Taylor Table To Derive a Generalized 4^{th} to 6^{th} Order Compact Pade Scheme

T. H. Pulliam

NASA Ames
1. The generalized form of the equation is given by
\[
\left(\frac{\partial u}{\partial x} \right)_{j-1} + \alpha \left(\frac{\partial u}{\partial x} \right)_j + \left(\frac{\partial u}{\partial x} \right)_{j+1} - \frac{A}{2\Delta x} (-u_{j-1} + u_{j+1}) - \frac{B}{4\Delta x} (-u_{j-2} + u_{j+2}) = \varepsilon r_t
\]

1. The equation is written on terms of the single free coefficients \(\alpha, A, B \) which must be determined using the Taylor Table approach as outlined below.

2. One goal is to find the value of \(\alpha, A, B \) which results in a 6\(^{th}\) Order Scheme

3. We can also define a class of 4\(^{th}\) schemes where \(\alpha \) is a free parameter and \(A, B \) are functions of \(\alpha \)
<table>
<thead>
<tr>
<th>$\Delta x \cdot \left(\frac{\partial u}{\partial x} \right)_{j-1}$</th>
<th>u_j</th>
<th>$\Delta x \cdot \left(\frac{\partial u}{\partial x} \right)_{j}$</th>
<th>$\Delta x \cdot \alpha \left(\frac{\partial u}{\partial x} \right)_{j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta x \cdot \left(\frac{\partial u}{\partial x} \right)_{j+1}$</td>
<td>$\frac{A}{2} u_{j-2}$</td>
<td>$\frac{A}{2} (-1) \frac{1}{1!}$</td>
<td>$\frac{A}{2} (-1)^2 \frac{1}{2!}$</td>
</tr>
<tr>
<td>$- \frac{B}{4} u_{j+2}$</td>
<td>$- \frac{B}{4} (-2) \frac{1}{1!}$</td>
<td>$- \frac{B}{4} (-2)^2 \frac{1}{2!}$</td>
<td>$- \frac{B}{4} (-2)^3 \frac{1}{3!}$</td>
</tr>
</tbody>
</table>

$\Delta x \cdot \left(\frac{\partial u}{\partial x} \right)_{j-1}$

$\Delta x \cdot \alpha \left(\frac{\partial u}{\partial x} \right)_{j}$
1. For Consistency and at least 4th Order Accuracy, the first five columns are set to zero.

2. Note because of the skew symmetry of the original equation the odd numbers columns sum exact to 0

3. For 6th Order Accuracy we need

\[
\alpha + 2 - A - B = 0, \quad 1 - \frac{A}{6} - \frac{2B}{3} = 0, \quad 2 - \frac{A}{5} - \frac{16B}{5} = 0
\] (1)

1. Solving we have \(\alpha = 3, \ A = \frac{14}{3}, \) and \(B = \frac{1}{3} \)

2. Then \(er_t = -\frac{1}{180} \Delta x^6 \left(\frac{\partial^7 u}{\partial x^7} \right)_j \)
1. Instead of requiring a 6^{th} order scheme relax the conditions to allow the sixth column to be non-zero and find A, B as a function of α

2. Solving the first two relations for A, B we have $A = \frac{4+2\alpha}{3}$ and $B = \frac{4-\alpha}{3}$

3. For $\alpha = 3$: the above 5 point 6^{th} Order Scheme

4. For $\alpha = 4$: the 3 point 4^{th} Order Scheme

5. For $\alpha \neq 3$: a class of 4^{th} Order Schemes different characteristics.

6. In general,

 \[er_t = \Delta x^4 \frac{1}{10} \left(1 - \frac{\alpha}{3} \right) \left(\frac{\partial^5 u}{\partial x^5} \right)_j + \Delta x^6 \frac{1}{1260} \left(8 - 5\alpha \right) \left(\frac{\partial^7 u}{\partial x^7} \right)_j \]

7. See Note on Modified Wave Number for General Pade Schemes