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OUTLINE @’

1. Introduction to Acoustic Analysis of Contra
Rotating Open Rotor




INTRODUCTION — THE BIG PICTURE

taken from Envia AIAA-2014

GE36-UDF propfan demonstrator engine Modern contra-rotating open rotor
installed on MD-81 test bed aircraft (8x8) engine design from CFM (12x10)

O Renewed interest in contra-rotating open rotor (CROR) propulsion technology

due to large potential of significantly reducing fuel consumption
(in context of HWB see Thomas et al. AIAA 2014-0258, Hendricks et al. AIAA 2013-3628)

Q Noise generation from CROR is a key concern and must meet community
noise and cabin noise standards

O Reliable noise prediction capabilities are required for the design of low noise
CROR systems



INTRODUCTION — PREVIOUS WORK @

O NASA inifiated several efforts that successfully addressed the noise prediction
aspects for CROR mainly in free air

Q There are two different approaches for modeling CROR noise
a) Empirical models (cheap but lacks generality)
b) Fully resolved CFD (general but expensive)

» Model source region (hydrodynamics) separate from acoustic propagation

O Various tools are already available
Acoustic: ASSPIN/ASSPINZ, FW-H, 4, FSC, LINPROP, QUADPROP, etc.
Aerodynamics: SBAC, UBAC, FUN3D, OVERFLOW, LAVA, etc.

A Different aspects of CROR noise generation have been studied

O Tonal noise is the dominant part in the spectrum
(Envia IJA-2015, Envia CMFF12-2012, VanZante and Envia ASME-2014, Nasr et al. AIAA 2013-3800,
Sharma & Chen AIAA 2012-2265, Bush et al. AIAA 2013-2202)

O Broadband noise can be important (flow conditions & observer angles)
(Node-Langlois et al. AIAA 2014-2610, Sree & Stephens AIAA 2014-2744)

Q Initial attempts have been made to study installation effects
(Dunn & Tinetti AIAA-2012-2217, Node-Langlois et al. AIAA 2014-2610)




INTRODUCTION — OUR MOTIVATION @

O A key challenge is to devise an efficient State-of-the-art in terms of
method that can capture installation effects | efficiency &

O Current approach:

= Utilizing Cartesian AMR compressible
Navier-Stokes solver within LAVA

= Ffowcs-Williams and Hawkings (FWH)
method for acoustic noise propagation

= Comparison with experiments and
Housman & Kiris (2016) utilizihng LAVA's
curvilinear-overset solver

Non-linear harmonics FINE™/
Turbo simulations and acoustic
model for propagation

Envia IJA-2015, Envia CMFF12-2012,
VanZante & Envia ASME-2014

0 Objectives of this work:

1. Develop moving boundary capabilities inside LAVA Cartesian
2. Validate LAVA Cartesian+FWH approach against experimental data
3. Analyze noise propagation for nominal takeoff and cruise conditions .



OUTLINE

2. Numerical Methods



LAUNCH ASCENT & VEHICLE AERODYNAMICS (LAVA) @

LAVA is being developed at NASA Ames Research Center
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Time =

.High Pressure
O

lLow Pressure

o Essentially no manual grid generation
o Highly efficient Structured Adaptive

Cartesian AMR

Mesh Refinement (AMR)
o Low computational cost

o Reliable higher order methods are

available
o Non-body fitted -> Resolution of

boundary layers problematic/

inefficient




IMMERSED BOUNDARY METHOD (IBM) INTRODUCTION

//j>

d IBMs enable automatic volume mesh generation from
water tight surface triangulation(s)

d For problems involving moving and deforming
boundaries IBM provides clear advantages (for
example no mesh deformation needed)

O Main disadvantage is that at high Reynolds numbers,
IBMs become inefficient or require some type of wall
model

Qd Most immersed boundary methods are only lower order
accurate

0 LAVA Cartesian has two different IBM methods
available:

1. Ghost cell based scheme
(2010-present)

2. Interior only, higher order accurate schemes
(2015-present)



EXTENSIONS OF IBM FOR OPEN ROTOR @

| Extensions of IBM required
| for open rotor simulations:

" @® Optimizations for high-
performance:

- Interior only scheme

for thin geometry
- Geometry queries

- Re-computation of
iregular stencils

- Many others

(D Address accuracy

challenges that are

associated with IBM
discretizations for
moving geometry




IBM PERFORMANCE CHALLENGE.:. THIN GEOMETRY @

Interior only vs ghost cell based IBM: D B ot 55 ol
« Ghost cell based schemes require filling -___."”‘XB,./}?%./@"‘@

cells in solid which are used by interior ™ Tle L6 | ® | ® | @ | ®
stencils

e Inferior based schemes have stencils
. . . .Fluid Cell @ GhosﬁCeII E Solid Cell
bqsed Only On pOIHTS |n flUld QO IP - Image Point % Bl - Boundary Intercept

Interior only scheme

Ghost cell based scheme

Ld
|

For thin and/or under-resolved geometry,
interior only based schemes are far
superior!

Example showing Cartesian mesh refinement for a thin body:
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IBM PERFORMANCE CHALLENGE: GEOMETRY QUERIES @

High-performance queries
required for moving geometry: Example ray-surface intersection queries:
= Point inside/outside

= Ray-surface intersection
= Nearest point — —
= Box-surface intersection i |

® pierce pnt.
— X—rays in x—dir.

—» X—rays in y—dir.

Our approach is based on
surface triangulations:
= Exact queries, instead of
(approximate) level-sets
which are challenging for
thin and/or moving
geometry
= Using highly optimized
bounding volume
hierarchy (BVH) based
queries [thanks to Intel; and
Tim Sandstrom]

11



IBM ACCURACY CHALLENGE: POINT CLOUD SELECTION @

Interior only IBM does not use ghosts 11

: B irregular pnt.

Graph walking for stencil clouds: full | @ cloud 1 pnt. ~
_. cloud 2 pnt. prayd

clouds are built up from individual
clouds at irregular points (reduces - [ cloud 3 pa. /;/
number of intersection tests) -

74
The clouds are used to maintain “leak Z/
proof” discretizations for thin e
geometry: //'
= RHS operators 271

= Surface interpolation for output
= EfcC



IBM ACCURACY CHALLENGE: POINT CLOUD SELECTION @

Interior only IBM does not use ghosts L1

: M irregular pnt.

Graph walking for stencil clouds: full | @ cloud 1 pnt. -
| @ cloud 2 pnt. e

clouds are built up from individual
clouds at irregular points (reduces - B cloud 3 pat. /j/
number of intersection tests) 7

E 74
The clouds are used to maintain “leak id
proof” discretizations for thin e
geometry: l
= RHS operators 271

= Surface interpolation for output
= EfcC




IBM ACCURACY CHALLENGE: POINT CLOUD SELECTION @

Interior only IBM does not use ghosts 11

: M irregular pnt.

Graph walking for stencil clouds: full | ®cloud 1 pat. P
clouds are built up from individual _| @cloud 2 pnt T
_ | Ecloud 3 pnt. gy

clouds at irregular points (reduces
number of intersection tests)

The clouds are used to maintain “leak
proof” discretizations for thin
geometry:

= RHS operators 4

= Surface interpolation for output

= EfcC




IBM ACCURACY CHALLENGE: POINT CLOUD SELECTION @

Interior only IBM does not use ghosts T
:. irregular pnt.
@ cloud 1 pnt.
:. cloud 2 pnt.
| [ cloud 3 pnt.

Graph walking for stencil clouds: full
clouds are built up from individual
clouds at irregular points (reduces
number of intersection tests)

The clouds are used to maintain “leak
proof” discretizations for thin
geometry:

= RHS operators

= Surface interpolation for output

= EfcC




IBM ACCURACY CHALLENGE: FRESHLY CLEARED CELLS

Invalid time history at Freshly
Cleared Cells (FCC)

Utilize neighboring information to
update data in FCC (exclude
other FCCs in point cloud), ie
backfilling with least-squares + BC.

More advanced approaches are
being considered

16



IBM ACCURACY CHALLENGE: FRESHLY CLEARED CELLS @

Invalid time history at Freshly
Cleared Cells (FCC)

Utilize neighboring information to
update data in FCC (exclude
other FCCs in point cloud), ie

backfiling with least-squares + BC.

More advanced approaches are
being considered

B freshly—cleared pnt.

1-=Jrn+1



IBM ACCURACY CHALLENGE: TRAPPED POINTS @’

\ w
X /
, A\ ] 1
Occur in gaps that are smaller \ I B irregular pnt. _|_
. o \ 1 @ trapped L1 pnt.
than irregular stencil size L / @ trapped L2 pot,
\\\ / / [ neighbor of irregular pnt.
Current freatment is fo reduce \ I
order of accuracy in the 0 /
relevant direction \ //
e




IBM ACCURACY CHALLENGE: TRAPPED POINTS @

Occur in gaps that are smaller B iregularpot. |

. o . @ trappe nt.
than irregular stencil size :.:ﬁﬁji; ﬁn:

| [ neighbor of irregular pnt.

Current freatment is to reduce
order of accuracy in the
relevant direction




IBM ACCURACY CHALLENGE: TRAPPED POINTS @

M irregular pnt. [
@ trapped L1 pnt.

@ trapped L2 pnt.
[ neighbor of irregular pnt.

Occur in gaps that are smaller
than irregular stencil size

Current freatment is to reduce
order of accuracy in the
relevant direction
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IBM ACCURACY CHALLENGE: TRAPPED POINTS @

M irregular pnt. |
@ trapped L1 pnt.

o trapped L2 pnt.
[ neighbor of irregular pnt.

Occur in gaps that are smaller
than irregular stencil size

Current freatment is to reduce
order of accuracy in the
relevant direction
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-1.E

o

 Utilize wall model to mimic

A No-slip separates too early

IBM ACCURACY CHALLENGE: WALL BCS AT HIGH RE #

=8 BART

— UFAFF]'EXp
— sl
— No-slip

f— Wall Model

0

90

180

effect of viscous wall

and slip wall stays
attached all the way

A Viscous wall treatment is
an ongoing research

topic

WoII Model

U-Velocity  V-Velocity

S

Vorticity

Presented at AIAA BANC Il



OUTLINE

3. Computational and Experimental Setups
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FLow CONDITIONS @

9 x 15 Low-Speed Wind-Tunnel 8 x 6 SupersonieWind .,_f_ui.{.-‘}

g

¥y
-
. \
) Rad
X\ y
«

Rotation Speed [RPM] 6303/6303  6848/6848 NASA C-2011-620
Blade Setting (fwd/aft) [(]  40.1/40.8  64.4/61.8 B eee e s o s seesee
Mach 0.20 0.78

Pressure Sensors 35

® SO0 000 & 0 8 005 000

] L o ® O O 0 00000 0 0 o
2 3 9 16 108000 *00 5 0 0 000 000%4

12 9 17

Note:
« 12 fwd blades
« 10 aft blades




COMPUTATIONAL SETUP

Block Structured Cartesian Mesh

FWH

Each box contains 163 grid points

]

Q Higher-order shock capturing

scheme: modified ZWENO6

(Brehm, Barad, Housman, and Kiris, CAF-2015)
Q 4h-order explicit RK time-integration

with At defined through CFL=]

on previous experience with jet

Impingement problem

d Implicit large eddy simulation based

&

8 Levels:

AXin=8€e-3
N, =65M

Grid Refinement Study for M=0.2:

9 Levels:
AXin=4e-3
N;oi=110M

10 Levels:
AXpin=2€-3
N;o=160M

Vorticity

11 Levels:
AXmm=] 6_3
N;,=350M
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UNSTEADY FLOW FIELD — PASSIVE PARTICLE ViZ

Low Speed

High Speed

26



OUTLINE

4. Comparison with Experiments

27



COMPARISON WITH EXPERIMENTS (LOW SPEED) @

Velocity Magnitude Contours

Iso-surface of velocity magnitude with |v|/v.=0.84 (red) and 1.91 (blue)

.
/

0 Good agreement of velocity magnitude contours with experiment

O Evolution of tip vortices seems to be well captured

28



THRUST COMPARISON

Low Speed
5 _
i — — — — Experiment
i CFD (Fp only, coarse)
4r CFD (F, only, medium)
CFD (F, only, fine)
FIX 5 3
= 2% M=0.2
w e S
Y ~6%
~14% -
2
_||||||||||||||||||||1||||
0 1 2 3 4 )

rotor revolutions
d Note that only pressure drag was considered (ratio 4:100 for M=0.78)

d Agreement with experiment is in the range of other computations
(LAVA-Curvilinear, OVERFLOW, and FINE™/Turbo)

29



FAR-FIELD SPECTRA

SPL [dB]

Low Speed (at Probe 9) High Speed (at Probe 9)
Experiment
CFD
130 | | ] | | 160 |BPF2 '5BPE2 | ;
| | | | | _ 3BPF2 | |
| | ]BPF1 | | i BPF1 4BPF2
110} BPr2 : BPF1+ ?BF’F2+ SapEs’ : 140
BPF2 ‘ ' :
BPF1 | l | I _
| | l | ) |
! | S, ] l‘ | l 1
90 — \ [ H “ “ A - 120 | [ | |
| ) nl Q. i | l | |
| 4 ‘* " " " | o | | | |
| 1 | | | [ | |
70F | | | | | 100 | l | |
| | 1 | | ! | [ | 1
| | | | | | M [ \ | N
| | 1 | | i | [ | u 1
| T R T S N T T | T N W T N N N M A | | IR T |
5050 20 30 20 50 80 20 30 20 50
shaft order shaft order

Q Shaft order (SO) = frequency/shaft rotation rate
O BPF = blade passing frequency
BPF1 corresponds to forward 12 blades -> SO=12,
BPF2 corresponds to aft 10 blades -> SO=10
O Experiment has inflowing broadband content that is not modeled -> focus on BPF tones 30



FAR-FIELD SPECTRA

Low Speed o o B Experiment
130 & & c; Bl Fine
N o & 2 B Medium
L N o = L [ Coarse
110 [ E E‘; &5 0
o
S,
=90 ’
o
—
70 : .
’ Only consider tones with
| SO(mM,n)=12m+10n
50 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
shaft order
. : Shaft order (SO) =
N Experiment
190 | High Speed = CF% frequency/shaft rotation
rate
i E Ql
170 F & o N
L M o L
12} o o
0 — N o o
S, o ® o
=150t W 5 <
o
n
130 |
110 L

8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

shaft order 31



PLATE EFFECT IN HIGH SPEED CASE @

Probe #9
with Plate
160 no Plate
\ // 140‘
\ | // , g |l
=~ - : 120J\l T8
: a8 i I\
(- W
100 1|
' 4 \ [ I
! |
, i
80 1 L vJ L L 1 L L L L ]

50

shaft order
Q Plate effect was accounted for in no-plate results by assuming perfect
reflection (6dB=10l0g,,(2?))
Q Simulation with plate at first row of acoustic sensors
O Numerical simulation results with plate show odd tones
Q Plate affects broadband noise level

O Plate does not affect the most dominant tones
32



SPATIAL DEPENDENCE OF TONES (LOW SPEED)

130r o Bpmi

| —e—— BPF2
| —&—— OASPL

Fundamental Tones

- 4 - Experiment
—0— CFD

80 130
geometric angle [']

120

90|

(]

Grid Resolution S’rudy’

Experiment
Coarse (9 levels)
Medium (10 levels)
Fine (11 levels)

30

80 130
geometric angle [']

0 Fundamental tones decay rapidly away from the blades

O OASPL is increasing with increasing geometric angle (i.e. downstream)

O Small difference in OASPL for fine and medium mesh
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SPATIAL DEPENDENCE OF TONES (LOW SPEED)

130

| —e—— BPF1
| —e&—— BPF2
| —&—— OASPL

Fundamental Tones

- 4 - Experiment
—0— CFD

80 130
geometric angle [']

e

Higher-Order Interactions

- —e— BPF1+BPF2
| —e— BPF1+2BPF2

- —&—— BPF1+3BPF2 +20dB-shift

-20dB-shift

30 80 130
geometric angle [']

0 Fundamental tones decay rapidly away from the blades

O OASPL is increasing with increasing geometric angle (i.e. downstream)

O Small difference in OASPL for fine and medium mesh

O Higher-order inferaction tones obtain significant amplitudes similar to
fundamental fones
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SPATIAL DEPENDENCE OF TONES (HIGH SPEED) @

Horizontal Position - 4 - Experiment | Vertical Position
165 —e— BPF1 CFD
! — e— BPF2
e e —— o
1+ ‘ — e OASPL
1551 — e BPF1+BPF2
m 155}
O I
S [
145} !
B 45L&
[ o
135 ! 135 N
. . 04 06 08 1 T.o
X [m] y [m]

0 Fundamental tones dominate OASPL
0 Added tonal SPL with BPF1+BPF2 only for comparison
A General tfrends are well captured for low and high speed cases

O Broadband noise important at small x (<-0.4) and large x (>0.4)
35



SPATIAL DEPENDENCE OF TONES (HIGH SPEED) @

Broadband + Tonal Noise
160
R ]

Horizontal Position

-4 - Exp. —e— BPF ]
o —e— BPF2 S e WY .
CFD | o oaspL e - o Cruise
! ——e— BPF1+BPF2 155 ‘ NN |
B - g/ 5 \
= /17 broadband |\ e fofal
155 4 o-g-e |/ \ S
- - / ~ ‘ -
d —-‘“V'—M_\E,”B\\: ‘—-"‘“~\~!=’ \:E::E~‘$ Q‘O_-o
%) f (B \ Tl Ne
= 150 ; \ E-fr
2] / | ‘
= ! \
145 & 1 \_~ fonal
= ./ ‘\ )
~ 145 h N
i -~ Total ,
135 -—«-Tone Experimental data from
--=-Broadband Sree and Stephens
i --a- Tare (AIAA-2014-2744)
140 : : : :
40 60 80 100 120 140

Geometric Angle, degrees

0 Fundamental tones dominate OASPL
0 Added tonal SPL with BPF1+BPF2 only for comparison
A General tfrends are well captured for low and high speed cases

O Broadband noise important at small x (<-0.4) and large x (>0.4)
36



OUTLINE

5. Brief Analysis Acoustic Near-Field for
High and Low Speed Cases

37



UNSTEADY FLOW FIELD — NUMERICAL SCHLIEREN

Low Speed

High Speed

38



NEAR FIELD ACOUSTIC ANALYSIS (LOW SPEED) @/

Dominant BPF Normalized Max. Pressure Amplitude

BPF1BPF2

O Analysis captures acoustic waves but also hydrodynamic instability waves

A BPF1 and BPF2 are dominant in a very small region around the rotors and
along the tip vortices

Q Various higher-order interactions play an important role -



NEAR FIELD ACOUSTIC ANALYSIS (HIGH SPEED) @/

Dominant BPF

BPF1{BPF2

f
-
'n

O BPF1 and BPF2 are the dominant frequencies

O BPF1+BPF2 is dominant along the tip vortices and induces unsteady shock
motion that generates acoustic waves in the back

40



NEAR FIELD ACOUSTIC ANALYSIS (BPF2) @

Low Speed High Speed o amplitude

O BPF2 amplitude is dominant in small region around rotor for M=0.2 while
strong acoustic waves radiate away from the front rotor for M=0.78

O BPF2 remains dominant along the tip vortices for M=0.2

O Similar observations for BPF1 .



NEAR FIELD ACOUSTIC ANALYSIS (BPF 1 +BPF2) @

Low Speed High Speed
amplitude

\w. /
Q Interaction of rear rotor with fip vortex from front rotor generates
BPF1+BPF2 tone (C, D & F)

O Region B appears to originate from midsection of rear rotor

O Region E originates from the wake and plays dominant role for large
geometric angles 42



OUTLINE

6. Pylon Installed Low Speed Case

43



PYLON INSTALLED CASE: SETUP

Conditions:
Rotation Speed [RPM] 6303/6303

Blade Setting (fwd/aft) [°] 40.1/40.8
Mach 0.20

o Sound field measured at 1.524 [m] or 60 inches (same as previous
no pylon low speed case)
o Wall model used to generate a pylon wake. Previously, we used

slip wall BC (for no-pylon cases).

44



PYLON INSTALLED CASE: MESH @’

Entire domain Total: 157 Million Cells

1024mm

512mm

—

Zoom in on geometry

256mm

Entire domain size:
Length = 131.072 m
Height = 65.536 m
Width = 131.072 m

45



PYLON INSTALLED CASE. MESH
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PYLON INSTALLED CASE. MESH @

 Total: 157 Million Cells
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~ Finest level boxes shown in yellgw
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PYLON INSTALLED CASE: VORTICITY @ 2000 [1 /s]

No Pylon,
Slip Wall BC

48



PYLON INSTALLED CASE: VORTICITY @ 2000 [1 /s] @

With Pylon,
Wall Model BC




VOLUME RENDERING OF VORTICITY MAGNITUDE: PYLON CASE @

30000
25000
20000
15000
10000

|vorticity|

Notes: 1) Higher turbulence levels vs no-pylon case partially due to wall model
2) Pylon wake chopping enhances blade wake breakup 50



PYLON INSTALLED CASE: FFT @/

Shaft Order (Frequency) at Peak Amplitude:

No Pylon With Pylon

§
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PYLON INSTALLED CASE: FFT

Normalized Peak Amplitude:

No Pylon With Pylon

BPF1 gpf BPF1 BhG |
+BPF2 [apppy  +2BPF2 +2BPF2

Pressure normalized with
dynamic pressure
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PYLON INSTALLED CASE: FFT @/

Amplitude at BPF1

No Pylon With Pylon
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PYLON INSTALLED CASE: FFT @/

Amplitude at BPF2

No Pylon With Pylon
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PYLON INSTALLED CASE: FFT

Amplitude at BPF1 + BPF2

No Pylon With Pylon

i
—
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PYLON INSTALLED CASE: FFT @/

Amplitude at BPF1 +2BPF2

No Pylon With Pylon

-

ez
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PYLON INSTALLED CASE: FFT

Phase at BPF1

No Pylon With Pylon
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PYLON INSTALLED CASE: FFT

Phase at BPF2

No Pylon With Pylon
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PYLON INSTALLED CASE: FFT @

Phase at BPF1+BPF2

No Pylon With Pylon




PYLON INSTALLED CASE: FFT @

Phase at BPF1+2BPF2

No Pylon With Pylon
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MICROPHONE COMPARISON: PYLON VS NO PYLON

FWH Surface: 130

o N O T
LW L 5w w A o W L g Q.
f \ . — s . i
i | | 110 5 fra) o™ @ ™
" 'A | 100 .. ........ ........ ........ .......... .......... ........ . ......
)
T . : 90
The primary =
acoustic ”
influence of the
pylon is to oMLV LY N | amaiante oo e e e g 1
increase the R R R R R L B W With Pylon - CFD
individual rotor 60 7 EEA With Pylon - FWH]
harmonics BER  No Pylon - CFD
amplitude.” e
e . 00 12 14 16 18 20 26 28 30 32 34 36 38 40 42 44 46 48
Source: NASA Shaft Orders
TM-2015-218853 Pylon vs no pylon results:

* Pylon runs had higher SPL at most shaft orders (Exp and CFD)

*  Wall model improves results

* Blades chopping through pylon wake increase harmonic interactions,
and reduces SPL for BPF1 and BPF2

* Inflowing broadband content in wind tunnel, but not in CFD. Will
iImpact energy cascade to higher frequencies. 61



PASSIVE PARTICLES:. PYLON TRAILING EDGE SEEDS @

Seed colors:
= Pylon Edge

Notes: 1) Particles are pulled towards, and chopped by blades
2) Particles are swept around hub 62



PASSIVE PARTICLES:. BLADE TRAILING EDGE SEEDS @

Seed colors:
« Red = FWD Blade Edges
» Blue= AFT Blade Edges

Notes: 1) Higher turbulence levels vs no-pylon case partially due to wall model
2) Pylon wake chopping enhances blade wake breakup 63



PASSIVE PARTICLES:. PYLON AND BLADE TRAILING EDGE SEEDS @

Seed colors:

= Pylon Edge
« Red = FWD Blade Edges
» Blue= AFT Blade Edges

Notes: 1) Higher turbulence levels vs no-pylon case partially due to wall model
2) Pylon wake chopping enhances blade wake breakup 64



OUTLINE

/. Summary

65



SUMMARY @

d LAVA's sharp immersed boundary (IBM) method was used to simulate flow
around a contra-rotating open rotor for nominally takeoff and cruise
conditions, both free and pylon installed

d Key issues for simulating moving boundaries with IBM were addressed:

= Treatment of freshly cleared cells
= Treatment of thin geometry:
= |nterior only scheme
= Stencil cloud selection
= |nferpolafion to thin surfaces
= Efficiency improvements required (moving every tfime-stepl):
= Geometry queries
= Re-computation of irregular clouds and stencils

1 Acoustic data obtained from combination of CFD near-field + FWH method
compare well with experiments

A Distinct differences in low and high speed acoustic fields

= OASPL for M=0.78 peaks around 90° while OASPL keeps increasing with
increasing geometric angle for M=0.2

= High speed case is dominated by BPF1 and BPF2

= Low speed case showed complicated higher-order interactions that are
relevant for the OASPL

A Pylon installed and no-Pylon cases were compared
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QUESTIONS?
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UNSTEADY FLOW FIELD — PASSIVE PARTICLE ViZ

J i

M=0.78
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UNSTEADY FLOW FIELD — NUMERICAL SCHLIEREN

Low Speed Case

High Speed Case
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MICROPHONE COMPARISON. PROPAGATION METHODS @/
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Summary:
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Shaft Orders
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High-order CFD does surprisingly well for propagation to this
distance, but FWH is required for far-field.
Larger FWH surfaces not significantly improving comparisons

End cap averaging not significantly improving comparisons 71




