Simulations of Radiative Transfer in Combustion Systems and Further Developments of High-Order Spherical Harmonics Methods

Wenjun Ge

Department of Mechanical Engineering
School of Engineering
University of California, Merced
Merced, CA 95343, USA
wge@ucmerced.edu

Advanced Modeling & Simulation Seminar Series
NASA Ames Research Center
May 2, 2017
Outline

1. Introduction
2. Spectral Models and FSK Look-Up Table
3. RTE Solvers and Spherical Harmonics (P_N) Methods
4. Gray Examples
5. Applications in Combustion Simulations
Combustion is a chemical process in which a fuel reacts rapidly with oxygen and gives off heat.

High-fidelity simulations: chemistry, turbulence, radiation and their interactions.

Source: left from SpaceX, top-right from internet, bottom-right from Imamori, Y. et al., 2011

Source: left from Sandia NL, right from Pitsch, H., 2006
Radiative transfer

- Radiative transfer \rightarrow electromagnetic waves \rightarrow spectral dependence and travelling at 3×10^8 m/s in vacuum
- The radiative energy emitted by a blackbody is proportional to the fourth power of temperature \rightarrow importance in high-temperature applications, nonlinearity
- Radiative transfer in participating/particulate media \rightarrow emission, absorption and scattering \rightarrow directional dependence

$$E_b(T) = \int E_{b\lambda} d\lambda = n^2 \sigma_{SB} T^4.$$

- Combustion problems generally involve temperature levels between 500 K and 2800 K so that the spectral ranges of interest in combustion applications are from 0.7 μm to 30 μm (or 300~14000 cm$^{-1}$ in wavenumber).

Figure: Blackbody emissive power spectrum.
Radiative properties of molecular gases

- Vibration-rotation bands from bound-bound transitions
- The broadening of the spectral lines due to collisions and Doppler effect
- Modern databases: HITEMP, HITRAN, CDSD.
- \(\kappa_\eta(Y, T, p) \)
Radiative transfer in an absorbing, emitting and scattering medium is formulated by considering conservation of radiative energy, known as the **radiative transfer equation** (RTE).

RTE:

\[
\hat{s} \cdot \nabla_\tau I_\eta + I_\eta = (1 - \omega_\eta)I_{b\eta} + \frac{\omega}{4\pi} \int_{4\pi} I_\eta(\hat{s}')\Phi_\eta(\hat{s} \cdot \hat{s}')d\Omega'
\]

The net energy balance at any location in the medium is obtained by integrating the spectral intensity over all directions and all wavenumbers. The **radiative heat source** \(S_{rad} \), is the difference between local absorption and emission:

Radiative heat source:

\[
S_{rad} = -\nabla \cdot \mathbf{q}_{rad} = -S_{emi} + S_{abs} = -4\kappa_P\sigma_{SB}T^4 + \int_0^{\infty} \kappa_\eta \int_{4\pi} I_\eta(\tau, \hat{s})d\Omega d\eta
\]
Coupling to the energy equation for turbulent reacting flows

DNS (direct numerical simulation):

\[
\frac{\partial \rho h}{\partial t} + \frac{\partial \rho h u_i}{\partial x_i} = -\frac{\partial J_i^h}{\partial x_i} + \frac{Dp}{Dt} + \tau_{ij}\frac{\partial u_j}{\partial x_i} + S_{rad}
\]

LES (large eddy simulation):

\[
\frac{\partial \rho \tilde{h}}{\partial t} + \frac{\partial \rho \tilde{h} u_i}{\partial x_i} = \frac{\partial (\rho \tilde{h} u_i - \rho \tilde{h} u_i)}{\partial x_i} - \frac{\partial J_i^h}{\partial x_i} + \frac{D\bar{p}}{Dt} + \bar{\tau}_{ij}\frac{\bar{u}_j}{x_i} + \bar{S}_{rad}
\]

RANS (Raynolds-Averaged Navier-Stokes):

\[
\frac{\partial \langle \rho \rangle \tilde{h}}{\partial t} + \frac{\partial \langle \rho \rangle \tilde{h} u_i}{\partial x_i} = \frac{\partial (\langle \rho \rangle \tilde{h} u_i - \langle \rho \rangle \tilde{h} u_i)}{\partial x_i} - \frac{\partial \langle J_i^h \rangle}{\partial x_i} + \frac{D\langle p \rangle}{Dt} + \langle\tau_{ij}\rangle\frac{\bar{u}_j}{x_i} + \langle S_{rad} \rangle
\]
Turbulence-radiation interaction (TRI)

Time-averaged radiative source \(\langle S_{rad} \rangle \) accounting for turbulence effects:

\[
\langle S_{rad} \rangle = -\langle S_{emi} \rangle + \langle S_{abs} \rangle = -4\pi \sigma_{SB} \langle \kappa_P I_b \rangle + \int_0^\infty \int_{4\pi} \langle \kappa_\eta I_\eta \rangle d\Omega d\eta
\]

Emission TRI and absorption TRI:

Emission TRI: \(\langle \kappa_P I_b \rangle \neq \kappa_P \langle \phi \rangle I_b (\langle T \rangle) \)

Absorption TRI: \(\langle \kappa_\eta I_\eta \rangle \neq \kappa_\eta \langle \phi \rangle I_\eta (\langle \phi \rangle) \)

e.g. autocorrelation of \(I_b \):

\[
\mathcal{R}_{I_b} = \frac{I_b (\langle T \rangle)}{\langle I_b (T) \rangle} = \frac{(\langle T \rangle)^4}{\langle T^4 \rangle} \neq 1
\]
Interactions between radiation and reacting flow

Figure: Schematic of the coupling between radiation and other sub-models
Example: Sandia Flame D×4 - RANS Simulation

- Not considering radiation will overpredict the peak temperature by up to 300 K
- Optically-thin model will underpredict the temperature about 200 K
Figure: Droplet dist. sized by droplet mass and temp. dist. Source: CTR Stanford and NASA, 2014

- No Rad. v.s. O.T. (gas phase)
- T_{peak} from O.T. is 400 K lower
- lower evaporation rates from O.T
Outline

1. Introduction
2. Spectral Models and FSK Look-Up Table
3. RTE Solvers and Spherical Harmonics (P_N) Methods
4. Gray Examples
5. Applications in Combustion Simulations
Summary of spectral models

- Gray model (Planck-mean)
 - Weighted average over the entire spectrum
 - Cheap, but inaccurate; Underpredict the absorption
 - In practice: most popular

- Band models
 - Constant properties over narrow or wide bands
 - Case dependent accuracy
 - In practice: popular, becoming less popular

- Full-spectrum k-distribution (FSK) or similar models (WSGG)
 - Reordering reoccuring spectral absorption coefficients
 - Very accurate; implementation dependent
 - In practice: less popular, becoming more popular

- Line-by-line (LBL) Calculations
 - The most accurate
 - Only practical for stochastic solution methods (PMC)
 - In practice: becoming more popular with Monte Carlo solution method
Gray model: constant absorption coefficient

Weighting the spectral absorption coefficient κ_η with the Planck function $I_{b\eta}$:

Planck-mean absorption coefficient:

$$\kappa_P = \frac{\int_0^\infty \kappa_\eta I_{b\eta} d\eta}{\int_0^\infty I_{b\eta} d\eta} = \frac{\int_0^\infty \kappa_\eta I_{b\eta} d\eta}{\sigma_{SB} T^4}$$

![Figure: Planck-mean absorption coefficients of CO$_2$, H$_2$O, CO, CH$_4$ and C$_2$H$_4$](image)

Figure: Planck-mean absorption coefficients of CO$_2$, H$_2$O, CO, CH$_4$ and C$_2$H$_4$
Full-spectrum k-distribution (FSK) model: reordering reoccurring $\kappa \eta$

- Reduce the number of evaluations of the RTE required from 1 million to $8 \sim 16$.

\[\eta - \kappa \eta \]
\[k - f(k), f(k) \text{ is a weighted sum of the number of points where } \kappa \eta = k \]
\[g - k, g \text{ is the cumulative distribution function of } f(k) \]

Figure: (a) Spectral absorption coefficient (b) PDF and (c) k-distribution for 4.5 μm CO$_2$ band at $T=1000$ K and $p=1$ bar.
Comparison of different FSK implementations

- generate \(k \)-distributions for individual species
 - Narrowband database - very accurate, less memory, more runtime computing
 - Correlations - less accurate, less memory, less runtime computing

- generate \(k \)-distributions for the mixture
 - Look-up table - very accurate, more memory, less computing

Table: CPU time comparisons of generating 10,000 arbitrary \(k \)-distributions of mixtures.

<table>
<thead>
<tr>
<th>Database</th>
<th>Mixing model</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrowband</td>
<td>Multiplication</td>
<td>1389.65</td>
</tr>
<tr>
<td></td>
<td>MRmixing</td>
<td>5904.59</td>
</tr>
<tr>
<td>Correlations</td>
<td>Multiplication</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>MRmixing</td>
<td>8.97</td>
</tr>
<tr>
<td>Look-up table</td>
<td>-</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Table: Precalculated thermodynamic states of the FSK look-up table.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Values</th>
<th>Number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>CO<sub>2</sub>, H<sub>2</sub>O and CO</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pressure (total)</td>
<td>0.1 ~ 0.5 bar</td>
<td>Every 0.1 bar</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>0.7 bar</td>
<td>0.7 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 ~ 14.0 bar</td>
<td>Every 1.0 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0 ~ 80.0 bar</td>
<td>Every 5.0 bar</td>
<td></td>
</tr>
<tr>
<td>Gas temperature</td>
<td>300~ 3000 K</td>
<td>Every 100 K</td>
<td>28</td>
</tr>
<tr>
<td>Reference temperature</td>
<td>300~ 3000 K</td>
<td>Every 100 K</td>
<td></td>
</tr>
<tr>
<td>Mole fraction of CO<sub>2</sub></td>
<td>0.0 ~ 0.05</td>
<td>Every 0.01</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.25 ~ 1.0</td>
<td>Every 0.25</td>
<td></td>
</tr>
<tr>
<td>Mole fraction of H<sub>2</sub>O</td>
<td>0.0 ~ 0.05</td>
<td>Every 0.01</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>0.1 ~ 0.2</td>
<td>Every 0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25 ~ 1.0</td>
<td>Every 0.25</td>
<td></td>
</tr>
<tr>
<td>Mole fraction of CO</td>
<td>0.0 ~ 0.5</td>
<td>{0.0, 0.01, 0.05, 0.1, 0.25, 0.5}</td>
<td>6</td>
</tr>
</tbody>
</table>

- The size of the table is about 5 GB.
- Apply dynamic loading to reduce memory demand.
- The look-up table can be customized for specific needs.
Outline

1. Introduction
2. Spectral Models and FSK Look-Up Table
3. RTE Solvers and Spherical Harmonics (P_N) Methods
4. Gray Examples
5. Applications in Combustion Simulations
Summary of RTE solvers

- **Optically Thin (O.T.)**
 - No absorption, only consider emission
 - Cheap, only useful for optically thin media
 - *In practice: currently most popular*

- **Discrete Ordinates Method (DOM) or similar concepts**
 - Discretize the angular profile of intensity by several finite directions
 - Cheap and accurate for non-scattering media, suffers from ray effects and false scattering for scattering media or reflecting surfaces
 - *In practice: very popular, available in most commercial CFD softwares, DOM_{8\times8} is usually good enough*

- **Spherical Harmonics (P_N) Method**
 - Approximate the angular profile of intensity by a truncated series of spherical harmonics (a spectral method)
 - Very accurate for optically thick media; not accurate when intensity is directionally anisotropic
 - *In practice: P_1 is very popular, high-order P_N needs more research*

- **Photon Monte Carlo (PMC)**
 - The most accurate and robust
 - Used to be considered impractical
 - *In practice: becoming more and more popular*
Spherical harmonics (P_N) method

Truncated series of spherical harmonics of order N:

$$I(\tau, \hat{s}) = \sum_{n=0}^{N} \sum_{m=-n}^{n} I_n^m(\tau) Y_n^m(\hat{s}), \quad Y_n^m(\psi, \theta) = \begin{cases}
\cos(m\psi) P_n^m(\cos \theta) & \text{for } m \geq 0 \\
\sin(|m|\psi) P_n^m(\cos \theta) & \text{for } m < 0
\end{cases}$$

- Use spherical harmonics as bases for the angular profile of intensity
- Transform the RTE into equations of the intensity coefficients I_n^m
The 3-D formulation

Governing equations

- Substitute the spherical harmonics series into the RTE;

- Multiply the resulting equation by Y_n^m and integrate the whole equation over a solid angle of 4π; One obtains $(N + 1)^2$ first-order PDEs;

- The second-order elliptic formulation is obtained by eliminating the odd order intensity coefficients (I_n^m with odd n) by their relation to the gradients of I_{n+1}^m and I_{n-1}^m; This will reduce the number of governing equations to $N(N + 1)/2$.

<table>
<thead>
<tr>
<th>n</th>
<th>Intensity Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I_0^0</td>
</tr>
<tr>
<td>2</td>
<td>I_2^{-2} I_4^{-1} I_4^0 I_4^1 I_4^2</td>
</tr>
<tr>
<td>4</td>
<td>I_4^{-4} I_6^{-3} I_6^{-2} I_6^{-1} I_6^0 I_6^1 I_6^2 I_6^3 I_6^4 I_6^5 I_6^6</td>
</tr>
<tr>
<td>6</td>
<td>I_6^{-6} I_6^{-5} I_6^{-4} I_6^{-3} I_6^{-2} I_6^{-1} I_6^0 I_6^1 I_6^2 I_6^3 I_6^4 I_6^5 I_6^6</td>
</tr>
<tr>
<td>n</td>
<td>I_n^{-n} \ldots I_n^{-3} I_n^{-2} I_n^{-1} I_n^0 I_n^1 I_n^2 I_n^3 \ldots I_n^n</td>
</tr>
</tbody>
</table>

Table: Intensity coefficients employed for 3-D Cartesian formulation
Governing equations

For each $Y^m_n : n = 0, 2, \ldots, N - 1, 0 \leq m \leq n$:

$$
\sum_{k=1}^{3} \left\{ \left(L_{xx} - L_{yy} \right) \left[(1 + \delta_{m2}) a_{k}^{nm} I_{n+4-2k}^m - \frac{\delta_{m1}}{2} c_{k}^{nm} I_{n+4-2k}^m + e_{k}^{nm} I_{n+4-2k}^{m+2} \right] \\
+ \left(L_{xz} + L_{zx} \right) \left[(1 + \delta_{m1}) b_{k}^{nm} I_{n+4-2k}^{m-1} + d_{k}^{nm} I_{n+4-2k}^{m+1} \right] \\
+ \left(L_{xy} + L_{yx} \right) \left[-(1 - \delta_{m2}) a_{k}^{nm} I_{n+4-2k}^{-(m-2)} + \frac{\delta_{m1}}{2} c_{k}^{nm} I_{n+4-2k}^{-(m-1)} + e_{k}^{nm} I_{n+4-2k}^{-(m+2)} \right] \\
+ \left(L_{yz} + L_{zy} \right) \left[-(1 - \delta_{m1}) b_{k}^{nm} I_{n+4-2k}^{-(m-1)} + d_{k}^{nm} I_{n+4-2k}^{-(m+1)} \right] \\
+ \left(L_{xx} + L_{yy} - 2L_{zz} \right) c_{k}^{nm} I_{n+4-2k}^{m} \right\} \\
+ \left[L_{zz} - (1 - \omega \delta_{0n}) \right] I_{n}^{m} = -(1 - \omega) I_{b} \delta_{0n}
$$

where the operators: $L_{xy} = \frac{1}{\beta} \frac{\partial}{\partial x} \left(\frac{1}{\beta} \frac{\partial}{\partial y} \right)$

Each governing equation is characterized by the spherical harmonics Y^m_n.
Marshak’s boundary conditions

For each $\bar{Y}_{2i-1}^{\pm m}$, $i = 1, 2, \cdots, (N + 1)/2$:

\[
0 = \sum_{l=0}^{N-1/2} \sum_{m'=-2l}^{2l} p^m_{2l,2i-1} \bar{\Delta}^{2l}_{\pm m,m'} I^{m'}_{2l} \\
- \frac{\partial}{\partial \tau^x} \sum_{l=l_1}^{N-1/2} \sum_{m'=-2l}^{2l} \left[(1 \pm \delta_{m,1}) u^m_{l,i} \bar{\Delta}^{2l}_{\mp(m-1),m'} - v^m_{l,i} \bar{\Delta}^{2l}_{\mp(m+1),m'} \right] I^{m'}_{2l} \\
\pm \frac{\partial}{\partial \tau^y} \sum_{l=l_2}^{N-1/2} \sum_{m'=-2l}^{2l} \left[(1 \mp \delta_{m,1}) u^m_{l,i} \bar{\Delta}^{2l}_{\pm(m-1),m'} + v^m_{l,i} \bar{\Delta}^{2l}_{\pm(m+1),m'} \right] I^{m'}_{2l} \\
- \frac{\partial}{\partial \tau^z} \sum_{l=0}^{N-1/2} \sum_{m'=-2l}^{2l} w^m_{l,i} \bar{\Delta}^{2l}_{\pm m,m'} I^{m'}_{2l}
\]

Each boundary condition is characterized by the local spherical harmonics \bar{Y}_{2i-1}^{m}.

University of California, Merced
Ames Research Center, NASA
May 02, 2017 21 / 42
2-D axisymmetric formulation

I varies with r and axially with z, but not azimuthally with ϕ

\[
I (r, \phi, z; \theta, \psi + \phi) = I (r, 0, z; \theta, \psi)
\]

\[
I^m_n (r, \phi, z) = I^m_n (r, 0, z) \cos m\phi = \hat{I}^m_n \cos m\phi
\]

\[
I^{-m}_n (r, \phi, z) = I^m_n (r, 0, z) \sin m\phi = \hat{I}^m_n \sin m\phi
\]

Employing the above relations to the general 3-D formulation, the number of governing equations is reduced to $(N + 1)^2 / 4$ for axisymmetric geometry.

Table: Intensity coefficients employed for 2-D axisymmetric formulation

<table>
<thead>
<tr>
<th>n</th>
<th>Intensity Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\hat{I}^0_0</td>
</tr>
<tr>
<td>2</td>
<td>\hat{I}^2_2, \hat{I}^1_2, \hat{I}^2_2</td>
</tr>
<tr>
<td>4</td>
<td>\hat{I}^4_4, \hat{I}^1_4, \hat{I}^2_4, \hat{I}^3_4, \hat{I}^4_4</td>
</tr>
<tr>
<td>6</td>
<td>\hat{I}^6_6, \hat{I}^1_6, \hat{I}^2_6, \hat{I}^3_6, \hat{I}^4_6, \hat{I}^5_6, \hat{I}^6_6</td>
</tr>
</tbody>
</table>

$\hat{I} = \text{Intensity Coefficients}$

\hat{I}^m_n = Coefficients for terms in r, ϕ, and z.

$N = \text{Number of terms considered}$.
Development of special boundary conditions

- Specified radiative flux at the wall;
- Symmetry/specular reflection boundaries;
- Mixed diffuse-specular reflection surfaces;
- Cyclic boundaries.
Implementation

- Implementation platform → OpenFOAM® 2.2.x
- The spatial discretization → standard second-order finite volume method
- Solution method → segregated iterative method
- Solution of each governing equation (inner iterations) → the incomplete Cholesky preconditioned conjugated gradient method (PCG)
- Resolving the coupling between governing equations and Robin-type BCs (outer iterations) → Gauss Seidel method
Outline

1. Introduction
2. Spectral Models and FSK Look-Up Table
3. RTE Solvers and Spherical Harmonics (P_N) Methods
4. Gray Examples
5. Applications in Combustion Simulations
Problem 1: 1-D slab with homogeneous radiative properties

1-D Cartesian examples represent the radiative transfer between two infinitely long parallel plates;

Geometry: 1-D Slab (1×1×101);

All properties are normalized so that the only difference is the optical thickness;

\[-\nabla \cdot \mathbf{q} \quad \text{and} \quad G \quad \text{from} \quad P_1 \quad \text{to} \quad P_7 \quad \text{are compared to exact solution}; \]

Intensity \(I \) is reconstructed at the center \((z/L = 0.5) \) and is also compared with the exact intensity.
Results of $\tau=10.0$ and $\tau=1.0$

$\tau=10$ (Optically thick):

$\tau=1$ (Optically intermediate):
Results of $\tau=0.5$ and $\tau=0.001$

$\tau=0.5$ (Optically intermediate):

$\tau=0.001$ (Optically thin):
Problem 2: 1-D slab with flame-like variable radiative properties

Geometry: 1-D Slab (200 cells), $L=0.52\times2$ m;
Rotational invariance and comparison with PMC

Table: Comparison of CPU time (s)

<table>
<thead>
<tr>
<th>Num. of cells</th>
<th>τ_L</th>
<th>P_1</th>
<th>P_3</th>
<th>P_5</th>
<th>P_7</th>
<th>PMC (0.1M×10)</th>
<th>PMC (5M×10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.886</td>
<td>0.01</td>
<td>0.10</td>
<td>0.52</td>
<td>1.34</td>
<td>45.7</td>
<td>2532.1</td>
</tr>
</tbody>
</table>

University of California, Merced
Ames Research Center, NASA
May 02, 2017
Problem 3: 2-D square geometry

Table: Comparison of CPU time (s)

<table>
<thead>
<tr>
<th>No. of cells</th>
<th>C_k</th>
<th>τ_R</th>
<th>P_1</th>
<th>P_3</th>
<th>P_5</th>
<th>P_7</th>
<th>PMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,601 (51×51)</td>
<td>C_k=1</td>
<td>12.7</td>
<td>0.02</td>
<td>0.75</td>
<td>4.71</td>
<td>7.0</td>
<td>459 (5M×10)</td>
</tr>
<tr>
<td></td>
<td>C_k=0.1</td>
<td>1.27</td>
<td>0.02</td>
<td>0.87</td>
<td>5.05</td>
<td>9.33</td>
<td>125.5 (0.5M×10)</td>
</tr>
<tr>
<td></td>
<td>C_k=0.01</td>
<td>0.127</td>
<td>0.02</td>
<td>1.78</td>
<td>7.09</td>
<td>19.2</td>
<td>21.2 (0.05M×10)</td>
</tr>
</tbody>
</table>
Problem 4: A 45-degree wedge and a full cylinder

\[I_b = 1 + \frac{20}{R^4} r^2 (R^2 - r^2) \quad \text{W} \cdot \text{m}^{-3} \]

\[\kappa = \left[1 + \frac{15}{R^4} (R^2 - r^2)^2 \right] \left(1 + 0.5 \frac{r}{R} \cos 8\theta \right), \quad \text{m}^{-1} \]

\[0 \leq r \leq R = 0.5, \quad \text{m} \]
Sandia Flame D is a turbulent piloted jet flame with a Reynolds number of $Re_D = 22,400$

Fuel: Methane

Diameter of main jet: $d_j = 7.2$ mm

The flame is scaled up to show radiation effects.

<table>
<thead>
<tr>
<th></th>
<th>Sandia Flame D</th>
<th>Sandia Flame D×4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d (mm)</td>
<td>u (m/s)</td>
</tr>
<tr>
<td>main jet</td>
<td>7.2</td>
<td>49.89</td>
</tr>
<tr>
<td>pilot</td>
<td>18.864</td>
<td>10.57</td>
</tr>
<tr>
<td>co-flow</td>
<td>258.2</td>
<td>0.90</td>
</tr>
</tbody>
</table>

$Re_D = 22,400$

Chemistry model: GRI-Mech 2.11 (49 species and 277 reactions), PaSR (partially-stirred reactor)

Turbulence model: Standard two-equation $k-\epsilon$ model

Radiation models: O.T., PN+FSK, DOM+FSK, PMC+LBL

Source: Sandia NL
Adding radiation models cools down the flame and results in around 3% less-complete combustion.

Nearly 30% of the combustion heat release is transferred to the environment through radiation.
Computational cost

Table: Average CPU time per time step (radiation is evaluated once per 1/10/100/250 time steps for the PN/DOM+FSK solvers and the average $t_{RTE} + t_{overhead}$ and t_{FSK} are only shown for runs with radiation evaluated once per time step)

<table>
<thead>
<tr>
<th>Radiation Solver</th>
<th>Average CPU Time (s)</th>
<th>$t_{RTE} + t_{overhead}$ (s)</th>
<th>t_{FSK} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rad</td>
<td>0.82</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>P1+FSK</td>
<td>0.97/0.85/0.82/0.82</td>
<td>0.09</td>
<td>1 second-order PDE</td>
</tr>
<tr>
<td>P3+FSK</td>
<td>1.05/0.87/0.83/0.83</td>
<td>0.17</td>
<td>4 second-order PDE</td>
</tr>
<tr>
<td>P5+FSK</td>
<td>1.36/0.88/0.84/0.84</td>
<td>0.48</td>
<td>9 second-order PDE</td>
</tr>
<tr>
<td>P7+FSK</td>
<td>1.64/0.90/0.85/0.85</td>
<td>0.76</td>
<td>16 second-order PDE</td>
</tr>
<tr>
<td>DOM 2×4+FSK</td>
<td>1.11/0.86/0.85/0.84</td>
<td>0.23</td>
<td>8 first-order PDE</td>
</tr>
<tr>
<td>DOM 4×4+FSK</td>
<td>1.20/0.87/0.85/0.84</td>
<td>0.32</td>
<td>16 first-order PDE</td>
</tr>
<tr>
<td>DOM 4×8+FSK</td>
<td>1.42/0.91/0.86/0.86</td>
<td>0.54</td>
<td>32 first-order PDE</td>
</tr>
<tr>
<td>DOM 8×8+FSK</td>
<td>1.78/0.94/0.87/0.87</td>
<td>0.9</td>
<td>64 first-order PDE</td>
</tr>
<tr>
<td>PMC+LBL</td>
<td>0.87</td>
<td>0.05</td>
<td>5,000 with time-blending</td>
</tr>
<tr>
<td>PMC+LBL</td>
<td>0.92</td>
<td>0.10</td>
<td>10,000 with time-blending</td>
</tr>
</tbody>
</table>

All computations are performed on twelve 2.66 GHz Intel Xeon X7460 processors.
Sandia Flame D×4, a frozen snapshot study

A mixture of hot CO₂, H₂O and CO:

Spectral model for P_N and DOM: FSK-Table with eight quadrature points
Spectral model for for PMC: LBL
Grids

- Radiative calculations are conducted on a 2-D wedge, a 3-D cylinder and a 3-D cuboid
- The same axisymmetric distributions of temperature and mole fractions
Results from different meshes

$-q_r$ (m) at $z = 1.0$ m

Negative Radiative Heat Source q_r (kW/m3)

0 0.05 0.1 0.15 0.2 0.25

0
500
1000

2D Wedge P7+FSK
2D Wedge DOM8x8+FSK
2D Wedge PMC-LBL
3D Cylinder P7+FSK
3D Cylinder DOM8x8+FSK
3D Cylinder PMC-LBL
3D Cuboid P7+FSK
3D Cuboid DOM8x8+FSK
3D Cuboid PMC+LBL
Negative radiative heat source $\nabla \cdot \mathbf{q}$ from different RTEs
The most important quadratures

Table: Optical thickness $\tau_{R,g}$ along radius at $z = 1.0$ m for each quadrature point

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{R,g}$</td>
<td>0.0006</td>
<td>0.0035</td>
<td>0.0120</td>
<td>0.03348</td>
<td>0.08081</td>
<td>0.2112</td>
<td>0.8327</td>
<td>3.5118</td>
</tr>
</tbody>
</table>

![Graph showing negative radiative heat source versus radius for 8th and 7th quadrants.](image)
High-temperature oxy-natural gas flame

Oxy-fuel combustion is the process of burning a fuel using pure oxygen instead of air as the primary oxidant. A 0.8 MW oxy-natural gas burner (OXYFLAM-2A) from the OXYFLAME project:
Gray Spectral Model, $z = 1.42$ m

Table: Comparison of CPU time (s) of the RTE solvers for the gray case

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_3</th>
<th>P_5</th>
<th>P_7</th>
<th>DOM$_{2\times4}$</th>
<th>DOM$_{4\times4}$</th>
<th>DOM$_{4\times8}$</th>
<th>DOM$_{8\times8}$</th>
<th>PMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray</td>
<td>0.22</td>
<td>2.95</td>
<td>10.2</td>
<td>27.8</td>
<td>4.53</td>
<td>5.45</td>
<td>6.66</td>
<td>13.9</td>
<td>223 (1M×10)</td>
</tr>
</tbody>
</table>
Table: Comparison of CPU time (s) of the RTE solvers for the nongray case

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_3</th>
<th>P_5</th>
<th>P_7</th>
<th>DOM_{2\times4}</th>
<th>DOM_{4\times4}</th>
<th>DOM_{4\times8}</th>
<th>DOM_{8\times8}</th>
<th>PMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nongray</td>
<td>0.95</td>
<td>12.8</td>
<td>49.7</td>
<td>111</td>
<td>13.1</td>
<td>25.8</td>
<td>39.4</td>
<td>77.5</td>
<td>1672 (10M\times10)</td>
</tr>
</tbody>
</table>
Acknowledgements:

Prof. Michael Modest, University of California, Merced
Prof. Daniel Haworth, Pennsylvania State University
Prof. Somesh Roy, Marquette University
Dr. Tao Ren, University of California, Merced
Prof. Xinyu Zhao, University of Connecticut

RADIATIVE EQUILIBRIUM IN A RECTANGULAR ENCLOSURE BOUNDED BY GRAY WALLS

MICHAEL F. MODEST*
National Research Council, NASA-Lyndon B. Johnson Space Center, Houston, Texas 77058, U.S.A.

(Received 26 April 1974)