An Application-Based Performance Characterization
of the Columbia Supercluster

Rupak Biswas, M. Jahed Djomehri, Robert Hood, Haogiang Jin, Cetin Kiris, Subhash Saini
NASA Advanced Supercomputing (NAS) Division
NASA Ames Research Center, Moffett Field, CA 94035

{rbiswas,mdjomehri,rhood,hjin,ckiris,ssaini }@mail.arc.nasa.gov

Abstract achieved 51.9 Tflop/s on the Linpack benchmark, plac-
ing it second on the November 2004 Top500 list [19]. In
Columbia is a 10,240-processor supercluster consist- the ensuing time, we have run a variety of benchmarks
ing of 20 Altix nodes with 512 processors each, and and scientific applications on Columbia in an attempt to
currently ranked as one of the fastest computers in the critically characterize its parallel performance.
world. In this paper, we present the performance char- While a previous paper has compared Altix perfor-
acteristics of Columbia obtained on up to four comput- mance to other architectures [3], in this paper, we inves-
ing nodes interconnected via the InfiniBand and/or NU- tigate the effect of several different configuration options
MAIlink4 communication fabrics. We evaluate floating- available on Columbia. In particular, we present detailed
point performance, memory bandwidth, message passferformance characteristics obtained on up to four com-
ing communication speeds, and compilers using a subseputing nodes interconnected via the InfiniBand and/or
of the HPC Challenge benchmarks, and some of the NASNUMAIlink4 communication fabrics. We first evalu-
Parallel Benchmarks including the multi-zone versions. ate floating-point performance, memory bandwidth, and
We present detailed performance results for three scien-message passing communication speeds using a sub-
tific applications of interest to NASA, one from molecu- set of the HPC Challenge benchmarks [8]. Next, we
lar dynamics, and two from computational fluid dynam- analyze performance using some of the NAS Parallel
ics. Our results show that both the NUMAIink4 and In- Benchmarks [15], particularly the new multi-zone ver-
finiBand interconnects hold promise for multi-node ap- sion [10]. Finally, we present detailed performance re-
plication scaling to at least 2048 processors. sults for three scientific applications, one from molec-
ular dynamics, and two from state-of-the-art computa-
Keywords: SGI Altix, multi-level parallelism, HPC tional fluid dynamics (CFD), both compressible and in-
Challenge benchmarks, NAS Parallel Benchmarks, compressible multi-block overset grid Navier-Stokes ap-
molecular dynamics, multi-block overset grids, compu- plications [4, 12]. One current problem of significant
tational fluid dynamics interest to NASA that involves these applications is the
Crew Exploration Vehicle, which will require research
and development in several disciplines such as propul-

. sion, aerodynamics, and design of advanced materials.
1 Introduction y 9

_ _ 2 The Columbia Supercluster
During the summer of 2004, NASA began the instal-

lation of Columbia, a 10,240-processor SGI Altix sU- |ntroduced in early 2003, the SGI Altix 3000 sys-
percomputer at its Ames Research Center. Columbiatems are an adaptation of the Origin 3000, which use
is a supercluster comprised of 20 nodes, each contain-sG|'s NUMAflex global shared-memory architecture.
ing 512 Intel Itanium2 processors and running the Linux gy ch systems allow access to all data directly and ef-
operating system. In October of that year, the machlneﬁcienﬂy, without having to move them through 1/O or
(©2005 Association for Computing Machinery. ACM acknowledges networklng bottlenecks. The .NUMAﬂeX deSIQn e.nables
that this contribution was authored or co-authored by a contractor or the processor, memory, _I/O’ interconnect, graphics, and
affiliate of the U.S. Government. As such, the Government retains a Storage to be packaged into modular components, called
nonexclusive, royalty-free right to publish or reproduce this article, or “pricks.” The primary difference between the Altix and
to allow others to do so, for Government purposes only. the Origin systems is the C-Brick, used for the proces-
SC|05 November 12-18, 2005, Seattle, Washington, USA sor anc_i memory. This computational building block for
(©2005 ACM 1-59593-061-2/05/0011$5.00 the Altix 3700 consists of four Intel Itanium2 proces-

sors, 8GB of local memory, and a two-controller ASIC | Characteristics | 3700 \ BX2 l
called the Scalable Hub (SHUB). Each C-Brick shares | Architecture NUMAflex, SSI | NUMAflex, SSI

a peak bandwidth of 3.2 GB/s via the NUMAIink inter- | # Processors 512 512
connection. Each SHUB interfaces to two CPUs, along | Packaging 32 CPUsfrack | 64 CPUs/rack
with memory, /O devices, and other SHUBs. The Altix | Processor ltanium2 ltanium2

Clock/L3 cache| 1.5 GHz/6 MB | 1.5 GHz/6 MB (a)

cache-coherency protocol is implemented in the SHUB,
1.6 GHz/9 MB (b)

which integrates both the snooping operations of the Ita-

. . Interconnect NUMAIink3 NUMAIink4
nium2 and the directory-based scheme used across the .
NUMAInK int fion fabric. A load/st h Bandwidth 3.2GB/s 6.4 GB/s
ink interconnection fabric. oad/store cache oo 178 178

miss causes the data to _be communicatgd via the_ SHUB—- peak perf. 3.07 Tflopls 3.07 Tflopls (a)
at a cache-line granularity and automatically replicated 3.28 Tflop/s (b)
in the local cache.

The predominant CPU on Columbia is an implemen- Table 1. Characteristics of the two types of Altix
tation of the 64-bit Itanium2 architecture, operating at ~ nodes used in Columbia.
1.5 GHz, and is capable of issuing two multiply-adds
per cycle for a peak performance of 6.0 Gflop/s. The
memory hierarchy consists of 128 floating-point regis- ters of PCs and SMPs. lIts high peak bandwidth and
ters and three on-chip data caches (32KB L1, 256KB comparable minimum latency distinguish it from other
L2, and 6MB L3). The Itanium2 cannot store floating- competing network technologies such as Quadrics and
point data in L1, making register loads and spills a po- Myrinet [13]. Four of the 1.6 GHz BX2 nodes are
tential source of bottlenecks; however, a relatively large linked with NUMAIink4 technology to allow the global
register set helps mitigate this issue. The processor im-shared-memory constructs to significantly reduce inter-
plements the Explicitly Parallel Instruction set Comput- processor communication latency. This 2,048-processor
ing (EPIC) technology where instructions are organized subsystem within Columbia provides a 13 Tflop/s peak
into 128-bit VLIW bundles. The Altix 3700 platform capability platform.
uses the NUMAIink3 interconnect, a high-performance
custom network with a fat-tree topology that enables the
bisection bandwidth to scale linearly with the number of
processors.

A number of programming paradigms are supported
on Columbia, including the standard OpenMP and MPI,
SGI SHMEM, and Multi-Level Parallelism (MLP). MPI
and SHMEM are provided by SGl's Message Pass-

Columbia is configured as a cluster of 20 SGI Altix ing Toolkit (MPT), while C/C++ and Fortran compilers
nodes (or boxes), each with 512 processors and approXfrom Intel support OpenMP. The MLP library was devel-
imately 1TB of global shared-access memory. Of these gped by Taft at NASA Ames [18]. Both OpenMP and
20 nodes, 12 are model 3700 and the remaining eight areMLP can take advantage of the globally shared mem-
model 3700BX2. The BX2 node is essentially a double- ory within an Altix node. Both MPI and SHMEM can
density version of the 3700. Each BX2 C-Brick thus pe used to communicate between Altix nodes connected
contains eight processors, 16GB local memory, and four with the NUMAIink interconnect; however, communi-
SHUBSs, doubling the processor count in a rack from 32 cation over the InfiniBand switch requires the use of
to 64 and thereby packing more computational power in Mp|. Because of the hardware limitation on the num-
the same space. The BX2 C-Bricks are interconnectedper of InfiniBand connections through InfiniBand cards
via NUMAIink4, yielding a peak bandwidth of 6.4 GB/s installed on each node, the number of per-node MPI pro-
that is twice the bandwidth between bricks on a 3700. cessesk;, is confined by
In addition, five of the Columbia BX2's use 1.6 GHz
(rather than 1.5 GHz) parts and 9MB L3 caches. Ta-
ble 1 summarizes the main characteristics of the 3700 § < \/ Neards X Neonnections

and BX2 nodes used in Columbia. n—1
Two communication fabrics connect the 20 Altix sys-

tems: an InfiniBand switch [20] provides low-latency wheren (> 2) is the number of Altix nodes involved.
MPI communication, and a 10-gigabit Ethernet switch Currently on Columbia,N..,qs = 8 per node and
provides user access and I/O communications. Infini- Neonnections = 64K per card. Thus, a pure MPI code
Band is a revolutionary, state-of-the-art technology that can only fully utilize up to three Altix nodes under the
defines very high-speed networks for interconnecting current setup. A hybrid (e.g. MPI+OpenMP) version of
compute and /0O nodes [9]. It is an open industry applications would be required for runs using four or
standard for designing high-performance compute clus- more nodes.

3 Benchmarks and Applications from computational fluid dynamics (CFD) codes and
are widely recognized as a standard indicator of parallel

We utilize a spectrum of microbenchmarks, synthetic computer performance. The original NPB suite consists
benchmarks, and scientific applications in order to crit- of five kernels and three simulated CFD applications,
ically characterize Columbia performance. These are given as a “pencil-and-paper” specifications in [1]. The

briefly described in the following subsections. five kernels mimic the computational core of five nu-
merical methods, while the three simulated applications
3.1 HPC Challenge Microbenchmarks reproduce much of the data movement and computation

found in full CFD codes. Reference implementations

We elected to test basic system performance char-Were subsequently provided as NPB2 [2], using MPI as
acteristics such as floating-point operations, memory the parallel programming paradigm, and later expanded
bandwidth, and message passing communication speedt Other programming paradigms (such as OpenMP).
using a subset of the HPC Challenge (HPCC) bench- Recent effort in NPB development was focused on

mark suite [8]. In particular, we used the following com- €W benchmarks, including the neyv_multi-zone ver§ion,
ponents: called NPB-MZ [10]. While the original NPB exploits

fine-grain parallelism in a single zone, the multi-zone
e We tested optimum floating-point performance benchmarks stress the need to exploit multiple levels of
with DGEMM, a double-precision matrix-matrix ~ parallelism for efficiency and to balance the computa-
multiplication routine that uses a level-3 BLAS tional load.
package on the Altix. The input arrays are sized For evaluating the Columbia system, we selected a
S0 as to use about 75% of the memory available on subset of the benchmarks: three kernels (MG, CG, and
the subset of the CPUs being tested. FT), one simulated application (BT), and two multi-zone
benchmarks (BT-MZ and SP-MZ) [2, 10]. These cover
 The STREAM benchmark component tests mem- fie types of numerical methods found in many scientific
ory bandwidth by doing simple operations on very anpjications. Briefly, MG (multi-grid) tests long- and
long vectors. There are four vector operations mea- ghort- distance communication, CG (conjugate gradi-
sured: copy, scale by multiplicative constant, add, gny) tests irregular memory access and communication,
and triad (multiply by scalar and add). As with the 1 (fast Fourier transform) tests all-to-all communica-
DGEMM benchmark, the vectors manipulated are tjon BT (block-triadiagonal solver) tests nearest neigh-
sized to use about 75% of the memory available. por communication, and BT-MZ (uneven sized zones)

e We evaluated message passing performance in aanq SP-MZ (gven sized zones) test both coarse- a}nd fine-
variety of communication patterns with HPCC- grain parallelism and load balance. For our experiments,
b_eff, the HPCC version of the_bff benchmark W& use both MPI and OpenMP implementations of the
from the High Performance Computing Center four original NPBs and the hybrid MPI+OpenMP im_ple_-
Stuttgart [7]. The test measures latency and band_meptatmn of the NPB-MZ from the latest NPB3.1 distri-

bution [15]. To stress the processors, memory, and net-

a “natural’ ordering where communication takes WOrk of the Columbia system, we introduced two new

place between processes with adjacent ranks inClasses of problem sizes for the multi-zone benchmarks:

MPI_.COMM_WORLD, and one using a random Class E (4096 zones, 4228456x92 aggregated grid
ordering. For ping-pong, we use the “average” re- size) and Class F (16384 zones, 1208960x 250 ag-

sults reported by the benchmark; for the rings, the 9regated grid size).

benchmark reports a geometric mean of the results]))
from a number of trials. 3.3 Molecular Dynamics Simulations

width using ping-pong and two rings: one using

~ While these benchmarks will likely notbe completely Molecular dynamics simulation [16] is a powerful
indicative of application performance, they can be used technique for studying the structure of solids, liquids and
to help explain application timing anomalies when they gases. It involves calculating the forces acting on the

occur. atoms in a molecular system using Newton’s equations
of motion and studying their trajectories as a function
3.2 NAS Parallel Benchmarks of time. After integrating for some time when sufficient

information on the motion of the individual atoms has
The NAS Parallel Benchmarks (NPB) are well- been collected, one uses statistical methods to deduce
known problems for testing the capabilities of parallel the bulk properties of the material. These properties
computers and parallelization tools. They were derived may include the structure, thermodynamics, and trans-

port properties. In addition, molecular dynamics can be ance effects, secondary flows, vortex shedding, junction
used to study the detailed atomistic mechanisms under-flows, and cavitation effects. Flow unsteadiness origi-
lying these properties and compare them with theory. It nated from the inducer is considered to be one of the ma-
is a valuable computational tool to bridge between ex- jor contributors to the high frequency cyclic loading that

periment and theory. results in cycle fatigue. The reverse flow originated at

In our Columbia performance study we use a generic the tip of an inducer blade travels upstream and interacts
molecular dynamics code based on the Velocity Verlet with the bellows cavity. To resolve the complex geom-
algorithm, a sophisticated integrator designed to further etry in relative motion, an overset grid approach is em-
improve the velocity evaluations. However, it is com- ployed where the problem domain is decomposed into a
putationally more expensive than other integration algo- number of simple grid components [4]. Connectivity be-
rithms like Verlet or leap-frog schemes. The Velocity tween neighboring grids is established by interpolation
Verlet algorithm provides both the atomic positions and at the grid outer boundaries. Addition of new compo-
velocities at the same instant of time, and therefore is nents to the system and simulation of arbitrary relative
regarded as the most complete form of the Verlet algo- motion between multiple bodies are achieved by estab-
rithm. lishing new connectivity without disturbing the existing

To parallelize the algorithm, we use a spatial de- grids.
composition method, in which the physical domain is The computational grid used for the experiments re-
subdivided into small three-dimensional boxes, one for ported in this paper consisted of 66 million grid points
each processor. At each step, the processors computand 267 blocks (or zones). Details of the grid system are
the forces and update the positions and velocities of all shown in Fig. 1. Fig. 2 displays particle traces colored
the atoms within their respective boxes. In this method, by axial velocity entering the low-pressure fuel pump.
a processor needs to know the locations of atoms only The blue particles represent regions of positive axial ve-
in nearby boxes; thus, communication is entirely local. locity, while the red particles indicate four back flow re-
Each processor uses two data structures: one for thegions. The gray particles identify the stagnation regions
atoms in its spatial domain and the other for atoms in in the flow.
neighboring boxes. The first data structure stores atomic
positions and velocities, and neighbor linked lists to per-
mit easy deletions and insertions as atoms move between
boxes. The second data structure stores only position co-
ordinates of atoms in neighboring boxes. The potential
energy between two atoms is modeled by the Lennard-
Jones potential. The simulation starts with atoms on a
force cubic center (fcc) lattice with randomized veloc-
ities at a given temperature. We used a cutoff radius
of 5.0 beyond which interactions between atoms are not
calculated.

The memory requirement for this code is three po-
sition coordinates, three velocity coordinates, and three
acceleration coordinates for each particle. In addition,
buffers are required for sending and receiving double
precision data for each of the boundary atoms to be sent
to the neighbors (up, down, east, west, north and south)
at the end of each time step. Wall clock time depends on
various factor such as cut-off distance, size of the step Figure 1. Surface grids for the low pressure fuel

and number of steps. pump inducer and the flowliner.

3.4 INS3D: Turbopump Flow Simulations The INS3D code solves the incompressible Navier-
Stokes equations for both steady-state and unsteady
Computations for unsteady flow through a full scale flows. The numerical solution requires special atten-
low-pressure rocket pump are performed utilizing the tion in order to satisfy the divergence-free constraint on
INS3D computer code [11]. Liquid rocket turbopumps the velocity field. The incompressible formulation does
operate under severe conditions and at very high rota-not explicitly yield the pressure field from an equation
tional speeds. The low-pressure-fuel turbopump createsof state or the continuity equation. One way to avoid
transient flow features such as reverse flows, tip clear-the difficulty of the elliptic nature of the equations is to

4

strategy starts by assembling the grid zones into groups,
each of which is mapped onto an MPI process. Dur-
ing computation overlapping grid connectivity informa-
tion is passed between groups through master-worker
communications. At each stage when overlapping grid
communication is performed, each group sends its in-
formation to a master group. Once the master group
has received and processed all of the information, the
data is sent to the other groups and computation pro-
ceeds. While this is not the most efficient way of utiliz-
ing MPI communication and an alternative version using
point-to-point communication exists, we have chosen
Figure 2. Instantaneous snapshot of particle traces {0 report results for the MPI+OpenMP code using the
colored by axial velocity values. master-worker communication strategy. Point-to-point
communication patterns are explored more fully with
OVERFLOW:-D, which is described in the next section.
use an artificial compressibility method that introduces
a time-derivative of the pressure term into the continuity 3.5 OVERFLOW-D: Rotor Vortex Simulations
equation. This transforms the elliptic-parabolic partial
differential equations into the hyperbolic-parabolic type. For solving the compressible Navier-Stokes equa-
To obtain time-accurate solutions, the equations are it'tions, we selected the NASA production code called
erated to convergence in pseudo-time for each physicaloyERFLOW-D [14]. The code uses the same overset
time step until the divergence of the velocity field has grid methodology [4] as INS3D to perform high-fidelity
been reduced below a specified tolerance value. They;scous simulations around realistic aerospace configu-
total number of sub-iterations required varies depend- rations. OVERFLOW-D is popular within the aerody-
ing on the problem, time step size, and the artificial hamics community due to its ability to handle complex
compressibility parameter. Typically, the number ranges designs with multiple geometric components. It is ex-
from 10 to 30 sub-iterations. The matrix equation is plicitly designed to simplify the modeling of problems
solved iteratively by using a non-factored Gauss-Seidel \yhen components are in relative motion. The main com-
type line-relaxation scheme, which maintains stability pytational logic at the top level of the sequential code
and allows a large pseudo-time step to be taken. More qnsists of a time-loop and a nested grid-loop. Within
detailed information about the application can be found the grid-loop, solutions to the flow equations are ob-
in[11, 12]. tained on the individual grids with imposed boundary
Single-node performance results reported in this pa- conditions. Overlapping boundary points or inter-grid
per were obtained for computations carried out using data are updated from the previous time step using an
the Multi-Level Parallelism (MLP) paradigm for shared- overset grid interpolation procedure. Upon completion
memory systems [18]. All data communications at the of the grid-loop, the solution is automatically advanced
coarsest and finest levels are accomplished via directto the next time step by the time-loop. The code uses
memory referencing instructions. The coarsest level par-finite difference schemes in space, with a variety of im-
allelism is supplied by spawning off independent pro- plicit/explicit time stepping.
cesses via the standard UNIX fork. A library of rou- The hybrid MPI+OpenMP version of OVERFLOW-
tines is used to initiate forks, to establish shared memoryp takes advantage of the overset grid system, which
arenas, and to provide synchronization primitives. The offers a natural coarse-grain parallelism [5]. A bin-
boundary data for the overset grid system is archived in packing algorithm clusters individual grids into groups,
the shared memory arena by each process. Fine graireach of which is then assigned to an MPI process. The
parallelism is obtained by using OpenMP compiler di- grouping strategy uses a connectivity test that inspects
rectives. In order to run a 66 million grid point case the for an overlap between a pair of grids before assign-
code requires 100 GB of memory and approximately 80 ing them to the same group, regardless of the size of
microseconds per grid point per iteration. the boundary data or their connectivity to other grids.
Performance results on multiple Altix nodes were The grid-loop in the parallel implementation is subdi-
obtained using the hybrid MPI+OpenMP version of vided into two procedures: a group-loop over groups,
INS3D. The hybrid code uses an MPI interface for and a grid-loop over the grids within each group. Since
coarse grain parallelism, and OpenMP directives for each MPI process is assigned to only one group, the
fine-grain parallelism. Implementation of the parallel group-loop is executed in parallel, with each group per-

forming its own sequential grid-loop. The inter-grid
boundary updates within each group are pperformed as
in the serial case. Inter-group boundary exchanges are
achieved via MPI asynchronous communication calls.
The OpenMP parallelism is achieved by the explicit
compiler directives inserted at the loop level. The logic
is the same as in the pure MPI case, only the computa-
tionally intensive portion of the code (i.e. the grid-loop)

is multi-threaded via OpenMP.

OVERFLOW-D was originally designed to exploit
vector machines. Because Columbia is a cache-based
superscalar architecture, modifications were necessary
to improve performance. The linear solver of the ap- Figure 4. Computed vorticity magnitude contours
plication, called LU-SGS, was reimplemented using a ©n @ cutting plane located 4%ehind the rotor
pipeline algorithm [5] to enhance efficiency which is ~ blade.

dictated by the type of data dependencies inherent in the o
solution algorithm. 22 GB are necessary to run the test problem used in this

0 . dh invol Navi paper. Note that this requirement gradually increases
ur experiments reported here involve a Navier- yun the number of processors because of grid and so-
Stokes S|mula}t|on of vortex dynam|cs in the cqmplex lution management overhead. The MPI communication
wake f'OW_ reg(;;or; a1:307u9ng|h0\liern}g ro_tors. 1_'he grid jys- pattern is point-to-point. Due to the overset grid struc-

tem consisted o OCKS Of varlous SIz€s, and ap-y,re - disparate sizes of grid blocks, and grouping strat-

proxim:_itely 75 million grid_poi.nts. Fig. 3 shov_vs asec- egy for load balancing, no nearest neighbor techniques
tional view of the test application’s overset grid system can be employed. Thus, each MPI process communi-

E]slitc);e tk(ljrough ther?:‘f—quy warlfe grids SUWIOU”dirr:Q th‘; cates with all other processes. The communication time
ub and rotors) while Fig. 4 shows a cut plane throug is typically 20% of the execution time, but could vary

the computed wake system including vortex sheets 3significantly with the physics of the problem, its domain

well as a number of indivi_dual tip yortices. A comple_te and topology, the nature of overlapping blocks, and the
description of the underlying physics and the numerical number of processors used

simulations pertinent to this test problem can be found
in[17].

The memory requirement for OVERFLOW-D is 4 Performance Results
about 40 words per grid point; thus approximately

We conducted several experiments using mi-
crobenchmarks, synthetic benchmarks, and full-scale
applications to obtain a detailed performance character-
ization of Columbia. Results of these experiments are
presented in the following subsections.

4.1 3700vs. BX2

In comparing the performance of the 3700 with two
types of BX2, we are assessing the impact of both im-
proved processor speed (coupled with larger L3 cache)
and processor interconnect. As a shorthand notation, we
will call the BX2 with 1.5 GHz CPUs and 6MB caches
a “BX2a". The BX2 with faster clock and larger cache
is denoted “BX2b”".

4.1.1 HPC Challenge Microbenchmarks

The DGEMM and STREAM results are shown in Fig. 5.
Figure 3. A sectional view of the overset grid sys- The performance of the DGEMM benchmark showed a
tem. correlation with processor speed and cache size rather

6o DCEMM_ STREAM(iad) cessor counts increase), the interconnect network im-
] provements in the BX2 become apparent.

58 e | el 8s Bandwidth was correlated either to processor speed
Pl N samxn) |8 or interconnect, depending on the locality of the com-
2) i i3-° :.‘”; munication tested. On the Ping-Pong test, where there
5 54r T /18 %D//D\x 1,5 & is some distance between communicating pairs of pro-

ol i ' cesses, the interconnect used plays a key role in the

i 1| N Py bandwidth. In the case of the Natural Ring, where lo-

50 e cal commumcanon predominates, processor speedis the

Number of CPUs Number of CPUs determining factor. In the Random Ring, where the com-

munications are mostly remote, both processor speed
Figure 5. DGEMM and STREAM results on three and interconnect show effects for bandwidth.
types of the Columbia nodes.

than processor interconnect. When run on a BX2b, per-4-1.2 NAS Parallel Benchmarks

formance (5.75 GFlop/s) improved by 6% Versus runs gy 7 shows the per-processor Gflop/s rates reported

on 3700 or B?(Za, which were essentially identical. _ from runs of both MPI and OpenMP versions of CG,
The most important result from the STREAM Triad FT, MG, and BT benchmarks on three types of the

benchmark is the precipitous drop in performance go- cqympja nodes, a horizontal line indicating linear scal-

ing up_from one processor. This is quite _clearly due ing. MPI versions of the benchmarks employ a paral-

to sharing of memory bandwidth when multiple proces- jiation strategy of domain decomposition in multi-

sors are used. We will investigate this behavior more ple dimensions to distribute data locally onto each pro-

fully in Section 4.2. The STREAM Triad benchma_rk cessor, while OpenMP versions simply exploit loop-
showed 1% better performance on a 3700 versus eithefjg | parallelism in a shared-address space. These ap-
type of BX2. Nothing about published architecture dif- 5 ches are representative of real world applications
ferences indicates why this might be the case. The l"?th_erwhere a serial program is parallelized using either MPI
STREAM measures, Copy, Scale, and Add, show simi- or OpenMP,
lar behavior and are not shown.

The HPCC-beff results are shown in Fig. 6. For
Ping-Pong and Natural Ring, the latencies are remark-

ably consistent between 3700 and both models of BX2.

As was seen from the HPCC microbenchmarks in the
previous section, the double density packing for BX2

The Random Ring latency test shows that as average 1o0F™ "~ 7 ‘ L]
. . . |
communication distances become further apart (as pro- - |MPI OMP NN 1
0.8 |-|A-A m-m: BX2b, 1.6G/9M | | A D\g\ J
| |&4 0-0: BX2a, 1.5G/6M | | A N~
Latency Bandwidth 06 *= ++: 3700, 1.5G/6M
T T T T T T T T T T T T T T 20) A
L Average Ping-Pong dra Average Ping-Pong r
6.0 7u\x\ 115 o4l
r *-% 3700 | 1} A—A— s " .
40 - 0O-0 BX2a| |+ 110 r
A-A BX2b| |} J
L — 11 —*—*_| o5 E 0.2
20y ik —A 1 g
7 00 $ 00
r Natural Ring a [
La A 415 9o
T A \A___A—A/A | g 6 15 L
+ 410 3 3
L - >
1L- F——=0—0—0—4 05 0 r
I 1.0
Mt —t—t—t—t——7 00
A Random Ring L
F \ q15 L
1t A | 0.5
- \A\A 110 i T
= A 1 BTClass B
Ir D\D\D\D\A7 05 L L L L L]
L i OO L L L
1 1 1 1 1 1 1 1 C1 1 1 1 1 1 1 1 00 4 16 64 256
4 8 16 32 64 128256512 4 8 16 32 64 128 256 512 Number of CPUs

Number of CPUs Number of CPUs

Figure 7. NPB performance comparison on three

Figure 6. Latency and bandwidth tests using types of the Columbia nodes

HPCC-heff on three types of the Columbia nodes.

produces shorter latency and higher bandwidth in NU- Molecular Dynamics

MAlink access. The effect of doubled network band- Wallclock timef/step (sec
width of BX2 on OpenMP performance is evident: the P | #particles| 3700 [BX2b
four OpenMP benchmarks scaled much better on both 1 64,000| 21.92 20.19
types of BX2 than on 3700 when the number of threads 2 128,000| 21.93 20.20

4 256,000 21.86 20.25

is four or more. With 128 threads, the difference can be
as large as 2x for both FT and BT. The bandwidth ef- 8 512,000) 21.91 20.24

fect on MPI performance is less profound until a larger ég ;'gig'ggg gg; ;8;;
number of processe$B2) when communication starts i - -
. 64 4,096,000 21.91 20.29
to dominate. Observe that on 256 processors, FT runs
about twice as fast on BX2 than on 3700, indicating the 128 8192,000] 2220 20.25
ut twi » Indicating 256 | 16,384,000 21.68 20.31

importanc.e of bandwidth for the all-to-all communica- 512 | 32.768.000] 22.29 5157
tion used in the benchmark.

A bigger cache (9MB) in the BX2b node produced
substantial performance improvement for the MPI codes
for large number of processors (e.g. the peaks at 64
CPUs for MG and BT) when the data can fit into lo- 4.1.4 INS3D

ga! cache. on each processor. On the other.hand, no SlgComputations to test the scalability of the INS3D code
nificant difference for the OpenMP codes is observed, on Columbia were performed using the 3700 and BX2b
primarily because the cost of accessing shared data fro”]orocessors. Initial computations using one MLP group
each OpenMP thread increases substantially as the numz 4 e OpenMP thread with the various processor and
ber of CPUs increases, which overwhelms any benefit ., e options were used to establish the baseline run-
from a larger cache size. In the case of MPI, the falloff 0t one physical time step of the solver, where 720
from the peak is due to the increased communication- g, , time steps are required to complete one inducer ro-
to-computation ratio (a fixed problem size implies data tation. Next, a fixed number of 36 MLP groups was cho-
per processor is decreasing as the number of procesga 40ng with various numbers of OpenMP threads (1,

sors increases) as occurred earlier in the OpenMP codesz 4,8, 12, and 14). The average runtime per iteration is
The slightly larger processor speed of BX2b (1.6 GH2) ¢hown in Table 3.

brings only marginal performance gain, as illustrated

Table 2. Molecular dynamics simulation timings
on 3700 and BX2b.

from the OpenMP FT and BT results. INS3D
Although OpenMP versions of NPB demonstrated 3700 BX2b

better performance on a small number of CPUs, access- P Exec (sec)| Exec (sec)| Ratio

ing local data and carefully managing communications 1 39230.0| 26430.0| 1.48

in the MPI codes produced significantly better scaling 36 (36x1) 1223.0 825.2| 1.48

than the OpenMP codes that use a simple loop paral- 72 (36x2) 796.0 508.4| 1.57

lelization strategy and cannot be easily optimized for ac- 144 (36x4) 554.2 331.8| 1.67

cessing shared data. 288 (36x8) 454.7 287.7| 1.58
432 (36x12) 409.1 259.5| 1.58
504 (36x14) 394.2 2476 | 1.58

4.1.3 Molecular Dynamics Table 3.INS3D performance on 3700 and BX2b.

The molecular dynamics simulation code was run on Observe that the BX2b demonstrates approximately
both 3700 and BX2b nodes of Columbia. This is a weak 50% faster iteration time. While this is partly due to the
scaling exercise: we assign 64,000 atoms to each profaster clock and larger cache of the BX2b, the primary
cessor, and thus scale the problem size with the proces+eason is that the BX2 interconnect has double the band-
sor count. For example, on 512 processors, we simu-width of the one on the 3700.

lated 32 million atoms. The simulation was run for 100 Note the scalability for a fixed number of MLP
steps. The average runtime per iteration is shown in Ta-groups and varying OpenMP threads is good, but be-
ble 2. The results show almost perfect scalability all the gins to decay as the number of threads increases beyond
way up to 512 processors. (At the maximum size, it eight. Further scaling can be accomplished by fixing
should be noted that the computation experiences perturthe number of threads and varying the number of MLP
bation from system software.) The differences between groups until the load balancing begins to fail. Unlike
the 3700 times and BX2b times can be attributed to pro- varying the OpenMP threads which does not affect the
cessor speed6%). convergence rate of INS3D, varying the number of MLP

groups may deteriorate convergence. This will lead to Columbia’s fast processors compared to the communica-
more iterations even though faster runtime per iteration tion overhead. The test problem used here was initially

is achieved. built for production runs on platforms having fewer pro-
cessors with smaller caches and slower clock rates.
415 OVERFLOW-D Scalability on the BX2b is significantly better. For

example, OVERFLOW-D efficiency for 128, 256, and
The performance of OVERFLOW-D was also evaluated 908 processors is 61%, 37%, and 27% (compared to
on Columbia using the 3700 and BX2b processors. Ta-26%, 19%, and 7% on the 3700). In spite of the same
ble 4 shows communication and total execution times load imbalance problem, the enhanced bandwidth on the
of the app"ca’[ion per time Step when using the 8.1 In- BX2b Significantly reduces the communication times.
tel Fortran compiler. Note that a typical production run The increased bandwidth is particularly important at the
requires on the order of 50,000 such time steps. For var-coarse-grain level of OVERFLOW-D, which has an all-
ious number of processors we report the time from the to-all communication pattern every time step. This is
best combination of processes and threads. consistent with our experiments conducted on the NPBs
and reported in Sec 4.1.2. The reduction in the BX2b
computation time can be attributed to its larger L3 cache

OVERFLOW-D and maybe its faster CPU speed.
3700 BX2b
Comm | Exec || Comm | Exec .
P (sec) | (sec) || (sec) | (sec) 4.2 CPU “Stride”
1 0.22 151.2 0.21 126.4
4 (4x1) 1.2 38.4 0.82 | 32.0 As seen in Section 4.1.1, the STREAM benchmarks
16 (16x1) 2.4 162 | 041 9.0 scale linearly from two to 500 processors. In fact, during
32 (32<1) 19 7.8 042 | 46 tests conducted in October 2004 on 15 of the 20 nodes
64 (64x1) 16 55 045 | 25 of Columbia, we observed, not unexpectedly, that the
128 (1281) | 1.0 | 44 | 036 | 16 results scaled linearly from two to 7500 CPUS—with
256 (128<2) 1.0 3.1 0.42 13 Triad achieving~-2 GB/s per CPU. When run on a single
508 (254x2) 1.9 3.8 0.70 1.1

processor, however, the benchmark registeé3s8 GB/s.
Table 4. OVERFLOW-D performance on 3700 We hypothesize that this is due to each memory bus be-
and BX2b. ing shared by two processors. To verify that and to un-
derstand what other behavior might be due to that (or
other resource) sharing, we ran the HPCC benchmarks

L in a “spread out” or strided fashion, using every second
significantly smaller compared to 3700 (e.g. more than a P d y

factor of 3x on 508 CPUs). On average, OVERFLOW-D > ?'\;iry[:guErlt\;]l\fzgﬁchmark demonstrated differences
runs almost 2x faster on the BX2b than the 3700. In ad-

diti ST of less than 0.5%—showing that this benchmark is not
ition, the communication time is also reduced by more . .

than 50%. substantially affected py shar!ng the memory bus. As
expected, at a CPU stride of either 2 or 4, the STREAM
benchmark produced per-processor numbers equivalent
'to the 1-CPU case. In the case of Triad, the bandwidth is
1.9x higher than when processes are assigned to CPUs
in a dense fashion. The latency-bandwidth results were
less dramatic. The numbers for Ping-Pong and Random
Ring were slightly worse for spread-out CPUs. The re-
sults for Natural Ring were less conclusive. There was a
small improvement in latency but none for bandwidth.

Observe from Table 4 that execution time on BX2b is

The performance scalability on the 3700 is reason-
ably good up to 64 processors, but flattens beyond 256
This is due to the small ratio of grid blocks to the number
of MPI tasks that makes balancing computational work-
load extremely challenging. With 508 MPI processes
and only 1679 blocks, it is difficult for any grouping
strategy to achieve a proper load balance. Various load
balancing strategies for overset grids are extensively dis-
cussed in [6].

Another reason for poor 3700 scalability on large L
processor counts is insufficient computational work per 4-3 Pinning
processor. This can be verified by examining the ratio of
communication to execution time in Table 4. This ratio Application performance on NUMA architectures
is about 0.3 for 256 processors, but increases to morelike an Altix node depends on data and thread placement
than 0.5 on 508 CPUs. For our test problem consist- onto CPUs. Improper initial data placement or unwanted
ing of 75 million grid points, there are only about 150 migration of threads between processors can increase
thousand grid points per MPI task, which is too little for memory access time, thus degrading performance. The

32 [T T T T 1T T T T T T \/.\7
performance impact of using thread-to-processor pin- CG Class B FTClassB #="= ¢
ning on applications, in particular hybrid codes, can *°[T /' i
sometimes be substantial. This is illustrated by the re- 8 -/'\. £ 4 N
sults shown in Fig. 8 for the hybrid MPI+OpenMP SP- ./ \ -/ ‘

MZ code running with and without pinning. Each curve ar / '*_/ o s 5o comuior |7
is associated with runs for a given total number of CPUs, 2t / 1 A—a 8.1-compiler
but varying the number of OpenMP threads per MPI $ u 9.0b-compiler
process. Observe that pinning improves performance & 6‘11 L L =
substantially in the hybrid mode when processes spawn © MG Class B BTClassB 3/
multiple threads. The impact becomes even more pro- 32 - T _/ .
found as the number of CPUs increases. Pure process | _A—A_m| _/ |
mode (e.g. 641) is less influenced by pinning. /: = _/
256 — ‘ ‘ ‘ ‘ ° /:/ -/
128 L AT—a SP-MZ Class C | 4 f-/ +- .
64 .§I\A\ B 2 f I I I I I I I I I I I I I
o \A A\ 4 8 16 32 64 128256 4 8 16 32 64 128 256
3 32 + D\;\’ﬁ\f\A b Number of CPUs
g 16p TN _ .
5 sl[s 64 CPUS, no pinning \5§A | Fllgure 9._Performance comparison of four com-
4 ||m-m 64 CPUs: pinning \E i pller Versions.
A=A 128 CPUs, no pinning
? fA 1%8 CPU‘S’ pmn‘mg ‘ ‘ ‘ conducted on a BX2b node with th©3 -openmp

1 2 4 8 16 32 64 compilation flag. We noted that the compiler perfor-
Number of Threads/proc mance seems to be application dependent, although the
8.0 version produced the worst results in most cases. All
the compilers gave similar results on the CG benchmark.
The beta version of 9.0 performed very well on FT. For
A user has at least three different methods for pinning MG, between 32 and 128 threads (or CPUs) the 8.1 and

Figure 8. Pinning versus no pinning for SP-MZ
Class C running on BX2b.

on the Altix: 9.0b compilers outperformed the 7.1 and 8.0; however,

. . below 32 threads, the 7.1 and 8.0 compilers performed

1. Set_environment variablesMP|_DSMDISTRI 20-30% better than the other two. The scaling also turns
BUTEandMPI_DSMCPULIST) for MPI codes, around above 128 threads.

2. Use the data placement todlplace , for either Overall, the 7.1 compiler produced consistently bet-

MPI or OpenMP codes, and/or ter performance for most the benchmarks, in particular

)]) for a small number of threads. As a result, 7.1 was used
3. Insert system calls in the user’s code, in particular, fo the remaining NPB tests in this report.

for hybrid implementations. Using the BX2b processor, the INS3D flow solver

All other results reported in this paper have pinning ap- Was compiled and run using both the 7.1 and 8.1 ver-
plied, either using method 2 or a combination of meth- sions of the Fortran compiler with negligible difference

ods 2 and 3. in runtime per iteration (see Table 5). Evaluations for
4.4 Compiler \ersions INS3D OVERFLOW-D
_ _ P [7.1(sec)] 8.1(sec)[| P | 7.1(sec)] 8.1 (sec)
There are at least four different versions of the Intel 11 264300] 256371 1 1113 151.2
compilers installed on the Columbia system: 7.1(.042), 4 284 384
8.0(.070), 8.1(.026), and 9.0(.012)beta. Although 8.1 is 16 11.2 16.2
the latest official release, the default compiler is still set [36 825.2 78381 32 6.5 7.8
to 7.1 for various reasons. A user can applyriwdule 72 508.4 487.7] 64 5.1 5.5
command to select a particular version of the compiler. | 144 331.8 324.4 1 128 4.5 4.4
For evaluation purposes, a beta version of the 9.0 com- 288 287.7 270.4 || 256 3.1 3.1
piler is also included. 504 247.6 244.9 || 508 3.7 3.8

The performance impact of different compiler ver-
sions was examined with the four OpenMP NPB bench-
marks and the results are shown in Fig. 9. All tests were

Table 5.INS3D and OVERFLOW-D performance
using Intel Fortran compilers 7.1 and 8.1

10

OVERFLOW-D were only performed on the 3700 node. Latency Bandwidth

T T T T JF T T T T ™ 1.5
Timing results with 7.1 are superior to those with 8.1 by * | Average Ping-Pong I Average Ping-Pong |
20-40% when running on less than 64 processors, but 2 | | S S X
almost identical on larger counts. — . 1r N]

10 Py r 105
TA A A A—A——A | 1
4.5 Processes and Threads o —F—+—+—+—HH—F—+—+—+—+H1s
| Natural Ring 1L Natural Ring |
We examined the performance of hybrid codes un- 32 & il il'og
der various MPI process and OpenMP thread combina- = | *<A;A§A§i\A los §
tions within one Altix node. The results for the BT-MZ | o—a——a—a—a—a ||]
benchmark are shown in Fig. 10. For a given number o —+——+—+—+——+-——+—+——+——+—+=15
of OpenMP threads (left panel in Fig. 10), MPI scales s |- R2"%°™ <9 A |tz | FendomRing
very well, almost linearly up to the point where load im- 1 1T |20 xPm2 110
balance becomes a problem. On the other hand, for a [Lt e 1os
given number_of MPI processes (right panel of Fig. 10), e—— |
OpenMP scaling is very limited: except for two threads, oli—a—a—a—a—nllt—i—u . , =i l4
. 64 128 256 512 1024 2048 64 128 256 512 1024 2048
OpenMP performance drops quickly as the number of Number of CPUs Number of CPUs

threads increases.
Figure 11. Latency and bandwidth tests on the

512 [-0 64 On‘qp r ‘ L amsempi A two inter-node communication fabrics. 1B2/IB4
| ¢ 320mp o7 | +-+ 128 mpi a indicates two-/four-node runs using InfiniBand.
256 - 16 omp / ®-@ 64 mpi o/ - .
128 L 8omp K\ L eez2m /‘/% | XPM2/>_(PM4 indicates two-/four-nodes using
soaomp /7 lem S NUMAIink4,
° 64 - 2 omp o % e T 8 mpi Q/%/A\g/ -
8 39 |50 Lomp ?A ‘/./ 142 ‘2‘ mpi /A/A |
g » mer
g 16 - w?A 0/./ 400l mp/l_\/A/D_D B
gL ﬁéﬁ 1 LT | four nodes. This decreased penalty is understandable be-
AL /- 1 /D/ i cause the benchmark reports thierst-caseprocess-to-
5 BT-MZClassC | / BT-MZ Class C process latency for the entire ring communication, while
o fixed number of threads 5 fixed number of processes we use araveragepoint—to-point Iatency in Ping-Pong.
1 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
1 4 16 64 256 1 4 16 64 256 . . L
Number of CPUs The bandwidth results for Ping-Pong show a similar

correlation to out-of-node communications. Since we
Figure 10. Effects of varying processes and are reporting the average of a series of point-to-point
threads on the BT-MZ benchmark. bandwidth experiments, there is a falloff in InfiniBand
performance from two to four because the likelihood of
a non-local pairing increases.

4.6 Multinode Execution _
For Natural Ring, the two- and four-node tests

yielded similar results. This is not surprising, because
there are only two or four pairs of processes communi-
cating across a box boundary. In fact, at 1008 CPUs,
the InfiniBand numbers are better than the NUMAIink4
numbers. This is likely due to moving the off-box com-
4.6.1 HPC Challenge Microbenchmarks munications from a congested fabric to an essentially

) . _ empty one.
In the tests of MPI latency and bandwidth (see Fig. 11) it

is clear that NUMAIlink4 generally performs better than The latency and bandwidth results from the Random
InfiniBand between nodes. The latency results show aRing tests show problems with scalability of InfiniBand.
substantial penalty for InfiniBand across two nodes and While it is capable of good results on the relatively
even worse performance across four nodes. In the caseparse communication patterns of Ping-Pong and Nat-
of Ping-Pong, the extra penalty for four nodes can prob- ural Ring, the dense pattern of Random Ring seems to
ably be explained by the increase in the number of “off- expose a limitation. In ongoing work, we will be exper-
node” pairs that get tested. The Natural Ring latency re- imenting with configuration parameters to try to see if
sults show a smaller penalty for the increase from two to the results can be improved.

We next reran a subset of our experiments on up to
four BX2b Altix nodes. These results are presented in
the following subsections.

11

4.6.2 NAS Parallel Benchmarks 1536 processors can be explained by load imbalance for
these CPU counts.

The hybrid MPI+OpenMP codes of BT-MZ and SP- The bottom row of Fig. 12 compares the total Gflop/s

MZ were also tested across four Columbia nodes con- rates from runs using NUMAIink4 with those from us-
Pe_thed dW'th.b%th \t/rc/e NUI\(;IArI:nkél netwlé)rk a8|d the4|(r)1§-,6 ing the InfiniBand, taking the best process-thread com-
iniBand switch. ‘We used the Class E pro em (binations. Observe a close-to-linear speedup for BT-
zones, 1.3 billion _aggregated grid points) for these testS.\17 The InfiniBand results are only about 7% worse.
The top row of Fig. 12 compares the Per'cpp Gflop/s On the other hand, we noticed anomaly in InfiniBand
rates obtained from runs using NUMAIink4 with those performance for SP-MZ when a released SGI MPT run-
;rom within a single Alt.')r(] BX2b ngde. Tge th\?ISEtrf Ofd time library (mptl1.11r) was used. In fact, on 256 pro-
ata represent runs with one and two Open threa Scessors, the InfiniBand result is 40% slower than NU-

pher MS':A%QC&SS' relspectively. Forsllz CPUs or It;ass, MAIlink4, but the InfiniBand performance improves as
the Ink4 results are comparable to or even bet- the number of CPUs increases. We used a beta version

ter than]'Ehe i2n—node results. I_n par_ticullar, tge gerfor—dof the MPT library (mpt1.12b) and reran some of the
mance of S12-processor runs in a single node droppedy,, points. These results are also included in Fig. 12

by 10-15%, primarily because these runs also used thefor SP-MZ. As we can see. the beta version of the li-
CPUs that were aII_ocated for s_ystems software (Cf'i”ed brary produced InfiniBand results that are very close in
boot cpusgt which interfered with our tests. Reducing oo tormance to the NUMAlink4 results. As it turned

the number of CPUs to 508 improves the BT-MZ perfor- ;+ ‘e |nfiniBand MPI performance is sensitive to the

mance within a node. settings for a few SGI MPT parameters that control
how MPI accesses its internal message buffers. Specif-

1.6 T T T T T T

o sTwzomse [spwzdse o8 ically, we had to increasklPl_BUFS_PER_HOS®nd
2 ,‘¥!§A\ | N MPI_BUFS_PER_PROG®y a factor of eight from the
S 14t TE tSA, ;ﬁ—ﬁfﬁ\ﬁ /A\‘ los default values in order to obtain the good performance.
é_ 508 [I] O-0 1 omp, in—node\D - ’
S 13 u =-m 2 omp, in-node
° 512 |2-2 1omp, XPM 1°° 4.6.3 Molecular Dynamics
1.2 A-A 2 omp, XPM
= - For the molecular dynamics simulation code, the nearly
2048 I BT-MZ Class E / 1| sPmzciass e 1% perfect scalability on one node that was shown in Sec-
91024 [aa XPM J - 512 tion 4.1.3 continues when it is run on multiple nodes.
7 #-k IB, mptL.11r (See Table 6.) The small penalty evident on the large
g ey o B e A2 1%° CPU count runs is at least in part due to a sharing of
56 1 AF / 128 resources with system software. For the= 484 run,
Y | e P no multinode costs are apparent. Given the insignificant
128 256 512 1024 2048128 256 512 1024 2048 communication costs of the test, it is not surprising that

Number of CPUs the InfiniBand interconnect does nearly as well as NU-

Figure 12. Comparison of NPB-MZ performance MAlink4. (The InfiniBand connection limitations dis-

under three different networks—in-node. NUMA- ucssed in Section 2 prevented us from completing runs
link4 (XPM), and InfiniBand (IB). ’ at 1536 and 2040 CPU’s.) Note that the communication

costs could increase if the simulation were run for long

Since MPI is used for coarse-grain parallelism among durations and the workload becomes unbalanced.

zones for the hybrid implementations, load balancing for

SP-MZ is trivial as long as the number of zones is divis- Molecular Dynamics

ible by the number of MPI processes. The uneven-size _ Wallclock time/step (sec
zones in BT-MZ allows more flexible choice of the num- |__£_| nodes| #particles] NL4 | 1B

ber of MPI processes; however, as the number of CPUs__256 | 1 16,384,000] 20.31 n/a
increases, OpenMP threads may be required to get better 484 | 3 30,976,000 20.33 20.47
load balance (and therefore better performance). This| 1024 | 2 65,536,000) 21.96 22.47

is evident from the BT-MZ results in Fig. 12. There 1536 | 3 98,304,000/ 21.70 -

is about 11% performance improvement from runs us- 2040 4 130,560,000] 2161 —

ing two OpenMP threads versus one (e.g. 236vs. Table 6.Performance of molecular dynamics code
512x1) for the SP-MZ benchmark. This effect could be using NUMAIink4 (NL4) and InfiniBand (IB) in-

attributed to less MPI communication when two threads terconnection.
are used. The performance drop for SP-MZ at 768 and

12

4.6.4 INS3D OVERFLOW-D
NUMAIink4 InfiniBand
Table 7 presents performance results of the #0of [comm | exec | comm | exec
MPI+OpenMP code on multiple BX2b nodes. The first P Nodes| (sec) | (sec)| (sec) | (sec)
column shows the total number of CPUs, the second gz (64x1) 2 014 | 22 1 015 | 24
column contains total execution times for one BX2b 64 (64x 1) 2 009 | 23 | 0.10 | 23
node. The remaining columns contain the runtime [128 (128<1) 2 023 | 14 | 023 | 15
using two and four BX2b nodes with NUMAIink4 and 128 (128 1) 4 010 | 1.3 | 011 | 1.4
InfiniBand interconnects respectively. 256 (256<1) 2 0.18 | 1.1 | 0.17 | 1.2
256 (256¢x1) 4 0.17 1.1 0.15 1.1
INS3D hybrid MPI+OpenMP 508 (508« 1) 2 0.16 1.0 0.15 1.1
1 Node 2 Nodes 4 Nodes 508 (508« 1) 4 0.14 | 0.9 0.12 1.0
P NL4 [B NL4 [B 1016 (508<2) 4 0.14 1.4 0.17 1.9
36 (36x1) 1162 | 1230 | 1352] 1253 1418 1464 (366<4) 3 025 | 27 | 019 | 29
144 (36x4) 494 | 533 | 623 | 576 710 1972 (49%4) | 4 017 | 21 | 013 | 21
288 (36x8) 429 | 470| 542 | 477| 600 2032 (508¢4) 4 016 | 21 | 012 | 23
504 (36x< 14) 380 | 410| 481 | 418| 532

bl ; f) Table 8. Performance of OVERFLOW-D across
Table 7. Performance of MPI+OpenMP version multiple BX2b nodes via NUMAIink4 and Infini-
of INS3D, comparing intranode with NUMAIink4 Band interconnection

(NL4) and InfiniBand (IB) internode connections.

Comparing column 2 of Table 7 with column 3 of Ta- sponding data obtained within a single node. The overall
ble 3 we see that the single BX2b node MPI+OpenMP performance scalability is rather poor for the test prob-
runtime is approximately 40-50% longer than the lem used in these experiments, and is adversely affected
INS3D-MLP runtime. This is caused by the overhead by the granularity of the grid blocks and increased over-
of master-worker communication. Examining NUMA- head for large processor counts. In fact, as seen from
link4 times in columns 3 and 5 of Table 7 we observe a Table 8, the execution timing increases fér> 508.

5-10% increase in runtime from one BX2b node to two It should be noted that the shared I/O file system
nodes and an 8-16% increase using four nodes. An ad-across multiple nodes that was available at the time of
ditional 14-27% increase in runtime is observed when this study was much less efficient than the one used
using InfiniBand interconnects instead of NUMAIlink4. within a single node. Since the execution time includes
We observe that the penalty in runtime, incurred when the overhead for some minor I/O activities, albeit negli-
using multiple nodes, increases as the number of procesgible for a single node, it is negatively affected to some
sors is increased. Obviously, the master-worker commu-extent for multiple nodes.
nication approach stresses the interconnect; we would For the same total number of processors, the commu-
expect that the reduced communication in the point-to- nication time for OVERFLOW-D across multiple nodes
point version of INS3D would see lower penalties for s less than the corresponding run on a single node (see
both multinode execution and for the use of InfiniBand. Tables 4 and 8). We speculate that this may be due to
the availability of more bandwidth for communication
4.6.5 OVERFELOW-D in the multi node system. The bandwidth plays a more

_ crucial role in the execution time than the latency for the
Table 8 presents results of performance experimentscommunication pattern in our application.

conducted on multiple BX2b nodes. The column de-

noted as “# of Nodes” refers to the number of BX2b .

nodes used. The communication and execution times ar(-,5 Summary and Conclusions

reported for the same runs via both NUMAIink4 and In-

finiBand interconnects, using the Intel Fortran compiler ~ Our benchmarking on the Columbia supercluster

8.1. demonstrated several features about single-box SGI Al-
The total execution times obtained via NUMAIink4 tix performance. First, the presence of NUMAIlink4 on

are generally 5-10% better; however, the reverse ap-the BX2 nodes provides a large performance boost for

pears to be true for the communication times. Up until MPI and OpenMP applications. Furthermore, when the

P = 508, we did not find a pronounced change in the processor speed and cache size are enhanced (as is the

execution timing for the same total number of processors case on those nodes we call BX2b's), there is another

distributed across multiple nodes via NUMAIink4 or In- significant improvement in performance. As was the

finiBand interconnection, in comparison to the corre- case onthe SGI Origins, process and thread pinning con-

13

tinues to be critical to performance. Among the four
versions of the Intel compiler that we tested, there is no
clear winner—performance seems to vary with applica-

tion.

When multiple Altix nodes are combined into a ca-
pability cluster, both NUMALink4 and InfiniBand are

capable of very good performance.
Challenge benchmarks showed some potential perfor-

While the HPC

mance problems with InfiniBand, those results were not
seen with either the NPBs or two of the applications we

tested. In the case of the HPC Challenge benchmarks

and the master-worker version of INS3D, we observed
that contention in the interconnect increased execution
time substantially. Thus, careful attention should be paid
to the choice of communication strategy. With a suitable

choice, we should be able to scale some important ap-

plications to 2048 processors.
For jobs using more than 2048 processors, InfiniBand
is a necessity. It is particularly encouraging that there

was

no significant penalty for using InfiniBand versus

NUMAIink4 in applications on the maximum configu-
ration tested. However, because of the limitations of the [11]
InfiniBand hardware, doing so will require that a multi-
level parallel programming paradigm be used.

In future work, we will explore scaling beyond 2048

processors. We will also investigate the causes of scal-

ing problems that we observed with OpenMP and exper-
iment with the SGI SHMEM library.

Acknowledgements

We would like to thank Bron Nelson, Davin Chan,
Bob Ciotti, and Bill Thigpen for their assistance in using
Columbia, and Jeff Becker and Nateri Madavan for valu-

able comments on the manuscript. Rob Van der Wijn-
gaart played a critical role in developing the multi-zone
NPBs.

References

(1]

(2]

D. Bailey, J. Barton, T. Lasinski, and H. S. (Eds.). The
NAS Parallel Benchmarks. Technical Report NAS-91-
002, NASA Ames Research Center, Moffett Field, CA,
1991.

D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart,

A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, NASA Ames Re-
search Center, Moffett Field, CA, 1995.

[3] J.Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas.

(4]

Integrated performance monitoring of a cosmology ap-
plication on leading hec platforms. Proc. 34th Inter-
national Conference on Parallel Processjnges 119—
128, Oslo, Norway, June 2005.

P. G. Buning, D. C. Jespersen, T. H. Pulliam, W. M.
Chan, J. P. S. amd S. E. Krist, and K. J. Renze. Overflow

14

(5]

(6]

(7]

(8]
9]

10] H. Jin and R. Van der Wijngaart.

(12]

(13]

(14]

(15]

(16]

user’s manual, version 1.8g. Technical report, NASA
Langley Research Center, Hampton, VA, 1999.

M. J. Djomehri and R. Biswas. Performance analysis
of a hybrid overset multi-block application on multiple
architectures. IProc. High Performance Computing -
HiPC 2003, 10th International Conferenddyderabad,
India, December 2003.

M. J. Djomehri, R. Biswas, and N. Lopez-Benitez. Load
balancing strategies for multi-block overset grid applica-
tions. InProc. 18th International Conference on Com-
puters and Their Applicationspages 373-378, Hon-
olulu, HI, March 2003.

Effective Bandwidth Benchmark.
http://www.hlrs.de/organization/par/services/models/
mpi/b_eff/.

HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/.
InfiniBand Specifications.
http://www.infinibandta.org/specs.

Performance char-
acteristics of the multi-zone NAS Parallel Benchmarks.
In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS 20@&§nta Fe,
NM, April 2004.

C. Kiris, D. Kwak, and W. Chan. Parallel unsteady tur-
bopump simulations for liquid rocket engines.Saper-
computing 2000November 2000.

C. Kiris, D. Kwak, and S. Rogers. Incompressible
Navier-Stokes solvers in primitive variables and their ap-
plications to steady and unsteady flow simulations. In
M. Hafez, editorNumerical Simulations of Incompress-
ible Flows World Scientific, 2003.

J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. Panda. Perfor-
mance comparison of MPI implementations over Inifin-
Band, Myrinet, and Quadrics. Rroceedings of SC'Q3
Phoenix, AZ, November 2003.

R. Meakin and A. M. Wissink. Unsteady aerodynamic
simulation of static and moving bodies using scalable
computers. InProc. 14th AIAA Computational Fluid
Dynamics Conferen¢®aper number 99-3302, Norfolk,
VA, 1999.

NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB.

D. C. Rapport.The Art of Molecular Dynamics Simula-
tion. Cambridge University Press, 1995.

[17] R. Strawn and M. Djomehri. Computational modeling

of hovering rotor and wake aerodynamicdournal of
Aircraft, 39(5):786—-793, 2002.

[18] J. R. Taft. Achieving 60 gflop/s on the production cfd

code overflow-mlpParallel Computing27(4):521-536,
2001.

[19] Top500 Supercomputer Sites. http://www.top500.0rg.
[20] Voltaire ISR 9288 InfiniBand switch router.

http://www.voltaire.com/documents/9288dsweb.pdf.

