
An Early Performance Evaluation of Many Integrated Core
Architecture Based SGI Rackable Computing System

Subhash Saini,1 Haoqiang Jin,1 Dennis Jespersen,1 Huiyu Feng,2 Jahed Djomehri,3 William
Arasin,3 Robert Hood,3 Piyush Mehrotra,1 Rupak Biswas1

1NASA Ames Research Center 2SGI 3Computer Sciences Corporation
 Moffett Field, CA 94035-1000, USA Fremont, CA 94538, USA Moffett Field, CA 94035-1000, USA

 {subhash.saini, haoqiang.jin, hfeng@sgi.com {jahed.djomehri, william.f.arasin,
 dennis.jespersen, piyush.mehrotra, robert.hood}@nasa.gov
 rupak.biswas}@nasa.gov

ABSTRACT
Intel recently introduced the Xeon Phi coprocessor based on the
Many Integrated Core architecture featuring 60 cores with a peak
performance of 1.0 Tflop/s. NASA has deployed a 128-node SGI
Rackable system where each node has two Intel Xeon E2670 8-
core Sandy Bridge processors along with two Xeon Phi 5110P
coprocessors. We have conducted an early performance
evaluation of the Xeon Phi. We used microbenchmarks to
measure the latency and bandwidth of memory and interconnect,
I/O rates, and the performance of OpenMP directives and MPI
functions. We also used OpenMP and MPI versions of the NAS
Parallel Benchmarks along with two production CFD applications
to test four programming modes: offload, processor native,
coprocessor native and symmetric (processor plus coprocessor). In
this paper we present preliminary results based on our perfor-
mance evaluation of various aspects of a Phi-based system.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – benchmarking, evaluation/methodology

General Terms
Measurement, Performance, and Experimentation

Keywords
Intel Xeon Phi, Intel MIC architecture, Intel Sandy Bridge processor,
performance evaluation, benchmarking, CFD applications

1. INTRODUCTION
The stagnation of processor frequency due to the constraints of
power and current leakage has led hardware vendors to increase
parallelism in their processor designs in order to enhance the
performance of highly parallel scientific and engineering
applications. This has led to an era of heterogeneous computing
where highly parallel accelerators are paired with modestly
parallel x86-compatible processors. The two current approaches
use either the NVIDIA’s General-Purpose Graphical Processing
Unit (GPGPU) or the Intel Xeon Phi.

The GPGPU approach relies on streaming multiprocessors and
uses a low-level programming model such as CUDA or a high-
level programming model like OpenACC to attain high
performance [1-3]. Intel’s approach has a Phi serving as a
coprocessor to a traditional Intel processor host. The Phi has x86-
compatible cores with wide vector processing units and uses
standard parallel programming models such as MPI, OpenMP,
hybrid (MPI + OpenMP), UPC, etc. [4-5].

Understanding performance of these heterogeneous computing
systems has become very important as they have begun to appear
in extreme-scale scientific and engineering computing platforms,
such as Blue Waters at NCSA, Stampede at TACC, and Titan at
Oak Ridge National Laboratory (ORNL) [6-8]. Large-scale
GPGPU-based supercomputers have been around for the last ten
years and a significant amount of research work—including
applications, algorithms and performance evaluation—has been
done, resulting in a vast amount of research literature on the
subject. However, the relative newness of the Many Integrated
Core (MIC)—it has its genesis with the Larabee project in 2006—
means that there is a dearth of scientific literature on using it to
achieve high performance in scientific and engineering
applications [8-15].

In this paper we study the performance of “Maia,” a 128-node
InfiniBand-connected cluster, where each node has two Intel
Xeon E5-2670 (Sandy Bridge) processors and two Xeon Phi
5110P coprocessors. In the rest of the paper we refer to the two
Sandy Bridge processors collectively as the “host” and the Xeon
Phi coprocessors as the “Phi”, using “Phi0” and “Phi1” when we
need to distinguish between the two coprocessors. Several papers
have reported on the experience of porting applications to the non-
commercial version of the MIC (32-core Knights Ferry chips) in
MIC workshops at TACC and ORNL [11-12]. However, none of
the reports at these two workshops gave any performance
numbers or carried out a detailed performance evaluation of the
Intel Xeon Phi product. To the best of our knowledge the
following is our original contribution:

a. We measured the latency and memory bandwidth of L1, L2,
caches, and main memory of Phi. In addition, we also measured
the Peripheral Component Interconnect Express (PCIe) latency
and bandwidth achieved by the MPI and offload modes
between host and Phi on the same node.

b. We measured and compared the performance of intra-node MPI
functions (point-to-point, one-to-many, many-to one, and all-to-
all) for both host and Phi.

(c) 2013 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

SC '13, November 17 - 21 2013, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11…$15.00.
http://dx.doi.org/10.1145/2503210.2503272

NAS Technical Report: NAS-2015-04

c. We measured and compared the overhead of OpenMP
constructs for synchronization, loop scheduling, and data
movement on host and Phi.

d. We measured and compared the I/O performance for both the
host and Phi.

e. We measured and compared the performance of MPI and
OpenMP based NAS Parallel Benchmarks (NPBs) 3.3 on both
the host and Phi.

f. We measured and compared the performance of two
production-level applications using different modes: native
host, native Phi and symmetric (host+Phi0+Phi1) modes.

The remainder of the paper is organized as follows. Section 2
provides details of the Maia computing system. In Section 3 we
briefly describe the benchmarks and applications used in the
current study. Section 4 describes the four programming models
available on Phi-based heterogeneous computing systems. Section
5 gives the description of pre-update and post-update software
environments. In Section 6 we discuss the performance results
obtained in our evaluation of the Sandy Bridge processors based
host and the Phi coprocessors. In Section 7 we present our
conclusions.

2. COMPUTING PLATFORM “MAIA”
The NASA Advanced Supercomputing (NAS) Division at NASA
Ames recently installed a 128-node heterogeneous SGI Rackable
computing system called “Maia.” Each node has two Intel Xeon
E5-2670 (Sandy Bridge) processors and two Intel Xeon Phi
coprocessors. The Sandy Bridge is an 8-core processor using a 32-
nm process technology. Each Phi is a 60-core Symmetric Multi
Processor (SMP) on a chip and uses 22-nm process technology.
Overall, the system has a theoretical peak performance of 301.4
Tflop/s. Of that peak performance, 42.6 Tflop/s comes from the
2,048 Sandy Bridge cores and 258.8 Tflop/s comes from the
15,360 Phi cores. The system has 4 TB of memory available to the
Sandy Bridge processors and 2 TB for the Phi coprocessors for a
total memory of 6 TB.

Maia's heterogeneous architecture is depicted in Figure 1. Each of
the 128 nodes has three distinct memory systems. The main host
memory is 32 GB and is shared in a cache coherent fashion by the
16 cores of the two Sandy Bridge processors. The cores in each of
the Phi coprocessors share an 8-GB cache-coherent memory
system. Each Phi is connected to other devices on the node via a
separate 16-lane PCI Express (PCIe) bus [4-5]. Connectivity to
other nodes is provided by a fourteen data rate (FDR) InfiniBand
Host Channel Adapter (HCA) plugged into the first PCIe bus [31].

The Phi coprocessors run a BusyBox-based micro Linux operating
system. A virtualized TCP/IP stack is implemented over PCIe,
permitting access to the coprocessors as network nodes. This
facilitates connecting to each coprocessor through a secure shell
(ssh) and running jobs. The two Phis within a node can
communicate with each other via the PCIe peer-to-peer
interconnect with intervention from the host processor.

Figure 1. Maia’s heterogeneous architecture.

As shown in Figure 2, the Sandy Bridge based node has two Xeon
E5-2670 processors. Each processor has eight cores, clocked at
2.6 GHz, with a peak performance of 166.4 Gflop/s [15]. Each
core has 64 KB of L1 cache (32 KB data and 32 KB instruction)
and 256 KB of L2 cache. All eight cores share 20 MB of last level
cache, also called L3 cache. The on-chip memory controller
supports four DDR3 channels running at 1600 MHz, with a peak-
memory bandwidth per processor of 51.2 GB/s. Each processor
has two QPI links to connect with the second processor of a node
to form a non-uniform-memory access (NUMA) architecture.
Each QPI link runs at 8 GT/s (“T” for transactions), at which rate
2 bytes can be transferred in each direction, for an aggregate rate
of 32 GB/s.

Figure 2. Schematic diagram of the Intel Xeon E5-2670

“Sandy Bridge” processor.

2.1 Coprocessor: Intel Xeon Phi
Figure 3 shows the schematic diagram of a Phi coprocessor. Each
Phi coprocessor has 60 modified P54C-design in-order execution
cores running at 1.05 GHz and connected by a bi-directional ring
interconnect. The core architecture is based on the x86 Instruction
Set Architecture extended with 64-bit addressing and new 512-bit
wide SIMD vector instructions and registers. Each core can
execute two instructions per clock cycle. Also, a core has 32-KB,
8-way set-associative L1(I) and L1(D) caches and a 512-KB
unified L2 cache. The L2 caches are connected to the Core Ring
Interface, which is used to make memory requests. The L2 caches
are kept coherent by a globally distributed tag directory (TD)
hanging off the ring. Each Phi core has a dedicated 512-bit wide
vector floating-point unit unlike a Sandy Bridge core, which has a
256-bit wide floating-point unit. However, Phis do not support
MMX, SSE or AVX instructions.

Each Phi coprocessor has 8 memory controllers, which support
Graphics Double Data Rate, version 5 (GDDR5) channels. Each
controller can operate two 32-bit channels for a total of 16
memory channels that are capable of delivering 5 GT/s per
channel. These memory controllers are interleaved around the ring
symmetrically. Tag directories have an all-to-all mapping to the
eight memory controllers.

Each Phi core supports four hardware threads for a total of 240
hardware threads in one Phi coprocessor. Multithreading on MIC
is entirely different from the HyperThreading (HT) on the Sandy
Bridge architecture. In Sandy Bridge, the aim of HT is to exploit
the processor resources more efficiently, whereas in MIC it is to
hide latencies inherent in an in-order microarchitecture [16-17].
HT can be turned on or off on a Sandy Bridge processor but
multithreading cannot be turned off on a Phi. In addition, compute
intensive applications don’t benefit (and rather may be hurt) using
HT on Sandy Bridge, whereas applications benefit by using
multithreading on the Phi. There are four thread contexts per
physical core. Registers are replicated, but L1 and L2 caches are
shared among the threads in a core. When one thread stalls, the
processor makes a context switch to another one. However, it
cannot issue back-to-back instructions in the same thread.

The MIC architecture has a provision for high performance
reciprocal, square root, power, and exponent operations, as well as
scatter/gather and streaming store capabilities for high memory
bandwidth.

Table 1 gives the detailed hardware and software characteristics
of the Maia system.

Figure 3. Schematic diagram of a Phi coprocessor.

TABLE 1. CHARACTERISTICS OF MAIA, SGI RACKABLE
C1104G-RP5 SYSTEM.

 Host Processor Coprocessor
Processor
Processor architecture Sandy Bridge Many Integrated Core
Processor type Intel Xeon E5-2670 Intel Xeon Phi 5110P
Number cores/processor 8 60
Base frequency (GHz) 2.60 1.05
Turbo frequency (GHz) 3.20 NA
Floating points / clock 8 16
Perf. /core (Gflop/s) 20.8 16.8
Proc. perf. (Gflop/s) 166.4 1008
New instruction SSE4.1, 4.2 and AVX MIC VEC Instruction
SIMD vector width 256 512
Number of threads / core 2 4
Multithreading on/off On or Off Always ON
Type of multithreading HyperThread Hardware Threads
I/O controller On chip NA
Cache
L1 cache size / core 32 KB (I)+32 KB (D) 32 KB (I)+32 KB (D)
L2 cache size / core 256 KB 512 KB
L2 cache network Bi-directional ring Bi-directional ring
L3 cache size 20 MB (shared) NA
L3 cache network Bi-directional ring NA
Node
No. of processors/node 2 2
QPI frequency (GT/s) 8.0 NA
Number of QPIs 2 NA
Memory type 4 channels DDR3-1600 GDDR5-3400
Memory / node (GB) 32 16 GB-8 GB / Phi card
Sock-sock interconnect 2 QPIs, 8.0 GT/s NA
Host-Phi interconnects PCIe PCIe
PCI Express 40 Integrated PCIe 3.0 16 Integrated PCIe 2.0
PCIe Speed 8 GT/s (Gen3) 5 GT/s (Gen2)
System
Number of nodes 128
Total cores 2048 15360
Peak perf. (Tflop/s) 42.6 258
% Flops 14 86
Interconnect type 4x FDR InfiniBand
Peak network perf. 56 GB/s
Network topology Hypercube
Type of file system Lustre
Software
Compiler Intel 13.1
MPI library Intel MPI 4.1
Math library Intel MKL 10.1
Operating system SLES11SP2 MPSS Gold

3. BENCHMARKS AND APPLICATIONS
In this section we present a brief description of the benchmarks
and applications used in this paper

3.1 STREAM Benchmark
Performance of many applications depends on the memory
bandwidth so it is important to measure it. STREAM is a simple,
synthetic benchmark program that measures sustainable memory
bandwidth for simple vector kernels such copy, add, BLAS1, etc.
We used STREAM version 5.1 [18].
3.2 Memory Subsystem Latency and
Bandwidth
Deep understanding of the performance of the hierarchical
memory system of the Sandy Bridge host and of the Phi
coprocessors is a crucial to obtain good application performance.

We measured the latency and bandwidth for all caches and main
memory for both the host and the Phi [19-20].

3.3 MPI Functions Benchmarks
The performance of real-world applications that use MPI as the
programming model depends significantly on the MPI library and
the performance of various point-to-point and collective message
exchange operations. The MPI standard defines several collective
operations, which can be broadly classified into three major
categories based on the message exchange pattern: OnetoAll,
AlltoOne, and AlltoAll. We have measured and evaluated the
performance of MPI_Bcast, MPI_Send, MPI_Recv,
MPI_AllGather, MPI_AlltoAll and MPI_Allreduce functions on
both host and coprocessor [21].

3.4 OpenMP Microbenchmarks
The OpenMP microbenchmarks are a set of tests to measure the
overheads of various OpenMP directives and constructs in dealing
with loop scheduling, synchronization, and data privatization.
These benchmarks measure the overhead of OpenMP directives
by subtracting the time for executing the code sequentially from
the time taken by the same code executed in parallel enclosed in a
given directive [22-24].

3.5 Sequential I/O Benchmark
I/O is critical for overall performance of the application. Real
world applications have large amounts of data (100’s of GB to
100’s of TB) to read and write. I/O is also important as most of
the applications perform checkpointing, which requires fast
writes. Sequential Read Write is a single process I/O benchmark
that writes and reads a file using various block sizes [25].

3.6 NAS Parallel Benchmarks (NPB)
The NPB suite contains eight benchmarks comprising five kernels
(CG, FT, EP, MG, and IS) and three compact applications (BT,
LU, and SP) [21]. We used the MPI and OpenMP versions (NPB
3.3), Class C problem in our study. BT, LU, and SP are typical of
full, production-quality science and engineering applications [26].

3.7 Science and Engineering Applications
For this study, we used two production quality full applications
representative of NASA’s and aerospace companies workload.

3.7.1 OVERFLOW-2
OVERFLOW-2 is a general-purpose Navier-Stokes solver for
CFD problems [27-28]. The code uses finite differences in space
with implicit time stepping. It uses overset-structured grids to
accommodate arbitrarily complex moving geometries. The dataset
used is a wing-body-nacelle-pylon geometry (DLRF6-Large) with
23 zones and 35.9 million grid points. The input dataset is 1.6 GB
in size, and the solution file is 2 GB. We also used a smaller data
set (DLRF6-Medium) with 10.8 million grid points, as the
DLRF6-Large case is too large to run on a single Phi coprocessor.

3.7.2 Cart3D
Cart3D is a high fidelity, inviscid CFD application that solves the
Euler equations of fluid dynamics [28-30]. It includes a solver
called Flowcart, which uses a second-order, cell-centered, finite
volume upwind spatial discretization scheme, in conjunction with
a multi-grid accelerated Runge-Kutta method for steady-state
cases. In this study, we used the OneraM6 wing with 6 million
grid points.

4. PROGRAMMING MODES
On Maia the following four programming modes are available to
run the applications. In this paper we have evaluated all four.

4.1 Offload
In this mode, an application is launched on the host, and then
parallel compute-intensive subroutines/functions are “offloaded”
to the Phi. This is achieved by using “offload” directives, which
take care of code execution and data transfer seamlessly. The
program specifies what data or subroutine gets offloaded to Phi.
The offload directives are followed by one or more OpenMP
parallel region to distribute work over Phi threads. Efficiency of
this mode depends on how much work can be done on the Phi to
offset the cost of the data transfer.

4.2 Native Host
In this mode, the entire application is run exclusively on the host
Sandy Bridge processors; Phi coprocessors are not used.

4.3 Native Phi
In this mode, the entire application runs only on the Phi
coprocessors. Applications with significant serial regions will
suffer dramatically because of the relatively slow clock rate of a
Phi core. OpenMP parallel regions will run on Phi cores. MPI
codes can be run in a similar way. In many cases, a code that runs
fine on the host can be compiled and built without any changes.
However, to get even a reasonable performance on the Phi, an
application has to be highly parallel and highly vectorized with
unit stride. If an application has non-unit memory strides
involving gather/scatter its performance degrades dramatically.

4.4 Symmetric
In this mode, an application is run using both the host processors
and the Phi coprocessors; it needs to be compiled for host and Phi
separately. The challenge is to optimally load balance the work
between the host and coprocessors. Hybrid programming (MPI +
OpenMP) is more appropriate for this mode. Pure MPI
applications can be run but the performance of communication
intensive applications would be degraded due to low network
communication bandwidth via PCIe to the host or to another Phi.

5. SOFTWARE UPDATE
As early adopters of the new Phi coprocessor, we were faced with
an evolving software environment during the course of this
evaluation. Initially, we utilized Intel’s Manycore Platform
Software Stack “MPSS Gold” version and Intel MPI library
version 4.1.0.030, henceforth called “pre-update” software. By the
end of the study, the software environment had been upgraded to
the “MPSS Gold update 3” and MPI library version 4.1.1.036,
henceforth called “post-update” software.

The new MPI library in the post-update software switches
between different Direct Access Programming Library (DAPL)
providers based on message size. For smaller messages, Intel
recommends using a Coprocessor Communications Links (CCL)
Direct DAPL provider, such as ofa-v2-mlx4_0-1, because it has
the lowest latency data path and is available across all network
segments. For larger messages, Intel recommends using the
Symmetric Communication Interface (SCIF) DAPL provider, ofa-
v2-scif0, due to its higher bandwidth data path over the PCIe bus.
The pre-update software uses the CCL Direct DAPL provider for
all message sizes. In order to use the automatic switching
capability in the post-update software, we set two environment
variables to specify which DAPL providers are used for various
message sizes. Specifically, we used:

I_MPI_DAPL_DIRECT_COPY_THRESHOLD=8192,262144

I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1,ofa-v2-scif0

This results in three states:
• Messages shorter than or equal to 8 KB use the “eager

protocol” through the CCL direct DAPL provider.
• Messages larger than 8 KB, but shorter than or equal to 256

KB, use the “rendezvous direct-copy protocol” through the
CCL direct DAPL provider.

• Messages larger than 256 KB use the rendezvous direct-copy
protocol through the DAPL over the SCIF provider.

It should be noted that post-upgrade software does not affect the
MPI performance of the native Phi mode or native host mode,
which account for most of the benchmarking results in this paper.
Only MPI latency over PCIe, MPI bandwidth over PCIe, and the
OVERFLOW performance in a symmetric mode would be
affected by the settings for DAPL over PCIe. When those results
are presented, we describe the performance impact of the update.

6. RESULTS
In this section we present our results for low-level benchmarks,
NPBs, and two full applications.

6.1 STREAM Triad Memory Benchmark
Figure 4 shows the total STREAM triad memory bandwidth for
both the host and Phi0. We found a maximum aggregate memory
bandwidth of 180 GB/s for the Phi using 59 threads (1 thread per
core) and 118 threads (2 threads per core). Beyond 118 threads it
drops to 140 GB/s. The plausible reason for the drop is that there
are more independent memory access streams than there are
simultaneously active pages. GDDR5 supports 16 independent
banks per device and with eight devices it amounts to 128 open
banks, which cause the bandwidth to drop beyond 128 threads.

Figure 4. STREAM bandwidth for host and Phi.

6.2 Memory Load Latency and Bandwidth
In this section, we present memory load latency and bandwidth of
all caches and main memory on both host and Phi. The total cache
per core on a Phi is 544KB (32KB L1 + 512KB L2), which is
lower than the 2.788 MB (32KB L1 + 256KB L2 + 2.5MB L3) on
the host by a factor of 5.1.

6.2.1 Memory Latency
Figure 5 shows the measured memory latency for both host and
Phi. For the host there are four distinct regions corresponding to
L1 (32KB), L2 (256KB), L3 (20 MB) cache and main memory (>
20 MB) with latencies of 1.5 ns, 4.6 ns, 15 ns, and 81 ns
respectively. Similarly, for the Phi there are three such regions: L1
(32KB), L2 (512KB) and main memory (> 512 KB) with latencies
of 2.9 ns, 22.9 ns, and 295 ns respectively.

Figure 5. Memory load latency for host and Phi.

6.2.2 Memory Bandwidth
Figure 6 shows the read and write memory load bandwidth per
core for the host and Phi. Here also there are four regions (L1, L2,
L3, and main memory) on the host and three regions (L1, L2, and
main memory) on the Phi. For the four regions on the host, write
bandwidths are 10.4, 9.5, 8.6, and 7.2 GB/s; read bandwidths are
12.6, 12.3, 11.6, and 7.5 GB/s, respectively. For the three regions
on the Phi, write bandwidths are 1538, 962, and 263 MB/s; read
bandwidths are 1680, 971, and 504 MB/s, respectively.

Figure 6. Read and write memory load bandwidth per core for

host and Phi.

6.3 Network Latency and Bandwidth
In this subsection we present the interconnect MPI latency and
MPI bandwidth between different components on a single node
for both pre-update and post-update software. Figures 7 and 8 plot
the interconnect latency and bandwidth respectively for
connections from: host to Phi0, host to Phi1, and Phi0 to Phi1.

6.3.1 MPI Latency
Latency with pre-update software was 3.3 µs, 4.6 µs, and 6.3 µs
for host to Phi0, host to Phi1, and host to Phi0 to Phi1
respectively. The corresponding numbers with post-update
software are 3.3 µs, 4.1 µs, and 6.6 µs. It should be noted that
latency with both pre-update and post-update software is almost
same. However, latencies in the cases involving Phi1 are much
higher than the one where only Phi0 is involved.

Figure 7. MPI latency between host and Phi.

6.3.2 MPI Bandwidth
MPI bandwidth for a 4-MB message size with the pre-update
software was 1.6 GB/s, 455 MB/s, and 444 MB/s for host to Phi0,
host to Phi1, and Phi0 to Phi1 respectively. These bandwidth
values increased significantly with the post-update software to
6 GB/s, 6 GB/s, and 899 MB/s. The post-update bandwidth curves
show three distinct regions corresponding to the three states
discussed in Section 5 with a change in slope for messages
between 8 KB and 256 KB. It should be noted that beyond a
message size of 256 KB, the post-update software uses SCIF,
which provides significantly higher bandwidth compared to the
pre-update software, which uses the CCL direct DAPL provider.

Figure 8. MPI bandwidth between host and Phi.

With pre-update software there is a performance asymmetry, i.e.,
the bandwidth of host to Phi0 (1.6 GB/s) is significantly higher
than that for host to Phi1 (455 MB/s). The post-update software
not only removed this performance asymmetry but also
significantly increased the both bandwidth values to 6 GB/s. The
post-update software also doubled the Phi0 to Phi1 bandwidth
from 444 MB/s to 899 MB/s.

The improvement due to the post-update software is more visible
in Figure 9, which plots the performance gain (ratio of post-
update bandwidth to pre-update bandwidth) for host to Phi0, host
to Phi1, and Phi0 to Phi1. For small to medium message sizes, the
performance advantage of the post-update software is higher by a
factor of 1 to 1.5 times and 1 to 1.3 for host to Phi0 and host to
Phi1 respectively. For messages 256 KB or larger, where SCIF is
used in the post-update software, the bandwidth is higher by a
factor of 2 to 3.8 and 7 to 13 for host to Phi0 and host to Phi1
respectively. For Phi0 to Phi1 the bandwidth with post-update

software decreased up to a message size of 8KB. However, for a
message size of 256 KB or more, using SCIF improved the
bandwidth by a factor of 1.8 to 2.

In summary, we can see that SCIF provides a significant increase
in bandwidth for messages 256 KB or longer.

Figure 9. Performance gain in MPI bandwidth using post-

update software.

6.4 MPI Functions
In this section we present the performance of selected MPI
functions commonly used in NASA applications on the host and
Phi coprocessors. In both cases we have used the same Intel
compiler and Intel MPI library. Comparing the performance of
MPI functions on both the intra-host and intra-Phi will give us
insight into appropriateness of using the same library on two
entirely different architectures.

6.4.1 MPI_Send/Recv benchmark
Figure 10 plots the point-to-point communication bandwidth
achieved using an MPI_Send/Recv benchmark (each thread sends
a message to its right neighbor and receives one from its left
neighbor) for message sizes ranging from one byte to 4 MB using
1, 2, 3 and 4 threads per core on the Phi along with the
corresponding results on the host for 16 threads. Performance on
the host (16 threads) is higher than even one thread per core (59
threads) of the Phi by a factor of 1.3 to 3.5. For 4 threads per core
(236 threads) performance of host is higher by a factor 24 to 54.
For communication dominant code, it is beneficial to use only one
thread per core on the Phi.

Figure 10. Performance of MPI_Send/Recv on host and Phi.

6.4.2 MPI_Bcast
Figure 11 shows the performance of MPI_Bcast on both the host
and Phi0. This MPI function is used in the MPI version of Cart3D

where a message size of 56 MB is broadcast by the master process
to all other processes. The performance of MPI_Bcast on the host
is higher than on Phi0 with 1 thread per core (59 threads) by
factor of 1.1 to 3.8. Per core performance on the host is higher by
a factor of 20 to 35 than on Phi0 with 4 threads per core (236
threads). It is clear that using more than one thread per core
decreases the performance drastically.

Figure 11. Performance of MPI_Broadcast on host and Phi.

6.4.3 MPI_Allreduce
In Figure 12 we present the performance of MPI_Allreduce for
both host and Phi0. This is a key MPI function in NASA codes
such as USM3D, MITgcm, and FUN3D, etc. Performance on the
host is higher than on Phi0 (1 thread per core) by a factor of 2.2 to
13.4. The host performance is higher by a factor of 28 to 104 than
on Phi0 with 4 threads per core.

Figure 12. Performance of MPI_Allreduce on host and Phi.

6.4.4 MPI_Allgather
Figure 13 gives the results of MPI_Allgather on the host and Phi0.
Performance of the host is always much higher than that on the
Phi0. On Phi0, time increases smoothly as message size increases
from 1 byte to 1 KB and then at 2KB and 4KB time increases
abruptly and then again becomes smooth from 8KB onwards. This
sudden jump in time at 2KB and 4KB message size is due to a
change in algorithm used in MPI_Allgather. Performance on the
host is higher than that on the Phi by a factor of 2.6 to 17.1 for one
thread per core (59 threads) and by a factor 68 to 1146 for 4
threads per core (236 threads).

Figure 13. Performance of MPI_AllGather on host and Phi.

6.4.5 MPI_AlltoAll
In Figure 14, we present the results of MPI_AlltoAll for both the
host and Phi0. This benchmark did not run successfully for all the
message sizes from 1 byte to 4 MB. For 4 threads per core (236
threads) it could be run only up to a maximum message size of 4
KB. The failures were due to a lack of memory (as we also see in
Figure 20 where we could not run the MPI version of NPB FT for
the same reason). For one thread per core the performance of the
host is higher than on Phi0 by a factor of 8 to 20, which is much
higher than other forms of communications. For 4 threads per core
on Phi0 (236 threads), host performance is higher by a factor of
1003 to 2603.

Figure 14. Performance of MPI_AlltoAll on host and Phi.

6.5 OpenMP Microbenchmarks
In this subsection we present results for synchronization and loop
scheduling OpenMP benchmarks.

6.5.1 Synchronization
The synchronization OpenMP benchmark measures the overhead
incurred by explicit barrier or implicit barrier at parallel and work
sharing constructs, and by mutual exclusion constructs. Work-
sharing constructs used in this test include DO/FOR, PARALLEL
DO/FOR, and SINGLE. The mutual exclusion constructs include
CRITICAL, LOCK/UNLOCK, ORDERED, and ATOMIC.

Figure 15 shows the synchronization overheads for several
OpenMP directives on the host (16 threads on 16 cores) and Phi0
(59 cores or 236 threads, 4 threads per core). Overhead in terms of
the sequential time Ts, and the parallel time Tp on p threads is Tp -
Ts/p. We notice that almost all the constructs have almost an order
of magnitude higher overhead on the Phi than on the host. The

most expensive operation is Reduction, followed by PARALLEL
FOR and PARALLEL, whereas ATOMIC is the least expensive.

Figure 15. OpenMP synchronization overhead on host and Phi.

6.5.2 Loop Scheduling
Loop scheduling affects how the loop iterations are mapped onto
threads. The scheduling benchmark measures the overheads for
three scheduling policies: STATIC, DYNAMIC, and GUIDED.

Figure 16 presents the scheduling overheads on the host and the
Phi. We find overhead on Phi is an order of magnitude higher than
that on the host for all the three scheduling policies. As expected
the STATIC overhead is the lowest, the DYNAMIC overhead is
highest, and the GUIDED overhead is in between the two.

Figure 16. OpenMP scheduling overheads on host and Phi.

6.6 I/O benchmarks
Figure 17 presents the sequential read and write bandwidth for the
host, Phi0, and Phi1. I/O benchmarks were run on a Network File
System (NFS) mounted on the host. This NFS is exported to Phi0
and Phi1. Write bandwidth on the host and Phi0 is about 210
MB/s and 80 MB/s respectively. Read bandwidth is 295 MB/s and
75 MB/s for the host and Phi0. Write bandwidth on host is 2.6
times higher and read bandwidth 3.9 times higher than on Phi0.
The poor performance of I/O in native Phi mode is due to the fact
that read/write on Phi is done via the TCP/IP stack in MPSS over
PCIe fabric resulting in a virtual network. Intel is working on a
new TCP/IP stack that will address the issue in the future release
of MPSS. Intel states that if an application has significant I/O, use
of native Phi mode is not recommended [32]. As a workaround,
this performance problem can be overcome by creating a new
MPI process on the host and then sending the data from host to

Phi or Phi to host by using MPI_Send/MPI_Recv via SCIF over
the PCIe, which gets a bandwidth of 6 GB for message sizes of
4MB or more, and then perform read/write to the disk from the
host [33].

Figure 17. Read and write bandwidth on host, Phi0, and Phi1.

6.7 Offload Bandwidth over PCIe
Performance in the offload mode to a large extent depends on the
data transfer bandwidth from host to Phi and vice versa over the
PCIe bus. Therefore, it is useful to measure this PCIe bandwidth.
A data packet sent via PCIe in offload mode has framing (start
and end), a sequence number, a header, data, a digest, and a link
cyclical redundancy check. To transmit 64 or 128 bytes of data, it
has to be packed in 20 bytes of wrapping, yielding a maximum
efficiency of 76% and 86% respectively, or 6.1 GB/s and 6.9
GB/s. We wrote a benchmark to measure this offload PCIe
bandwidth between host and Phi for varying data sizes. Figure 18
shows the bandwidth of host to Phi. For large data transfers it is
about 6.4 GB/s. Note that bandwidth from host to Phi0 is about
3% higher than for host to Phi1 for large data sizes. In addition,
there is fall in bandwidth at a data size of 64 KB, which is
currently not understood and needs further investigation.

Figure 18. Offload bandwidth between host and Phi.

6.8 NAS Parallel Benchmarks (NPB)
In this section we present results for both OpenMP and MPI
versions of the NPBs.
6.8.1 NPB OpenMP Version
Figure 19 shows the performance of the OpenMP version of the
NPBs on the host and Phi0. Performance on the host is always
better than the best possible performance on Phi0. Performance on
Phi0 depends strongly on the number of threads on each core. In

native mode, performance on Phi0 is minimal for 1 thread per
core and maximal for the 3 threads per core for most of the
benchmarks. Among the six benchmarks, BT has the highest
performance and CG the lowest on the Phi. The reason for this is
that BT is vectorized, compute intensive, and highly parallel so it
can use the 512-bit wide vector-unit and the hardware
multithreading. CG finds the smallest eigenvalue of a symmetric
positive definite matrix and uses indirect addressing. As such, it
cannot reuse the cache efficiently. Our tests indicated that the
compiler vectorized the most time consuming loop (sparse BLAS)
using the gather-scatter vector instructions. However,
performance of this version was only 10% better than the version
without vectorization. This shows that the gather-scatter
instruction is not efficient on Phi. Except for MG, most of the
benchmarks have worse performance on the Phi than on the host.

Figure 19. Performance of NPB OpenMP on host and Phi.

6.8.2 NPB MPI Version
Figure 20 shows the performance of the MPI version of the NPBs.
The minimum and maximum numbers of threads available on a
Phi are 59 and 236 respectively so results for CG, MG, FT, and
LU are shown only for 64 and 128 MPI processes as these
benchmarks run only using power of two processes. For BT and
SP, the results are shown only for 64, 121, 169 and 225, as these
benchmarks require square process grids. The FT benchmark
could not be run on Phi because the Phi memory of 8GB is not
enough, as it needs minimum of 10 GB to run with 64 or more
processes. This brings some challenges to run MPI codes on the
Phi, especially for those that have constraints on the number of
MPI ranks. The other finding is that unlike in the OpenMP
version, 3 threads per core do not always give the best
performance, e.g., BT performance is best for 4 threads per core.
It shows that number of threads per core needs some tuning to
determine its optimal value for a given application.

Figure 20. Performance of NPB MPI on host and Phi.

6.9 Science and Engineering Applications
In this subsection we focus on the comparative performance of
two full production quality applications, OVERFLOW and
Cart3D, on the host and the Phi coprocessor. We used a hybrid
(MPI + OpenMP) version of OVERFLOW, and for Cart3D we
used the pure OpenMP version. OVERFLOW was run in three
modes: native host, native Phi and symmetric modes. Cart3D
results are presented only for native host and native Phi modes, as
a pure OpenMP code cannot run in symmetric mode. We also
present results for MG of the NPB suite in offload mode.

6.9.1 Native Mode
In this subsection we present the results of Cart3D and
OVERFLOW in native host and native Phi modes.

6.9.1.1 Cart3D
Figure 21 shows the performance of the OpenMP version of
Cart3D in native host and native Phi modes. Native host results
are shown for 16 OpenMP threads (one thread per core) whereas
native Phi results are for 59, 118, 177, and 236 threads
corresponding to 1, 2, 3 and 4 threads per core. Host performance
is two times better than the best result on Phi. Performance on Phi
is the best for 4 threads per core. As noted earlier, the number of
threads per core is a tunable parameter and 4 is the optimal for
Cart3D, unlike the NPBs where 3 is generally the best value.

Figure 21. Performance of Cart3D on host and Phi.

6.9.1.2 Overflow
Figure 22 shows the wallclock time per step of the hybrid (MPI +
OpenMP) OVERFLOW in native host and native Phi modes for
the DLRF6-Medium data set. The notation (I x J) is used here,
where I is the number of MPI processes and J is the number of
OpenMP threads per MPI process. For example, 8 x 2 means 8
MPI processes and 2 OpenMP threads per MPI process. We used
one host (two Sandy Bridge processors) and one Phi (Phi0).

The best performance on the host is for 16 x 1 whereas the worst
performance is for 1 x 16. The best performance on the Phi is for
8 x 28 (224 threads—close to 4 threads per core) and the worst
performance is for 4 x 14 (56 threads—close to 1 thread per core).
The best performance on the Phi is worse than the best
performance on the host by a factor of 1.8. On the host,
performance decreases as the number of OpenMP threads
increases for a fixed number of total threads. On the other hand,
on the Phi, performance increases as the number of OpenMP
threads increases. The main reason for the lower performance of
OVERFLOW on the Phi is that the performance of OVERFLOW
depends on the bandwidth of the memory subsystem, which is
much lower on the Phi than on the host.

Figure 22. Performance of Overflow on host and Phi .

6.9.1.3 Symmetric Mode
Figure 23 shows the wallclock time per step of OVERFLOW on
the DLRF6-Large case in a symmetric mode on host+Phi0+Phi1
for pre-update and post-update software. Also shown in the figure
is the percentage performance gain by the post-update software. In
the symmetric mode there is MPI communication over PCIe
amongst the host, Phi0, and Phi1, so the upgrade due to the post-
update software does impact the performance of the application.
The performance gain using post-update software is from 2% to
28%.

The best performance is obtained when one OpenMP thread is
used for each MPI rank on the host and 28 OpenMP threads are
used for each MPI rank on Phi0 and Phi1. The 8x28 case has 224
threads, which almost fills the Phi. Performance in this symmetric
mode, which uses host, Phi0 and Phi1 with 8 MPI ranks on each
Phi and 28 OpenMP threads for each MPI rank, is better than that
on host only (not shown in the chart) by a factor of 1.9.

When compared to using two hosts (host1+host2), the best
host+Phi0+Phi1 result is still worse. Detailed examination of the
results revealed that the host+Phi0+Phi1 combination was about
15% faster than the two hosts on the numerically intensive parts
of the code, but communication time and overhead due to load
imbalance (which might include some communication time) were
large enough on the host+Phi0+Phi1 to outweigh the speedup on
the numerically intensive parts.

Figure 23. Performance of Overflow in symmetric mode.

6.9.1.4 Offload Mode
In this section we present the results for three different versions of
the MG benchmark in offload mode and compare with native host
and native Phi modes. Also presented is the cost of offload from
host to Phi. All offload tests are done on Phi0. We used the Intel

tool OFFLOAD_REPORT for producing the offload profile. The
offload cost has three components:
• Setup time + data gather/scatter time on host
• PCIe transfer time
• Setup time + data gather/scatter time on Phi

6.9.1.5 OpenMP Loop Collapse
We ported the NPB OpenMP version of MG for offload testing on
Maia. The MG benchmark approximates the solution to a three-
dimensional discrete Poisson equation using the V-cycle multigrid
method. The basic idea behind MG method is to reduce long
wavelength error components by updating blocks of grid points.
We present results from two versions, the original benchmark
from the NPB version 3.3 suite and an optimized version in which
the OpenMP nested loops were collapsed. This loop-collapsing
optimization increased the performance by 25% to 28% on Phi0
as shown in the Figure 24. However, this optimization degraded
the performance on the host for 16 threads by 1%, showing that a
transformation good for Phi is not necessarily best for the host.
Note that performance with 59, 118, 177, and 236 threads is much
better than with 60, 120, 180, and 240 threads, respectively. The
reason for this is that 59, 118, 177, and 236 use 59 cores with 1, 2,
3, and 4 threads per core respectively. Using the 60th core, which
is usually used for OS services, incurs significant overhead, and
should be avoided.

Figure 24. Performance gain of OpenMP loop collapse on Phi.

6.9.1.6 Native and Offload Modes
Figure 25 shows the performance of MG in native host, native
Phi, and offload modes. For offload we used three different
versions:

• offload one OpenMP loop,
• offload one subroutine in the main program and
• offload the whole computation.

The performance of MG in native host mode (23.5 Gflop/s for 16
threads) is lower by 27% than the best performance on the Phi
(29.9 Gflop/s for 177 threads – 3 threads per core) in native Phi
mode. Note that on the host, HT performance (32 threads – 22.2
Gflop/s) is 6% lower than single thread performance (16 threads –
23.5 Gflop/s). We see that the performance of all the offload
versions is much lower than both native host and native Phi
modes. The main reason for this is the high cost of data transfer.

The amount of data transferred between host and Phi, and the
number of offload invocations are different for the three offload
versions. We offloaded the most time consuming “do loop” in the
subroutine “resid”. Here the amount of data transferred is the least
in each offload occurrence. But the total amount of data
transferred and the number of offload invocations are the most
among all three versions. So the performance of this version is the
worst. The performance is improved when offloading the whole

subroutine “resid” with fewer offload occurrences and data. The
most efficient technique is to offload the whole computation to the
Phi. In this version the data transferred is the least because input
data is generated on host and transferred to Phi only once. So the
main criteria to evaluate whether an application is suitable for
offload mode is the cost of data transfer and offload overhead. It
is clear from our study that MG is not a good candidate for
offload mode.

Figure 25. MG in 3 modes: native host, native Phi, offload.

6.9.1.7 Overhead in Offload Mode
Figure 26 shows the overhead for the three offload versions of
MG for 3 threads per core. As can be seen from this figure, the
performance of offloading one main OpenMP loop is the worst
and the best performance is that of offloading the whole
computation as it has the least amount of data transferred between
host and Phi.

Figure 26. Overhead in three offload versions for MG.

Figure 27 shows the number of offload invocations and the
amount of data transferred in the three versions of the offload
code. This cost is maximal for offloading one OpenMP loop and
minimal for offloading the whole computation.

Figure 27. Cost of three offload versions of MG.

7. CONCLUSIONS
In this paper we studied the single node performance of an SGI
Rackable computer that has Intel Xeon Phi coprocessors. We ran
a suite of codes ranging from microbenchmarks to full CFD
applications of interest to NASA—Cart3D, which is pure
OpenMP and OVERFLOW, which is an MPI+OpenMP hybrid
code. We tested four programming modes: processor native,
coprocessor native, symmetric, and offload. After we finished our
initial experiments, an updated version of software became
available and we repeated the runs to determine its impact.
When comparing native performance of the two applications, we
found that a single Phi card had about half the performance of the
two host Xeon processors. When run in symmetric mode with two
Phi coprocessors, OVERFLOW achieved a 1.9x boost compared
to its best performance in native host mode.
The advantage of native mode on Phi is that the code requires no
changes. On the negative side, there are constraints on memory
footprint, and I/O performance is poor due to NFS mounting
being done via TCP/IP on PCIe. In contrast, symmetric execution
requires careful balancing of the workload across the host
processors and the Phi coprocessors.
Our less-than-optimal application performance results can be
explained as follows. Peak performance on Phi requires a highly
threaded code that is also highly vectorized with unit stride. This
will keep the 512-bit wide vector units busy. Cart3D is not heavily
vectorized. Furthermore as our microbenchmarks results show,
the Phi has higher memory latency than Sandy Bridge, which
results in additional stall cycles, and it has lower memory
bandwidth, which starves the floating-point units. This limits the
performance of memory bandwidth-intensive applications such as
OVERFLOW.
As our experiments show, there is a significant overhead to using
the offload mode and thus one should carefully choose the
granularity of the offloads to offset the overhead of the data
transfer with the efficiency gained by execution on the
coprocessor.
We found that the overhead of system software such as MPI and
OpenMP is very high on Phi and needs to be optimized. In
addition, better performance can often be achieved by leaving one
core to operating system software when running a user application
on Phi. In addition, the implementation of gather and scatter on
the Phi is not efficient as is shown by the non-unit stride
vectorization of CG and OVERFLOW.
The post-update software significantly enhanced the MPI
bandwidth over PCIe especially for large message sizes and
performance of OVERFLOW. Software on the Phi is maturing
gradually and the next generation of hardware is expected to be
promising for achieving high performance on highly vectorized
and highly parallel applications.
The less than hoped for application performance described in the
paper is a combination of hardware (low memory bandwidth, light
core, small memory, network latency and bandwidth, etc.),
software (MPI library, operating system, and compiler), and
applications. On the positive side, we have seen that the software
is evolving and improving; we also note that some applications
can be reformulated. We hope that the hardware issues will be
resolved in the next version of the Phi to provide a better
performing system.

8. ACKNOWLEDGEMENTS
The authors are grateful to Matt Reilly of Institute for Defense
Analyses for several valuable suggestions. Valuable support and

help of Johnny Chang and John Hardman is gratefully
acknowledged. Work by Jahed Djomehri, William Arasin, and
Robert Hood, employees of CSC, was supported by NASA
Contract No. NNA07CA29C.

9. REFERENCES
[1] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-

Stover. GPU cluster for high performance computing. In
SC'04: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, page 47,Washington, DC, USA, 2004.
IEEE Computer Society.

[2] Jens Krüger and Rüdiger Westermann. Linear algebra
operators for GPU implementation of numerical algorithms.
ACM Transactionson Graphics (TOG), 2 2(3): 908–916,
2003.

[3] John Michael Levesque, Grout Ray, Ramanan Sankaran,
Hybridizing S3D into an Exascale Application using
OpenACC, In SC'12: Proceedings of the 2012 ACM/IEEE
Conference on Supercomputing, Salt Lake City, 2012, IEEE
Computer Society.

[4] Intel Xeon Phi Coprocessor Developer’s Quick Start Guide,
http://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-developers-quick-start-guide.

[5] Intel Xeon Phi Coprocessor (codename Knights Corner),
http://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner.

[6] Introducing Titan: Advancing the Era of Acceleeatred
Computing, http://www.olcf.ornl.gov/titan/.

[7] About the Blue Waters project,
www.ncsa.illinois.edu/BlueWaters/

[8] Texas Advanced Computing Center - Stampede,
http://www.tacc.utexas.edu/stampede.

[9] New supercomputer coming to EMSL this summer, supplied
by Atipa Technologies,
http://www.pnnl.gov/news/release.aspx?id=965, March
2013.

[10] 10 Petaflops Supercomputer "Stampede" Powered by Intel®
Xeon Phi™ Coprocessors Officially Dedicated Today,
http://newsroom.intel.com/community/intel_newsroom/blog/
2013/03/27/10-petaflops-supercomputer-stampede-powered-
by-intelr-xeon-phitm-coprocessors-officially-dedicated-
today, March 27, 2013

[11] TACC-Intel Highly Parallel Computing Symposium –
Preaparing for Many Core, Knight Ferry,
http://www.tacc.utexas.edu/news/feature-
stories/2012/preparing-for-many-core, April 10-11, 2012.

[12] Early Application Experiences with the Intel® MIC
Architecture, Electronic Structure Calculation Methods on
Accelerators. Workshop – Oak Ridge, TN – February 6 - 8,
2012.

[13] T.G. Mattson, R. Vander Wijngaart, and M. Frumkin,
“Programming the Intel 80-core network-on-a-chip tera scale
processor,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing,. Piscataway, NJ, USA:
2008, pp. 38:1–38:11
http://dl.acm.org/citation.cfm?id=1413370.1413409

[14] SGI with Intel Xeon Phi Coprocessors,
www.sgi.com/products/servers/accelerators/phi.html.

[15] Intel® Xeon® Processor E5 Family,
http://www.intel.com/content/www/us/en/processors/xeon/xe
on-processor-5000-sequence.html.

[16] S. Saini, A. Naraikin, R. Biswas, D. Barkai and T.
Sandstrom, “Early performance evaluation of a "Nehalem"
cluster using scientific and engineering applications”,
Proceedings of the ACM/IEEE Conference on High
Performance Computing, SC 2009, November 14-20, 2009,
Portland, Oregon, USA.

[17] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra and R.
Biswas, “The impact of hyper-threading on processor
resource utilization in production applications”, Best Paper,
18th International Conference on High Performance
Computing, HiPC 2011, Bengaluru, India, December 18-21,
2011.

[18] STREAM Version 5.10: Sustanable Memory Bandwidth in
High Performance Computers:
http://www.cs.virginia.edu/stream/

[19] D. Molka, D. Hackenberg, R. Schöne and M. S. Müller,
Memory Performance and Cache Coherency Effects on an
Intel Nehalem Multiprocessor System, In Proceedings of the
18th International Conference on Parallel Architectures and
Compilation Techniques (PACT'09), pages 261-270, IEEE,
2009,
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnum
ber=5260544

[20] R. Schöne, D. Hackenberg, D. Molka, “Memory
performance at reduced CPU clock speeds: an analysis of
current x86_64 processors”, In Proceedings of the 2012
USENIX conference on Power-Aware Computing and
Systems (HotPower'12), October 7, 2012, Hollywood, USA
http://dl.acm.org/citation.cfm?id=2387869.2387878

[21] S. Saini, R. Ciotti, B. TN Gunney, T. E. Spelce, A. Koniges,
D. Dossa, P. Adamidis, R. Rabenseifner, S. R. Tiyyagura,
and M. Mueller. "Performance evaluation of supercomputers
using hpcc and imb benchmarks." Journal of Computer and
System Sciences 74, no. 6 (2008): 965-982.

[22] James LaGrone, Ayodunni Aribuki, and Barbara Chapman,
A set of microbenchmarks for measuring OpenMP task
overheads. International Conference on Parallel and
Distributed Processing Techniques and Applications, vol II,
pp. 594-600, (July 2011).

[23] Bronis R. de Supinski, LLNL OpenMP Performance Suite
Description, https://computation.llnl.gov/casc/sphinx/, 2001

[24] J. Mark Bull, Fiona Reid, Nicola McDonnell: A
Microbenchmark Suite for OpenMP Tasks. IWOMP 2012:
271-274.

[25] S. Saini, D. Talcott, R. Thakur, P. Adamidis, R.
Rabenseifner, and R. Ciotti. "Parallel I/O performance
characterization of Columbia and NEC SX-8 superclusters."
In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pp. 1-10. IEEE, 2007.

[26] NAS Parallel Benchmarks (NPB),
http://www.nas.nasa.gov/publications/npb.html

[27] OVERFLOW, http://aaac.larc.nasa.gov/~buning/
[28] S. Saini, D. Talcott, D. Jespersen, J. Djomehri, H. Jin, and R.

Biswas. "Scientific application-based performance
comparison of SGI Altix 4700, IBM POWER5+, and SGI
ICE 8200 supercomputers." In High Performance
Computing, Networking, Storage and Analysis, 2008. SC
2008. International Conference for, pp. 1-12. IEEE, 2008.

[29] S. Saini, P. Mehrotra, K. Taylor, S. Shende and R. Biswas,
Performance Analysis of Scientific and Engineering
Applications Using MPInside and TAU, pp. 265-272, in:
Proc. 12th IEEE Intl. Conf. on High Performance Computing
and Communications, Melbourne, Australia, 2010.

[30] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. High
Resolution Aerospace Applications using the NASA
Columbia Supercomputer, in: Proc. ACM/IEEE SC05,
Seattle, WA, 2005.

[31] InfiniBand Trade Association: http://www.infinibandta.org.
[32] Building a Native Application for Intel® Xeon Phi™

Coprocessors, http://software.intel.com/en-
us/articles/building-a-native-application-for-intel-xeon-phi-
coprocessors.

[33] I/O performance and best way to run Native executable,
http://software.intel.com/en-us/forums/topic/382695.

