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Sources	of	Instabili(es	

1.  Sharp	gradients	lead	to	Gibbs	
phenomenon:	oscilla(ons	bring	
density	or	pressure	below	zero	

2.  Aliasing	leads	to	incorrect	physics:	
small	scales	are	seen	as	large	scales	
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Sources	of	Instabili(es	
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Sources	of	Instabili(es	

Similarity	between	sharp	gradients	and	
turbulent	flows:	
	
	

high	range	of	scales	
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Sources	of	Instabili(es	

Sharp	gradients	
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Sources	of	Instabili(es	

Energy	cascade	

7	 Saddoughi	and	Veeravalli,	1994	
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Increasing	robustness	

Op(ons:	
– Grid	refinement		
– Limi(ng		
– Ar(ficial	dissipa(on		
– Numerical	schemes	with	robustness	built-in		
– Filtering	(simplest	to	implement	in	HiFiLES)	
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Stability	of	Flux	Reconstruc(on	

10	

•  For	linear	fluxes,	FR	can	be	made	stable	
•  But	for	non-linear	fluxes	in	the	advec(on	

equa(on,	aliasing	becomes	a	problem:	

is	a	broken	Sobolev-type	norm		
Jameson	et	al.,	2011	
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Local	Fourier-spectral	Filters	
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We	could	stabilize	scheme	by	adding	
hyperviscosity	terms	
	
We’ll	see	that	hyperviscosity	terms	can	be	posed	
as	filters	

Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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In	the	case	of		

;	

Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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Asthana	et	al.,	2014	

There	is	hope!	

For	 ,	
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Local	Fourier-spectral	Filters	
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Can	implement	Fourier	filtering	via	convolu(on	

;	

Can	pose	addi(on	of	hyperviscosity	as	a	Fourier	
filtering	opera(on	with	kernel		

Asthana	et	al.,	2014	
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Burgers;	P=8;N=40;	ini(al	condi(on	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Burgers;	P=8;N=40;	impossible	without	stabiliza(on	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Box	filter;	Burgers;	P=119;	N=3	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Box	filter;	Sod’s	shock	tube;	P=8;N=56	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Shu-Osher	shock-turbulence	interac(on;	P=8;N=56	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Shu-Osher	shock-turbulence	interac(on;	P=8;N=448	

Asthana	et	al.,	2014	
LFS	Filters:	tensor-product	elements	
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Isotropic	box;	double	Mach	reflec(on	at	t	=	0.1;	P=8;	
N=56x224;	density	

Asthana	et	al.,	2014	

LFS	Filters:	tensor-product	elements	
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LFS	Filters:	order	vs.	accuracy	
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LFS	Filters:	order	vs.	accuracy	
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Asthana	et	al.,	2014	
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Filter	wish	list:	
1.  Physical	interpreta(on	
2.  Local	stencil:	use	element-wise	informa(on	

only	
3.  Preserve	boundary	condi(ons	
4.  Boundary	values	influence	internal	values	
5.  Posed	as	a	matrix	vector	mul(plica(on	
6.  General	to	all	elements	
7.  Preserve	a	linear	solu(on	

LFS	Filters:	desired	proper(es	
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Local	Fourier-spectral	Filters	

28	

Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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Filtering	in	each	element	becomes	a	matrix	
mul(plica(on!	 Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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Basis	func(on	needs	to	be	defined	outside	of		
Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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Possible	choice	in	1D:	

Asthana	et	al.,	2014	
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Local	Fourier-spectral	Filters	
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Possible	choice	in	2D:	

Asthana	et	al.,	2014	
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Triangles,	tetrahedra,	pyramids,	prisms	
	
Commonality:	
	
Internal	points	
	
Boundary	points	

LFS	Filters:	general	elements	
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Triangles,	tetrahedra,	pyramids,	prisms:	

LFS	Filters:	general	elements	

Internal	Component	 Boundary	Component	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Integral	can	be	evaluated	to	arbitrary	accuracy	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Using	a	
sharp-
spectral	
filter	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Let	us	look	at	some	of	the	modes	(eigenvectors	of					)	
being	filtered	(corresponding	eigenvalues)	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Requires	more	care.	
	
In	order	to	preserve	linear	solu(on,	assume	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

In	order	to	preserve	linear	solu(on,	assume	

When														,	we	would	like	to	obtain	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Preserva(on	of	linear	solu(on	requires	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Enforce	one	condi(on	per	row			:	
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LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Enforce	one	condi(on	per	row			:	

Introduce	unknowns	



ACL	43	

LFS	Filters:	general	elements	
Internal	Component	 Boundary	Component	

Enforce	one	condi(on	per	row:	

Minimize:	
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LFS	Filters:	general	elements	
Does	the	boundary	component	preserve	a	linear	
solu(on?	
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LFS	Filters:	general	elements	
Does	the	boundary	component	respect	boundary	
influences?	
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LFS	Filters:	general	elements	
What	is	their	combined	effect?	
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LFS	Filters:	general	elements	
What	is	their	combined	effect?	
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Robustness	in	2D:	Re	=	1e6	
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Low	quality	grid	for	such	high	Re	number	
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Robustness	in	2D:	Re	=	1e6	
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Low	quality	grid	for	such	high	Re	number:	up	close	
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Robustness	in	2D:	Ma	=	0.2,	Re	=	1e6	,	P=4	
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Robustness	in	2D:	Ma	=	7.7e-2,	Re	=	1e6,	P=4	
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Robustness	in	2D:	Ma	=	1.5,	Re	=	1e6,	P=4	
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Robustness	in	2D:	Ma	=	7.7e-3,	Re	=	1e6	
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Robustness	in	2D:	Ma	=	7.7e-3,	Re	=	1e6	
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Robustness	in	2D:	Ma	=	7.7e-3,	Re	=	1e6,	P=4	

56	



ACL	

Robustness	in	2D:	Ma	=	7.7e-3,	Re	=	1e6,	P=4	
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Effects	on	flow	2D:	Ma	=	0.1,	Re	=	3.9e3	
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Ma	=	0.1,	Re	=	3.9e3,	P	=	4,	Unfiltered	
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Ma	=	0.1,	Re	=	3.9e3,	P	=	4,	Filtered	
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Ma	=	0.1,	Re	=	3.9e3,	P	=	4,	Unfiltered	
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Ma	=	0.1,	Re	=	3.9e3,	P	=	4,	Filtered	
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Conclusion	

63	

• Developed	filters	with	physical	
interpreta(on	for	general	elements	
•  compact	stencil	
• performed	via	small	matrix	mul(plica(on	
•  implemented	in	GPUs	

• Stabilized	extreme	simula(on	cases	with	
lijle	to	no	tuning	
• De-coupled	robustness	from	grid	quality	
•  Implementa(on	shared	on	
hifiles.stanford.edu,	in	LFS-filters	branch	
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Future	Work	
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•  Implement	filters	on	tetrahedral	
elements	

	
• Es(mate	minimal	filtering	needed	

• Assess	usefulness	as	pre-condi(oner:	
boundary	condi(ons	are	sa(sfied	
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Ques(ons?	
mlopez14@alumni.stanford.edu		
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