance.  

 
Figure 16.  Performance gain and percentage difference between ST and 

HT for OVERFLOW. 

IX. IMPACT OF APPLICATION CHARACTERISTIC 
The applications we investigated in this paper fall into 

two broad classes at the highest level: those utilizing 
structured meshes (OVERFLOW) and those utilizing 
unstructured meshes (NCC, Cart3D, and USM3D). The three 
unstructured applications use a similar strategy for sub-
domain partitioning of the grids except that Cart3D uses 
unstructured Cartesian grids and load-balancing is done via 
space-filling curves whereas USM3D and NCC use 
tetrahedral grids and partitioning is accomplished using 
METIS. In this study we found that unstructured-grid 
applications benefit by running them in HT mode whereas 
structured-grid applications do not.  In order to understand 
this performance behavior, we briefly describe the 
characteristics of these two classes of applications.  

Structured applications access adjacent elements of the 
underlying data structures and this spatial locality of data 



allow them to be optimized for cache by the compiler. Such 
codes also tend to be associated with a high degree of 
vectorization. The success of vectorization puts increased 
pressure on the memory hierarchy and can result in stalls that 
lower our measure of efficiency. Adding a second thread to 
that core with HT increases the demands on memory and 
communication resources, and does not result in any 
performance benefits.  

Unstructured applications, on the other hand, involve 
indirect addressing and adjacent elements are often not 
accessed in sequence. Also, the compiler is usually unable to 
vectorize the codes, which results in sub-optimal utilization 
of floating-point execution units and gives opportunities for 
HT to utilize the resources. Thus, we expect hyper-threading 
to provide a boost in performance as long as there is no 
significant increase in the contention for the memory 
hierarchy or communication resources. 

X. CONCLUSIONS 
In this paper we have studied the effect of hyper-

threading on four applications of interest to NASA: Cart3D, 
NCC, USM3D, and OVERFLOW. While the first three 
showed performance boosts from using HT, OVERFLOW 
did not. 

In order to explain the differences in performance that we 
saw, we introduced an efficiency metric to quantify 
processor resource utilization. Using the metric, we find that 
efficiency in hyper-threaded mode is higher than in single-
threaded mode across all core counts for all four 
applications. Since OVERFLOW did not see any 
improvement from HT, there must be other factors 
influencing performance. In particular, vectorization plays a 
key role, as OVERFLOW was by far the most highly 
vectorized of the codes in the study. 

HT increases competition for resources in the memory 
hierarchy, such as memory bandwidth. Moreover, HT 
performance is affected by increased communication 
pressure as additional processes compete for network 
resources such as HCA chips and IB switches. One factor 
that affects the results of our experiments is that we 
conducted a strong scaling study. Also, in the analysis we 
have assumed that the applications scale perfectly from n to 
2n ranks, and thus the entire performance impact in going 
from ST to HT mode is from the use of hyper-threading. We 
have not taken into account the changes in communication in 
our analysis of the results.     

We found that unstructured-grid applications like NCC, 
Cart3D, and USM3D benefit from HT whereas the 
structured-grid application (OVERFLOW) did not. The 
unstructured codes usually have a low percentage of 
vectorization and could get a performance boost from HT 
provided competition from an additional thread does not 
cause load instructions to go deeper in the memory hierarchy 
to be satisfied. We also found an anti-correlation between the 
performance gain in HT mode and the primary data source 
for the four applications used in the present study. 

As future work, we propose to quantify the impact of 
scaling and communication in HT mode.  We also intend to 
investigate the impact of power and thermal efficiencies in 
HT mode. 
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