
Early Multi-Node Performance Evaluation of a
Knights Corner (KNC) Based NASA Supercomputer

Subhash Saini, Haoqiang Jin, Dennis Jespersen, Samson Cheung*, Jahed Djomehri*, Johnny Chang*, and Robert Hood*
NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center
Moffett Field, California, USA

*Computer Sciences Corporation (CSC)
{subhash.saini, haoqiang.jin, dennis.jespersen, samson.h.cheung, jahed.djomehri, johnny.chang, robert.hood}@nasa.gov

Abstract—We have conducted performance evaluation of a
dual-rail Fourteen Data Rate (FDR) InfiniBand (IB) connected
cluster, where each node has two Intel Xeon E5-2670 (Sandy
Bridge) processors and two Intel Xeon Phi coprocessors. The
Xeon Phi, based on the Many Integrated Core (MIC)
architecture, is of the Knights Corner (KNC) generation. We
used several types of benchmarks for the study. We ran the MPI
and multi-zone versions of the NAS Parallel Benchmarks
(NPB)—both original and optimized for the Xeon Phi. Among
the full-scale benchmarks, we ran two versions of WRF,
including one optimized for the MIC, and used a 12 Km
Continental U.S (CONUS) data set. We also used original and
optimized versions of OVERFLOW and ran with four different
datasets to understand scaling in symmetric mode and related
load-balancing issues. We present performance for the four
different modes of using the host + MIC combination: native
host, native MIC, offload, and symmetric. We also discuss the
various optimization techniques used in optimizing two of the
NPBs for offload mode as well as WRF and OVERFLOW. WRF
3.4 optimized for MIC runs 47% faster than the original NCAR
WRF 3.4. The optimized version of OVERFLOW runs 18%
faster on the host and the load-balancing strategy used improves
the performance on MIC by 5% to 36% depending on the data
size. In addition, we discuss the issues related to offload mode
and load balancing in symmetric mode.

Keywords: Benchmarking; Performance; WRF, OVERFLOW

I. INTRODUCTION

Recently, the US Congress passed a law directing the
Department of Energy (DOE) to develop an exascale class
supercomputing capability within the next decade in order to
meet the objectives in this endeavor of the nuclear stockpile
stewardship program [1]. One of the key challenges is to
develop energy efficient circuits and improved power and
cooling technologies. The stagnancy of processor frequency
due to the constraints of power and current leakage has led
computer hardware vendors to increase parallelism in their
processor designs. NVIDIA and Intel have been proactive in
developing low-powered processors for use in hybrid
heterogeneous systems, and such systems currently occupy
many of the top spots in the Top500 list [2]. Since 2011, the
most powerful supercomputer systems ranked in the Top500
list are hybrid systems of two different architectures
composed of thousands of nodes that include both processors
and accelerators, i.e. accelerators such as the NVIDIA
General-Purpose Graphical Processing Unit (GPGPU) and the
Intel Xeon Phi coprocessor based on the Intel Many

Integrated Core (MIC) architecture [3, 4]. In the 2014 June
Top500 list, a total of 62 systems on the list use
accelerator/coprocessor technology ⎯ 44 of these use
NVIDIA GPGPU chips and 17 systems use Intel Xeon Phi
[2].

The Intel Xeon Phi based Tianhe-2 (MilkyWay-2) system
at the National Supercomputer Center in Guangzhou, China
and Stampede system at Texas Advanced Computing Center
(TACC) are currently ranked 1 and 7, respectively, on June
2014 Top500 list [2, 5, 6]. They both use the current
generation of Xeon Phi called Knights Corner (KNC). In
April 2014, the National Energy Research Scientific
Computing Center (NERSC) and Cray Inc. signed a $70+
million contract for a next-generation supercomputer based on
a future Intel Xeon Phi processor code-named “Knights
Landing” (KNL), which can provide 3 teraflops of peak
performance per processor. It is scheduled for delivery in mid-
2016 [7,8]. Also the U.S. DOE National Nuclear Security
Administration (NNSA) has awarded Cray $174 million to
develop Trinity, a multi-petaflop supercomputer based on
KNL [9]. The KNL processor is not a coprocessor like KNC,
but is “self-hosted,” meaning that it is neither an accelerator
nor dependent on a host processor.

Many researchers investigating KNC performance have
examined single nodes, where one or two Xeon processors on
a single host are combined with one or two KNC coprocessors
[7-15]. There are not, however, many publications on
programming multiple nodes with MIC coprocessors. Park et
al. achieved 1 Tflop/s on 64 nodes of Xeon Phi (KNC) and
6.7 Tflop/s with 512 nodes for a 1-D FFT kernel, which is 1.5
times higher than on 512 nodes of Xeon processors [10]. Joo
et al. demonstrated a fully ’native’ multi-node LQCD
implementation running entirely on KNC nodes with
minimum involvement of the host processor with strong
scaling to 3.6 Tflop/s on 64 KNC [11]. Saini et al. did
performance evaluation of a single MIC using several low
level benchmarks and two applications [13]. They measured
STREAM bandwidth, load latency, load read and write
bandwidth for L1/L2/L3 cache and main memory, MPI
latency and bandwidth, and offload bandwidth between host
and MIC0/MIC1. They also reported the intra-node
performance of several MPI functions along with the
overhead of various OpenMP directives and constructs with
data privatization, loop scheduling, and synchronization. They
also measured the read and write bandwidth for MIC. In
addition, they reported the performance of NAS Parallel

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2015.140

57

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2015.140

57

NAS Technical Report: NAS-2015-03

Benchmarks (NPB) MPI and NPB OpenMP, and two CFD
applications for native host mode, native MIC mode and
symmetric mode for a single node. It may be noted that Saini
et al. conducted the performance evaluation of only a single
node i.e. one node (one host + MIC0 + MIC1). In the present
paper we evaluate the performance of multiple nodes [13],
optimize two large-scale production quality codes and
implement a new technique to load balance for symmetric
mode, which enhanced their performance significantly.

In the present paper, we study the multi-node
performance of an InfiniBand (IB) connected cluster called
“Maia”, where each node has two Intel Xeon E5-2670 (Sandy
Bridge) processors and two Xeon Phi 5110P coprocessors
(KNC). We will refer to the two Sandy Bridge processors
collectively as the “host” and the KNC coprocessors as the
“MIC”, using “MIC0” and “MIC1” whenever we need to
distinguish between the two coprocessors.

To the best of our knowledge the following are our
original contributions:

• We optimized a production quality computational
fluid dynamics (CFD) code OVERFLOW, which
enhanced the performance on the host by 18%. In
addition, we implemented a new load-balancing
strategy among hosts and MICs for multiple nodes
that increased in performance 5% to 36%, depending
on the size of data used. We compared the
performance of OVERFLOW in host-native, MIC-
native and symmetric modes for four different data
sets with grid sizes of 10.6, 36, 83, and 91 million on
up to 48 host nodes and 96 MIC coprocessors [17].

• We used Intel optimized climate code WRF 3.4 on
MIC, which resulted in a 47% performance increase
for the symmetric mode using a hybrid-programming
paradigm (MPI + OpenMP). Various strategies were
used to load balance MPI threads and OpenMP
threads for optimal performance. We evaluated the
performance of the optimized and original weather
code WRF 3.4 with up to 4 host nodes and 8 MIC
coprocessors for a 12 Km CONUS data set [18].

• We evaluated the performance of NAS Parallel
Benchmarks (NPB) MPI version, and the NPB multi-
zone version (NPB-MZ) up to 64 host nodes and 128
MIC coprocessors [16].

• We implemented three offload versions of NPB SP
and BT compact applications from the NPB 3.3 suite
and evaluated to examine data transfer at different
granularities.

The remainder of the paper is organized as follows.
Section II provides details of the MIC-based heterogeneous
computing system called Maia. In Section III we give a brief
overview of the experimental setup used in the study. Section
IV describes the four programming modes available on Maia.
Section V gives the description of benchmarks and
applications. In Section VI we discuss the multi-node

performance results obtained in our evaluation of the Sandy
Bridge hosts and the MIC coprocessors. In Section VII we
present our conclusions.

II. MAIA COMPUTING PLATFORM
The NASA Advanced Supercomputing (NAS) Division

recently installed a 128-node heterogeneous SGI Rackable
computing system. Each node has 2 Sandy Bridge (Intel Xeon
E5-2670) processors and 2 KNC coprocessors (Intel Xeon
Phi). Each Sandy Bridge processor has 8 cores with a clock of
2.6 GHz, a 20MB L3 cache, and two hyper-threads (HT) per
core. Each Sandy Bridge node has two Intel Xeon Phi 5110p
(Knights Corner - KNC) coprocessors. Each MIC is a 60-core
Symmetric Multi Processor (SMP) on a single die using 22-
nm process technology and running at 1.053 GHz. It has four
hardware threads per core, 8 GB of GDDR5 memory, and a
peak performance of 1010.5 Gflop/s. Overall the system has a
theoretical peak performance of 301.3 Tflop/s. Of that peak
performance, 42.6 Tflop/s come from the 2,048 Sandy Bridge
cores and 258.7 Tflop/s come from the 15,360 MIC cores.
The system has 4 TB of memory available to the Sandy
Bridge processors and 2 TB for the MIC coprocessors for a
total memory of 6 TB. The four hardware threads on each
MIC core can hide memory and multi-cycle instruction
latency. Because instructions from a thread can be issued only
every other cycle, it is absolutely necessary to use a minimum
of two threads per core. Each core has 512-bit wide vector
units that can execute 8 double-precision or 16 single-
precision, single-instruction multiple-data (SIMD)
instructions in a single clock. Each core has two levels of
cache: 32 KB L1 data cache and a globally cache coherent 30
MB L2 cache partitioned among the 60 cores, i.e. each core
has a 512 KB partition. The memory bandwidth in streaming
can reach 165 GB/s [13].

Each of the 128 nodes has two different memory systems.
The host memory is 32 GB shared cache-coherently by the 16
cores of the two Sandy Bridge processors. The cores of each
MIC share an 8 GB GDDR5 cache-coherent memory system.
Each MIC is connected to the host via a separate 16-lane PCI
Express (PCIe) bus. An FDR IB Host Channel Adapter
(HCA) plugged into the first PCIe bus connects to other
nodes.

III. EXPERIMENTAL SETUP
All benchmarks and applications were run on the NAS

Maia cluster with a Network File System (NFS) home and
Lustre scratch file systems re-exported to MIC via a user
space implementation of NFS (UNFS). The system software
consisted of SUSE Linux Enterprise Server SLES11SP2, the
Intel Manycore Platform Software Stack (MPSS) version
3.1.2-1, Intel compiler version 15.0, and Intel MPI version
4.1. Cross-compilation was done via the Intel compiler (-
mmic) and an in-house “as-if-native” compilation
environment. The “as-if-native” compilation environment was
created for Maia to enable the build of any open-source
package as if it was compiled natively on the MIC without
modification. This allowed the MIC “busy box” environment
to be supplanted by a set of software that is fully featured with
executable such as the bash shell, tcsh shell, and modules, at

5858

the user’s choice. The result makes the Xeon Phi environment
close to a normal Xeon system. We used this “as-if-native”
compilation to build required libraries, such as Network
Common Data Form (NetCDF). Job submission and
monitoring were done using PBS 11.2, with a MIC reset at the
end of each job. Common environment variables used were:
	
 	
 	
 	
 I_MPI_MIC=1	

	
 	
 	
 	
 I_MPI_TIMER_KIND=rdtsc	

	
 	
 	
 	
 MIC_KMP_AFFINITY=balanced	
 	

In addition, we set the following two environment variables to
specify which DAPL providers are used for various message
sizes.
	
 	
 	
 	
 I_MPI_DAPL_DIRECT_COPY_THRESHOLD=8192,262144	
 	

	
 	
 	
 	
 I_MPI_DAPL_PROVIDER_LIST=ofa-­‐v2-­‐mlx4_0-­‐1,ofa-­‐v2-­‐scif0	

These last two variables result in three possibilities (small
< 8KB, medium > 8KB and < 256 KB, and large messages >
256 KB) for data transfers between the host and the MICs.

IV. PROGRAMMING MODES

In this paper, we evaluated the performance of four
programming modes.

Offload Mode: In offload mode, an application is launched
on the host, and then parallel compute-intensive
subroutines/functions are offloaded to the MIC using special
directives that take care of code execution and data transfer
seamlessly. An OpenMP parallel region is used to distribute
work over MIC threads.
Native Host Mode: In native mode, the entire application is
run exclusively on the host Sandy Bridge processors; MIC
coprocessors are not used.
Native MIC Mode: In this mode, the entire application runs
only on the MIC coprocessors. MIC-to-MIC communication
is via host. Existing code running on the host can be compiled
with –mmic option without any changes.
Symmetric Mode: In symmetric mode, an application is run
using both the host processors and the MIC coprocessors; it
needs to be compiled for host and MIC separately. A major
challenge is to optimally balance the work between the hosts
and coprocessors.

V. BENCHMARKS AND APPLICATIONS

A. NPB benchmarks:
The NPB suite developed at NASA has eight benchmarks:

five kernels (CG, FT, EP, MG, and IS) and three compact
applications (BT, LU, and SP). We used several versions of
the Class C benchmarks in our study.
NPB MPI: We used MPI version 3.3 Class C of the NPB to
measure multi-node scaling.
NPB-MZ: Multi-zone versions of NPB (NPB-MZ) are
designed to exploit multiple levels of parallelism in
applications and to test the effectiveness of multi-level and
hybrid parallelization paradigms and tools. In this study we
used BT-MZ and SP-MZ to measure single node and multi-
node scaling.

Offload codes: We created offload versions of the NPBs SP
and BT to examine data transfer at different granularities: at
the loop or multi-loop level, at the subroutine level, and the
whole computation.

B. Science and Engineering Applications

We used two full, production-quality applications
representative of NASA’s workload. A brief description of
these applications follows

1) OVERFLOW

OVERFLOW is a general-purpose Navier-Stokes solver
for computational fluid dynamics (CFD) problems [14]. The
MPI version, a Fortran90 application, has 130,000 lines of
code. The code uses an overset grid methodology to perform
high-fidelity viscous simulations around realistic aerospace
configurations. The main computational logic of the
sequential code consists of a time loop and a nested grid loop.
The code uses finite differences in space with implicit time
stepping. Parallelism in OVERFLOW is at two levels ⎯ at
the high level there is explicit-message passing using MPI and
at the low level it uses OpenMP. We run Overflow for 100
time steps and each time step has two stages.
Communication: Each MPI rank sends all the inter-grid data
needed by other MPI ranks, and receives all necessary data.
Computation: Each MPI rank computes on its grids, with no
message passing involved.

Finally, all MPI ranks send a small amount of data
(residuals, minimum pressure and density, etc.) to the MPI
rank 0. All input/output (reading the grid and writing the
results and restart file) is via the MPI rank 0. In this paper, we
used hybrid mode (MPI + OpenMP) with MPI for parallelism
at the outer level and OpenMP for parallelism at the inner
level. We used the following four data sets.

DLRF6-Large: The dataset used is a wing-body-nacelle-
pylon geometry (DLRF6-Large), with 23 zones and 36
million grid points. The input data set is 1.6 GB in size, and
the solution file is 2 GB.
DLRF6-Medium: We also used a smaller data set (DLRF6-
Medium) with 10.8 million grid points, as the DLRF6-Large
case is too large to run on a single MIC coprocessor.
DPW3: DPW3 is a finer-grid version of the DLRF6-Large
case. It's wing-body geometry with 83 million grid points
before grid splitting.
Rotor: Rotor is the NAS rotor test case. There are 91 million
grid points before grid splitting.

2) WRF

 The Weather Research and Forecasting (WRF) model is a
next-generation, mesoscale numerical weather prediction
system designed to serve both atmospheric research and
operational forecasting needs. The model serves a wide range
of meteorological applications across scales ranging from
meters to thousands of kilometers. WRF allows researchers
the ability to produce simulations reflecting either real data
(observations and analyses) or idealized atmospheric

5959

conditions. We used two versions of the code. The first
version is an original version 3.4 from National Center for
Atmospheric Research (NCAR); the second is the Intel
optimized WRF 3.4 for MIC. We used a benchmark case of
12-km Continental U.S (CONUS), simulating 48 hours in
October 2001 with a time step of 72 seconds.

The WRF 3.4 code has parallelism at two levels. The outer
loops are parallelized with MPI and the inner loops with
OpenMP. This makes it simple to run WRF in symmetric
mode because part of WRF runs on the host and part on the
MIC.

VI. RESULTS

In this section we present results of our tests of MPI and
offload bandwidth as well as performance of the various
NPBs and the two full applications (OVERFLOW and WRF).

A. NAS Parallel Benchmarks

1) MPI VERSION
Figure 1 shows the scaling performance of compact

applications BT, SP, and LU from the NPB Class C suite on
native host and native MIC. In this figure, bars show the
results for native MIC mode whereas lines in the graph
correspond to native host mode using Sandy Bridge (SB)
processors. Each host node contains two SB processors and
two MICs (MIC0 and MIC1). Each SB processor has 8 cores
and each MIC has 60 cores. When we indicate 128 SB
processors it means we used 64 host nodes.

Each MIC can have a maximum of 4 threads per core. For
optimal performance one must use a minimum of 2 threads on
a core as it issues instructions every other cycle. In addition,
the number of threads per core is a tuning parameter that one
needs to determine by experimentation for a given
application.

Fig. 1 shows the best total time (computation and
communication time) for a given number of MICs or SB
processors ranging from 1 to 128. For SB processors we used
one MPI process per core, e.g., 32 SBs mean 32x8 MPI
processes. However, for the MICs, the best performance often
involved leaving cores idle. The number of MPI processes
used for optimum performance on a MIC varies with the
number of MICs used. The total number of MPI processes
used for each MIC count is indicated within the bars. In
addition, for BT and SP, there is a restriction of running only
a square grid of MPI processes and for LU there is a
restriction of running on power-of-two MPI processes. For a
given number of MICs we ran the benchmarks by varying the
number of MPI processes per MIC and used the run with the
minimum time. This was repeated for all MIC counts. For
example, the best result for BT using 32 MICs was from 484
MPI processes and only about 15 cores were used per MIC.
For a small number of processors (< 4) one MIC is about one
SB processor. While scaling is reasonably good on SB
processors, it is much worse on MICs, partly due to
communication resulting from many more MPI processes
used, inefficient resource utilization on MICs, load balancing,
and poor performance of MPI functions when using 2 or 3 or
4 MPI processes per core.

It should be noted that performance of MPI functions in
native MIC mode is 3 to 20 times worse than in native host
mode as reported by Saini et al. [13]. Poor scalability for BT
and SP on MIC is because of load imbalance using the pure
MPI paradigm. It clearly shows that pure MPI is not
appropriate for MIC, as one can’t load balance the workload.
We will see later on that a hybrid-programming model (MPI +
OpenMP) resolves the scaling issue for BT and SP (see Figure
2). For the same reason, all the published literature on
applications running on MIC use a hybrid-programming
model (MPI + OpenMP).

Figure 1. Performance of MPI version of Class C BT, SP, and LU benchmarks for host and MIC.

2

4

8

16

32

64

128

256

Tim
e (

se
cs

)

1 2 4 8 16 32 64 128
Number of MIC or SB Processors

22
5

22
5

48
4

48
4

10
24

48
4

48
4

10
24

22
5

22
5

22
5

48
4

48
4

25
6

48
4

10
24

12
8

25
6

51
2

51
2

10
24

10
24

10
24

10
24

 MIC BT.C
 MIC SP.C
 MIC LU.C

 host BT.C
 host SP.C
 host LU.C

MPI Version of NPB on Multi Nodes

6060

Figure 2 shows the scaling performance of compact
applications CG, MG, and IS from the NPB Class C suite on
native host and native MIC. Scaling of CG and IS is worse
on the host for large number of processors. The reason for this
poor scaling of CG is that this becnhmark uses indirect
addressing and as such cannot reuse the cache efficiently. In
addition, it sends lots of messages with average message
length of 4 KB and thus is network latency bound. Scaling of
CG on MIC is worse than that on the host. We did extensive
testing to investigate this and found that that the compiler
vectorized the most time-consuming loop using the gather-
scatter vector instructions, but performance of this version
was only 10% better than the version without vectorization.
This indiactes that that the gather-scatter instruction is not
efficient on MIC as it is done in software and not in hardware.
The other reasons are that MIC has relatively lower memory
bandwith per process and lower network bandwith between
MIC of one node to MIC of another node We measured this
bandwidth to be only 950 MB/s compared to 6 GB/s of MIC0
to MIC1 of the same node.

Figure 2. Performance of Class C CG, MG, and IS benchmarks on Maia.

2) NPB-MZ:

Figure 3 shows the performance of BT-MZ and SP-MZ
for Class C. The notation r × t is used within the bars to
indicate the number of MPI ranks (r) and the number of
OpenMP threads (t) per MPI rank on each MIC; e.g., 4 × 30
denotes 4 MPI ranks and 30 OpenMP threads per MPI rank.
We present the best result for a given number of MIC or SB
processors. We found that one MIC is about one SB processor
for SP-MZ, but close to two SB processors for BT-MZ.
Hybrid MPI-OpenMP codes scale better than pure MPI on
MICs as shown in Figure 1 because it easier to adjust the
number of MPI ranks and OpenMP threads to get better
resource utilization.

Figure 3. Performance of Class C BT-MZ and SP-MZ benchmarks on

MICs and SBs

3) Offload Mode:
In this section we present the results for the OpenMP

version of the BT and SP benchmarks and compare
performance for offload mode with native host and native
MIC modes. We created three versions of BT and SP for
offload testing on Maia: offload multiple OpenMP loops,
offload the iteration loop in the main program, or offload the
whole computation. Figures 4 and 5 show the performance of
BT and SP, respectively, in native host, native MIC, and
offload modes on a single MIC. We see that the performance
of all the offload versions is much lower than both native host
and native MIC modes except for offloading the whole
computation. The main reason for this is the high overhead for
data transfer between the host and the MIC. The impact of the
Coprocessor Offload Infrastructure (COI) daemon is visible in
the offload mode when compared to the native MIC mode for
240 threads, which corresponds to 4 threads per core. Also,
with Intel’s MPSS software, many of the kernel services and
daemons are affinitive to the “Boot Strap Processor” (BSP),
which is the last physical core. This core is also where the
offload daemon runs the services required to support data
transfer for offload. It is therefore generally beneficial to
avoid using this core for user code, i.e., one should use only
59 cores. For this reason we saw performance drop at 60, 119,
179 and 237 threads. For our study we used only 59 cores of
the MIC. Therefore, we show results only for 118, 178 and
236 threads corresponding to 1, 2, 3 and 4 hardware threads
per core.

The amount of data transferred between host and MIC,
and the number of offload invocations are different for our
three offload versions BT and SP. By simply offloading the
multiple “do loops” in both BT and SP. Here the amount of
data transferred is the least for each offload invocation. But
the aggregate amount of data transferred and the number of

0.5

1

2

4

8

16

32

64

128

T
im

e
(s

ec
s)

1 2 4 8 16 32 64 128
Number of MIC or SB Processors

16
x1

5
(M

P
Ix

O
M

P
)

8x
30

4x
60

4x
60

8x
30

4x
60

2x
60

16
x1

5

16
x1

5

16
x1

5

16
x1

5

16
x1

5

4x
60

2x
12

0

2x
12

0
1x

24
0

 MIC BT-MZ.C
 MIC SP-MZ.C
 host BT-MZ.C
 host SP-MZ.C

Hybrid Version of NPB-MZ on Multi Nodes

6161

offload invocations are the most among the three versions.
Thus the performance of this version is the worst. The
performance is improved when offloading the iteration loop
with fewer offload occurrences and data. The efficient method
is to offload the whole computation to the MIC. In this
version the data transferred is the least because input data is
generated on the host and transferred to the MIC only once.
The guideline to evaluate whether an application is
appropriate for offload mode is the incurred cost of data
transfers and offloads overhead. It is obvious from our
experiment that NPB compact applications BT and SP are not
suitable for offload mode.

Figure 4. Performance of three offload versions of BT compared to host-

native and MIC-native versions.

Figure 5. Performance three offload version of SP compared to host-native

and MIC-native versions.

B. Scientific and Engineering Applications

In this subsection we present the results of two large-scale
applications – one from computational fluid dynamics
(OVERFLOW) and the other from weather modeling (WRF).

1) OVERFLOW

Figure 6 shows the wallclock time per step of the
MPI+OpenMP hybrid OVERFLOW in native host and
symmetric modes for the DLRF6-Large data set. The notation
m × n + p × q used here means m × n hybrid on the hosts
where m is number of MPI processes and n is number of
OpenMP threads per MPI process; p × q hybrid on the MIC
where p is number of MPI processes on a MIC and q is
number of OpenMP threads per MPI process on a MIC. We
used up to 48 hosts (96 Sandy Bridge processors and 96
MICs). Figure 5 shows results for 1 host and 2 hosts as well as
for 1 host plus 2 MICs. In this figure we show four times ⎯
total time, flow right-hand-side time, flow left-hand-side time,
and boundary exchange time (CBCXCH). CBCXCH is
basically a communication time. In host-native mode,
CBCXCH is less than 3% of the total time whereas in
symmetric mode (1 host + MIC0 + MIC1) it is about 20%.
The reason for this is that latency from host to MIC0, host to
MIC1, and MIC0 to MIC1 is very high.

Figure 6. Performance of OVERFLOW on a host + MIC0 + MIC1.

Figure 6 shows results both for standard OVERFLOW as
well as a modified version. We did several transformations to
enhance the performance of OVERFLOW. The performance
modification to OVERFLOW consisted of an attempt to
expose more parallelism for OpenMP and to allow thread-
level vectorization. The original OpenMP parallelism in
OVERFLOW consists of directives to parallelize loops over
planes of a 3-dimensional (3-D) grid. The resulting number
of OpenMP threads is typically on the order of 40. Inside the
OpenMP loop, computation is done on a 2-dimensional (2-D)

64

128

256

512

1024

T
im

e
 (

s
e
c

s
)

4 8 16 32 24060 120
Number of Threads

Offload OMP loops
Offload one iter loop
Offload whole comp

MIC native
Host native

BT Benchmark

64

128

256

512

1024

Ti
m

e
(s

ec
s)

4 8 16 32 24060 120
Number of Threads

Offload OMP loops
Offload one iter loop
Offload whole comp

MIC native
Host native

SP Benchmark

6262

plane of data. The optimization consisted of recoding to have
OpenMP parallelism over strips of a plane instead of over a
full plane. This typically increases the number of OpenMP
threads to something on the order of a few hundred. In
addition, the recoding has each thread compute over a smaller
data set, a strip of a 2-D plane instead of a full plane, which
may have the effect of decreasing cache traffic. These
optimizations resulted in 18% improvement in total time on
one host. We show the breakdown time of host + MIC runs
compared to host only. The best performance on a single host
is for 16 × 1 and the scaling from one to two hosts is
excellent: 9 seconds for one host to 4.1 seconds for two hosts.
The reason for this is that on two hosts more data fits into
cache. It is clear from this figure that the performance on 2
hosts is almost the same as on 1 host plus 2 MICs. The reason
for the lower performance of OVERFLOW on the MIC is the
much larger MPI communication time for boundary
exchange.

In addition to the previously mentioned optimizations, we
also developed and implemented a strategy for balancing the
workload between host and MIC depending on their compute
power. OVERFLOW has an internal load balancing
mechanism that assumes the processors are equally
powerful. This mechanism was modified to account for
processors of different strengths. The modification consisted
of writing a file containing timing data for each processor. If
nothing is known a priori, a cold start can be made, running a
small number of steps, with load balancing assuming the
processors have the same strength. Then a warm start can be
made and the file containing timing data is used in the load-
balancing algorithm to allow for processors of different
strengths. If a priori information is available, then a file
containing mock timing data can be constructed by hand and
it will be used by the code. In Figure 5 and in rest of the
paper, “cold start” means without reading timing data file, and
“warm start” means with reading timing data file.

a) DLRF6-Medium

Figure 7 shows cold vs. warm start performances using the
DLRF6-Medium data set for various MPI+OpenMP
combinations in symmetric mode: 2×8+2×116 (232 threads—
close to 4 threads per core), 2×8+4×56 (224), 2×8+6×36
(216), and 2×8+8×28 (224). The best result is for 2×8+6×36
(216) and it is 38% better than the worst result; so for each
application some experimentation is required to find the
optimal combination of MPI and OpenMP threads and load
balancing.

b) DLRF6-Large
Figure 8 shows the performance using the DLRF6-Large

data set. Here we notice that performance on MIC for warm
start improves as the number of OpenMP threads decreases;
the worst performance is for 116 OpenMP threads and the
best is for 56 OpenMP threads. Performance gain due to load
balancing is 10%.

Figure 7. Performance of OVERFLOW on a host + MIC0 + MIC1.

Figure 8. Performance of OVERFLOW DLRF6-Large on 6 nodes.

6363

c) DPW3:
Figure 9 shows the performance using the DPW3 data set.

DPW3 is a finer-grid version of the DLRF6-Large case. It is a
wing-body geometry with 83 million grid points before grid
splitting, i.e., the number of grid points is 2.3 times larger than
the DLRF6-Large case. In this case, performance increases as
the number of OpenMP threads increases because the number
of grid points is large enough to keep all the threads busy.
The best performance is for 2 MPI processes and 116
OpenMP threads per MPI process, and the performance gain
due to balancing the number of MPI processes vs. number of
OpenMP threads is more significant than for the DLRF-Large
case.

Figure 9. Performance of OVERFLOW DPW3 on 48 nodes each with two

MICs per node.

d) Rotor
Figure 10 shows the performance using the NAS Rotor

data set. There are 91 million grid points before grid splitting.
Like DPW3, here the performance also increases as the
number of OpenMP threads increases.

Figure 10. Performance of OVERFLOW Rotor on 48 nodes with two MICs

per node.

 Figure 11 shows the percentage improvements due to load
balancing for three different data sets⎯DLRF6-large on 6
nodes, DPW3 on 48 nodes and NAS Rotor on 48 nodes.
Largest gain (5% to 35%) is for NAS Rotor on 48 nodes,
maximum being for 4 MPI and 56 OpenMP threads (224
threads) and lowest is 6 MPI and 36 OpenMP threads.
Performance gain is from -1% to 17% for DPW3 on 48 nodes,
maximum for 6 MPI and 36 OpenMP threads (216 threads).
Among three data sets, DLRF6-Large on 6 nodes gains the
least advantage from load balancing and in fact our load
balancing effort has negative impact for small number of
OpenMP threads.

Figure 11. Percentage improvement of OVERFLOW by load balancing for

three cases.

2) WRF
In this subsection we present results of WRF for both

single node and multi- nodes.

a) Single Node

We present single node results for host-native, MIC-native
and symmetric modes. Table 1 shows the performance of
original and optimized WRF 3.4 on single node of Maia.

Host-Native Mode: Host-native results are shown for both
original WRF 3.4 and optimized WRF 3.4 and used 16 MPI

6464

processes with 1 OpenMP thread per process (16 × 1). Both
versions were compiled with AVX instruction (256-bit vector
width). The performance difference between the two is less
than 3%.

MIC-Native Mode: MIC-native results are shown for WRF
3.4 with NCAR default compiler flags or with special flags
for the MIC. The MIC special flags are:

	
 	
 -­‐mP2OPT_hlo_fusion=F	
 -­‐mP2OPT_hpo_vec_check_dp_trip=F	
 	

	
 	
 -­‐mGLOB_default_function_attrs="knc_stream_store_controls=2”	
 	

	
 	
 -­‐fimf-­‐precision=low	
 -­‐fimf-­‐domain-­‐exclusion=15	

Rows 1 and 2 of Table 1 compare the results of original
WRF 3.4 and optimized WRF.3.4 on the host using 16 MPI
threads and 1 OpenMP thread. The performance gain of the
optimized version is only 2%.

Comparing the 3rd and 4th rows of Table 1, one can see
that the MIC special flags provide a nice speed up of almost a
factor of 2 for the 64-thread case with both MICs running the
32 × 1 combination.

Rows 5 and 6 compare the results for 224 threads run with
either all threads on MIC0 (8 × 28) or split evenly between
MIC0 and MIC1 (4 × 28 on both MIC0 and MIC1). Using 2
MICs improves the performance by 18%. So, the benefit of

additional memory bandwidth using 2 MICs outweighs the
increased communication costs across the MICs.

Symmetric Mode: Symmetric mode results are shown for
host + 1 MIC for both original NCAR WRF 3.4 and
optimized WRF 3.4 and for the optimized WRF 3.4 in the
host +2 MICs configuration. Optimization transformed the
code for intensive vectorization, improved OpenMP use, loop
fusion, and used a modified shared memory tiling algorithm
so that tiles are calculated only once per zone per domain
including thread packing and unpacking of MPI messages.
The optimized version has several “collapsed DO loops” as
well. Most of the optimization is in subroutine WSM5 for
vectorization and data alignment.

Rows 7 and 8 compare the performance of the optimized
WRF 3.4 versus the original, both using MIC special flags and
one host + one MIC in the (8×2) host + (7×34) MIC
combination. The code optimization provided a 46.6%
reduction in wallclock time. Finally, for the one host+2 MICs
combination, the wallclock time for the optimized WRF3.4 in
symmetric mode is reduced by a third compared to the
wallclock time for the original WRF3.4 on a single host (row
1).

TABLE I. PERFORMANCE OF ORIGINAL WRF 3.4 AND OPTIMIZED WRF 3.4 ON SINGLE NODE OF MAIA.

Row # Version Flags Processor Threads MPI × OpenMP Time
(sec.)

1 Original AVX Host 16 16 × 1 147.77
2 Optimized AVX Host 16 16 × 1 144.40
3 Original Default MIC0 + MIC1 64 2 × (32 × 1) 774.48
4 Original MIC MIC0 + MIC1 64 2 × (32 × 1) 404.15
5 Original MIC MIC0 224 8 × 28 340.92
6 Original MIC MIC0 + MIC1 224 2 × (4 × 28) 281.15
7 Original MIC Host + MIC0 16 + 238 8 × 2 + 7 × 34 205.42
8 Optimized MIC Host + MIC0 16 + 238 8 × 2 + 7 × 34 109.76
9 Optimized MIC Host + MIC0 + MIC1 16 + 400 8 × 2 + 2 × (4 × 50) 98.09

b) Multiple nodes

Figure 12 shows the performance of optimized hybrid
(MPI + OpenMP) WRF 3.4 for a number of nodes ranging
from 1 to 3. The notation 1×16×1 means one host node with
16 MPI processes and 1 OpenMP thread per process. The
performance is better if one uses 2 OpenMP threads instead
of one per MPI process, e.g., for 2 hosts, the performance
using 2×8×2 is higher than using 2×16×1 by 2.5%; for three
hosts, the performance using 3×8×2 is higher than using
3×16×1 by 7%. Overall, scaling on the hosts is very good.

Figure 12 also shows the performance of WRF 3.4 run in
symmetric mode. The performance using host+MIC0 is 24%
better than using only one host (16 threads), but this is
reversed in going to multiple nodes where the performance
of two hosts (2×8×2) is better than that of 2 hosts + 4 MICs
run in the 2×(8×2+4×50+4×50) combination. Similarly,
performance of 3 hosts is better than the performance of 3
hosts + 3 MIC0 + 3 MIC1. The main reason for the poor
performance of symmetric mode for multiple nodes is the
very low communication bandwidth for multiple nodes.

6565

Figure 12. Performance of optimized WRF 3.4 in symmetric mode on multi-node of Maia. Red and green color bars denote HOST and

HOST+MIC0+MIC1 respecrtively.

VII. CONCLUSIONS

In this paper we studied the multi-node performance of
Maia, an IB-connected cluster of nodes with Sandy Bridge
hosts and KNC coprocessors. We ran a number of
benchmarks ranging from many variations of the NPBs to
real world applications. We optimized two full-scale
production quality applications — WRF3.4 and
OVERFLOW. We tested four programming modes: host-
native, MIC-native, offload, and symmetric.

Optimization of an application on MIC is very
challenging and time consuming and requires understanding
of its architecture as well as that of the application. We did
the following four types of optimizations: vetorization,
algorithm, MPI communication, and load balancing.

 If the application is not highly vectorized to use 512-bit
wide vector units that can execute 8 double-precision SIMD
instructions in a single clock, then the performance of the
application is extremely poor on MIC. In view of this we
spent a significant amount of time to vectorize WRF and
OVERFLOW. We profiled the two applications to find out
the most time-intensive subroutines. For WRF we found that
the WSM3 subroutine uses the most compute time, so we
concentrated all our optimization efforts in optimizing it.
General optimizations we performed included “collapsed DO
loops”, loop fusion and data alignment.

For WRF we modified the shared-memory tiling
algorithm so that tiles are calculated only once per zone per

domain. For OVERFLOW we modified the code for
OpenMP parallelism over strips of a plane instead of over a
full plane.

Applications with significant amounts of MPI
communication, especially collective communication,
perform very poorly on MIC because the performance of
MPI functions is 3 to 20 times slower for intra-MIC and 10
to 60 times slower for inter-MIC communication as
compared to host [13]. To reduce MPI communication time,
we performed optimization by packing and unpacking the
MPI messages.

In symmetric mode, workload is proportionally
distributed among hosts and MICs by taking into account the
power of the processor, coprocessor and their memory.
Hybrid (MPI + OpenMP) code is preferred for running in
symmetric mode across coprocessors on multiple nodes to
improve resource utilization and to reduce MPI
communication, especially given that bandwidth from a MIC
on one host to a MIC on another host may be limited to a
maximum of only measured 950 MB/s as opposed to
bandwidth of 6 GB/s for the same host. Our results for
OVERFLOW and WRF 3.4 in symmetric mode indicate that
performance to a large extent depends on the optimal number
of MPI processes and OpenMP threads, and to determine the
right combination one needs to experiment. Load balancing
in symmetric mode is challenging and critical as is evident
from our OVERFLOW and WRF 3.4 results. Compounding
the problem is the fact that slow MPI communication across
nodes can negate any gains in computational efficiency

144#

75# 73#

54# 50#

110#

80#

58#

0#

30#

60#

90#

120#

150#

1x
16
x1
#

2x
16
x1
#

2x
8x
2#

3x
16
x1
#

3x
8x
2#

1x
(8x
2+
7x
34
)#

2x
(8x
2+
4x
50
+4
x5
0)#

3x
(8x
2+
4x
50
+4
x5
0)#

Ti
m
e#
(s
ec
on

d)
#

Number#of#threads##
i#x#(j#x#k#+#m#x#n#+#p#x#q)###
######Host#+#MIC0#+#MIC1####

WRF#3.4#in#Symmetric#Mode#on#MulPQnodes#for#12#Km#CONUS##

6666

through code optimization. This is especially clear in the
OVERFLOW results where time spent in boundary
exchange is separated out from some of the more compute-
intensive parts of the code. Similarly for WRF 3.4,, the Intel
optimized version of the code improved performance on a
single host + 2 MICs by a third compared to the original
NCAR version running on a single host. However, when
scaling beyond a single node, the advantage of running
symmetrically across host and MICs is quickly lost
compared to running natively on the host.

Intel’s optimized WRF3.4 code for MIC runs 47% faster
than the original NCAR WRF 3.4, and our optimized
OVERFLOW runs 18% faster on the host and the load-
balancing strategy used improved the performance on MIC
by 5% to 36% depending on the data size.

Performance of MPI applications in MIC-native mode is
much lower than in host-native mode. Getting good
performance on the MIC in native mode is not an easy task.
It requires careful design of data structures and memory
layout together with enabling lots of parallelism as done in
optimizing OVERFLOW and WRF3.4. Both pure MPI and
OpenMP codes can run on one MIC card but only the former
can run on more than one MIC card. Performance of MIC-
native mode across two or more nodes degrades quickly due
to the low inter-node, inter-MIC bandwidth especially if it
involves MIC1, as in our cluster ⎯ this is a serious problem
and needs to be addressed by Intel in the next generation of
Xeon Phi.

Offload mode is an attractive solution for performing
compute intensive tasks on the MIC while performing I/O
and serial or less parallel computations on the host.
However, there is a significant overhead to using the offload
mode as seen by our offload versions of the BT and SP
compact applications. One should very carefully select the
granularity of the offloads to offset the overhead of the data
transfer with the efficiency gained by execution on the MIC.

Recently, Intel announced the next generation of Xeon
Phi called “Knights Landing” (KNL), whose processor will
be based on “Atom” rather than on “Pentium” and will
include out-of-order execution. The improvements such as
gather/scatter in hardware instead of software, and of the
compute cores—especially improved branch prediction and
L1 hardware prefetching—should be very beneficial for
performance. The most important architectural feature of the
KNL is that it will be a bootable processor and not a
coprocessor. As a result, it will no longer be subject to the
bottleneck of a PCIe link between processor and
coprocessor. In KNL, it will not be necessary to use a
minimum of two hardware threads per MIC core, as
instructions will be issued every cycle instead of every other
cycle. The DOE has ordered a system based on 3-Tflop/s
KNL that uses a Micron Hybrid Memory Cube (HMC)
technology with 15 times more memory bandwidth than
DDR3 [19, 20]. We look forward to benchmarking a KNL-
based system and observing the performance improvements
attributable to these changes.

REFERENCES
[1] Ten Year US Exascale Roadmap Crystalizes:

http://www.hpcwire.com/2014/01/17/ten-year-us-exascale-roadmap-
crystalizes/

[2] Top500 List – November 2014, http://www.top500.org/list/2014/06/
[3] WHAT IS GPU ACCELERATED COMPUTING?,

http://www.nvidia.com/object/what-is-gpu-computing.html
[4] Intel® Xeon Phi™ Product Family,

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
detail.html

[5] NSCC-TJ National Supercomputing Center in Tianjin,
http://www.nscc-tj.gov.cn/en/

[6] STAMPEDE - Dell PowerEdge C8220 Cluster with Intel Xeon Phi
coprocessors,
https://www.tacc.utexas.edu/resources/hpc;jsessionid=F87EF06DF1A
D48342098B580E2B6430A.jvm1

[7] NERSC, Cray, Intel to Collaborate on Next-Generation
Supercomputer, http://cs.lbl.gov/news-media/news/2014/nersc-cray-
intel-to-collaborate-on-next-generation-supercomputer/

[8] NERSC Supercomputer First to Use Intel’s Next-Gen ‘Knights
Landing’, http://goparallel.sourceforge.net/nersc-supercomputer-first-
use-intels-next-gen-knights-landing/

[9] US chases supercomputing crown with multi petaflop Trinity system,
http://www.techworld.com.au/article/549768/us_chases_supercomput
ing_crown_multipetaflop_trinity_system/

[10] Jongsoo Park, Ganesh Bikshandi, Karthikeyan Vaidyanathan, Ping
Tak Peter Tang, Pradeep Dubey, Daehyun Kim, Tera-Scale 1D FFT
with Low-Communication Algorithm on Intel Xeon Phi, Denver,
ACM SC13, CO, USA — November 17 - 21, 2013

[11] Joo, D.D. Kalamkar. K. Vaidyanathan, M. Smelyaanskiv, K.
Pammany, V. W. Lee, P. Dubey, W. Watson III. “Lattice QCD on
Intel Xeon Phi Coprocessors” 28th International Supercomputing
Conference, ISC 2013, Leipzig, Germany, June 16-20, 2013.
Proceedings Supercomputing Lecture Notes in Computer Science
Vol. 7905, pp 40-54 , 2013.
https://software.intel.com/sites/default/files/article/401382/qcd-
isc2013.pdf,

[12] Heinecke, A., Vaidyanathan K., M. Smelyanskiy, Kobotov A.,
Dubtsov R., Henry G., Chrysos G., and Dubey P.,\ Design and
implementation of the Linpack benchmark for single and multi-node
systems based on Intel Xeon Phi coprocessor," IPDPS, Boston, 2013,

[13] Saini, S., Jin, H., Jespersen, D., Feng, H., Djomehri, J., Arasin, W., ...
& Biswas, R. An early performance evaluation of many integrated
core architecture based SGI rackable computing system. SC13,
Denver, CO, USA — November 1 Denver, CO, USA — November
17 - 21, 2013.7 - 21, 2013.

[14] Florian Wende and Thomas Steinke. 2013. Swendsen-Wang multi-
cluster algorithm for the 2D/3D Ising model on Xeon Phi and GPU.
SC13, Denver, CO, USA — November 1 Denver, CO, USA —
November 17 - 21, 2013.7 - 21, 2013

[15] Pennycook, S.J., Hughes, M. Smelyanskiy, C.J., and Jarvis, S.A.,
”Exploring SIMD for molecular dynamics, using Intel Xeon
processors and Intel Xeon Phi coprocessors. IEEE IPDPS 2013, May
Boston, USA

[16] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

[17] OVERFLOW, http://aaac.larc.nasa.gov/~buning/
[18] WRF Model Version 3.4: UPDATES,

http://www2.mmm.ucar.edu/wrf/users/wrfv3.4/updates-3.4.html
[19] Micron's revolutionary Hybrid Memory Cube tech is 15 times faster

than today's RAM
http://www.pcworld.com/article/2366680/computer-memory-
overhaul-due-with-microns-hmc-in-early-2015.html

[20] Intel’s Next-Gen Xeon Phi (Knights Landing) to Use Silicon
Photonics,
http://www.datacenterknowledge.com/archives/2014/06/24/next-gen-
intel-phi-coprocessor-to-use-silicon-photonics-interconnect/

6767

