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❖ Shape Optimization
❖ Steady flows
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Low-Order Methods

Image Courtesy: Car: Pointwise; Lungs: Youbin Ying; 
Planet: Vriesema Jess  
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High vs. Low

❖ Dissipation

❖ Computational Efficiency

Image Courtesy: Vermiere et al. 

pyFR vs. STARCCM+
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High-Order Methods

❖ Vortex Dominated Flows

❖ Aeroacoustics

Image Courtesy: Wings: Persson and Peraire; Landing Gear: Hoffman et al.(Unicorn) 
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High-Order Methods
❖ Why are they not 

adopted in the industry?  

❖ Lack of Robustness

❖ High-Order Mesh 
Generation

❖ BCs, Time-stepping
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Image Courtesy: Josep Sarrate Ramos 
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Outline
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Introduction

❖ Unstructured High 
Order Methods  

❖ FR Formulation 

❖ Motivation

Linear Stability 
Theory

❖ Tensor Product 
Elements 

❖ Advection Equation  

❖ Advection-Diffusion 
Equation

Compressible Flow 
Simulation

❖ Shock Capturing 
Strategy  

❖ Shock Detection  

❖ Numerical Results
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Part I: Introduction
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High-Order Extensions
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Methodology Examples +/-

Finite Difference
• Stencil Widening
• Compact forms

• Compact FD + Efficient
- Only Structured

Spectral Methods • Sinusoids
• Spectral 
• Spectral Element

+ Efficient
- Structured

Finite Volume

• High-order 
interpolation

• ENO
• WENO

+ Unstructured
- Non-Compact
- Limited order

Finite Element

• High-order 
polynomial

• CG-FEM
• DG-FEM
• SD, FR

+ Unstructured
+ Compact
+ Arbitrary order
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Discontinuous Galerkin 
FEM

❖ Integral or Weak Form of PDE 

❖ Solution discontinuous across 
elements 

❖ Suitable for hyperbolic PDEs  

❖ High-order polynomials 

Image Courtesy: Bottom: Kauffman et al., ETH Zurich 
CG vs. DG
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Flux Reconstruction
❖ Unifying Framework - can recover 

DG and SD schemes  

❖ Parametrized Family
❖ Time-step
❖ Dispersion and Dissipation  

❖ Differential or Strong Form 

❖ Explicit Time-stepping: GPUs

10

Image Courtesy: NVIDIA 
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FR Formulation in 1D

11

Ωk Ωk+1

• Consider the 1D Conservation Law

@u

@t

+

@f

@x

= 0 where f = f(u)

• Discretize the domain into elements
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FR Formulation in 1D
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• Transform quantities and equation inside each element to a

reference domain ⌦S : [�1, 1]

• Suppose we have the (discontinuous) solution ûD
at a time-step

and we want to compute the solution at next time-step
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Ωk Ωk+1

FR Formulation in 1D
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Discontinuous Solution (ûD
)

pth degree
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Ωk Ωk+1

FR Formulation in 1D
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pth degree

Discontinuous flux (

ˆfD
)
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Ωk Ωk+1

FR Formulation in 1D
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pth degree

Discontinuous flux (

ˆfD
)
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Ωk Ωk+1

FR Formulation in 1D
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(p+ 1)th degree

Continuous flux (

ˆf =

ˆfD
+

ˆfC
)
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FR Formulation in 1D
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• Calculate the derivative of the flux and time-advance to get ûD

at next time-step

dûD
k

dt
= �Dh

ˆfk
D
�D ˆfk

C

• For second order PDEs (di↵usive fluxes), split into first-order

PDEs and perform similar procedure for each
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FR Formulation in 1D
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@u

@t

+
@f

@x

= 0 in ⌦; where f = f

�
u,

@u

@x

�

@u

@t

+
@f(u, q)

@x

= 0

q � @u

@x

= 0

Split
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VCJH Correction Functions
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❖ Single-parameter (denoted c) 
family - can recover DG, SD, G2 
schemes by varying this 
parameter  

❖ Built to get energy stable schemes 
for linear problems  

❖ Can vary c to get different 
dissipation, dispersion and time-
step limits.  

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

c−/2 cDG cSD cHU clarge

Scheme with P = 3



Aerospace Computing Laboratory

Motivation
❖ Lower Dissipation: More 

prone to nonlinear 
instabilities 

❖ Discontinuities/Shocks: 
Gibbs Phenomena  

❖ Loss of hyperbolicity/
unphysical solutions  

❖ Accuracy affected

20
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Part II: Linear Stability 
Analysis

21
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Part III:  
Compressible Flow Simulation

22
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Design Considerations

❖ Sub-cell shock capturing  

❖ Suitable for explicit time-stepping schemes; GPUs  

❖ Suitable for unstructured grids  

❖ Not problem/physics/scheme specific 

23
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Current Methods
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Method Advantages Disadvantages

Limiting
• Eliminates oscillations
• Robust

• Smeared over elements
• Expensive

Artificial Viscosity
• Sub-cell shock capturing
• Smoothly varying viscosity

• High-order derivatives
• Time-step restrictions
• Too many parameters

Filtering
• Sub-cell shock capturing
• Very Inexpensive

• Varying dissipation not 
easy

• Needs a good sensor
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Shock Capturing Strategy
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Detect Shocks Distinguish between shocks and 
vortices/boundary-layers

Filter locally

Two-step approach

Strong filter for shocks

Minimize parameter fine-tuning
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Filtering
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• Consider a conservation law of the form

@u

@t

+

@f(u)

@x

= 0

• Suppose we add an artificial dissipation term to stabilize

@u

@t

+

@f(u)

@x

= ✏(�1)

s+1


@

@x

(1� x

2
)

@

@x

�s
u
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Filtering
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• The time-step limit now scales as

�t ⇠ 1

�
max

P 2/h+ k✏k
L

1P 4/h2

• Needs space-local time-stepping or time-adaptivity to some-

what alleviate the problem
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Filtering
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We can solve this approximately in a time-splitting fashion

• First, we solve the original ODE

@u

@t

+
@f(u)

@x

= 0

• Then we do a Forward Euler time-step of the dissipation term

@u

@t

= ✏(�1)s+1


@

@x

(1� x

2)
@

@x

�s
u
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Filtering
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• Note that the solution can be represented by a hierarchical Legendre

polynomial basis

u

h
=

PX

n=0

ûn
˜

Pn(x)

• Using this, the artificial dissipation equation approximately reduces

to

u

h,⇤
(x, t) '

PX

n=0

�(

n

P

)ûn
˜

Pn(x)

• Filtering is equivalent to approximately implementing artificial dissi-

pation
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Polynomial Modal Filtering
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• Starting from u, compute the modal coe�cients:

ˆu = V�1u

• Filter modal coe�cients:

˜

ˆu = ⌃

ˆu

• Convert back to nodal:

˜u = V ˜

ˆu

• Can be cast as one matrix-vector multiplication:

˜u = Fu where F = V⌃V�1
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Exponential Modal Filters
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�(⌘) =

(
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Nc
P

exp(�↵
�⌘�⌘c

1�⌘c

�s
), ⌘c  ⌘  1
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Implementation
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• Execute a full time-step of original PDE

• Sense shocks and apply filter where necessary (post-processing

operation)

• Fix

⌘c = 0 s = 2 ↵ = 1

Vary only filter strength ↵ based on shock strength
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Shock Detection
❖ Suitable for unstructured high-order methods

❖ Sub-cell shock capturing  

❖ Inexpensive  

❖ Separation of Scales: Distinguish between shocks and vortices/
boundary layers 

❖ General: Physics/Scheme independent

33
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Current Methods
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❖ Physics based

❖ Specific to problem or type of discontinuity

❖ Need derivatives: expensive

❖ Hard to extend to unstructured  

❖ Smoothness based

❖ Used successfully in low-order schemes

❖ Persson and Peraire - high order unstructured methods
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Persson and Perraire’s Method 
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• Based on (lack of) decay of the modal coe�cients

Sensor ⇠ E
highestdegreemodes

E
overall

• Asymptotic property: Not reliable at ‘low’ orders

• Threshold selection and clear distinction between shocks and

other gradient regions is hard
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Concentration Method

36

❖ Used for image/MRI edge detection

❖ Works directly on Fourier spectral information
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Concentration Property
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• Suppose you have the spectral projection of a function:

S
N

(f) = �
NX

k=�N

ˆf
k

eikx

• If f has a discontinuity, then:

ˆf
k

= [f ](c)
e�ikc

2⇡ik
+O(

1

k2
)
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Concentration Property

38

• There exist special Kernels s/t

K

✏

⇤ S
N

(f) = [f ](x) +O(✏)

• Kernel action is of the form

K

�

N

⇤ S
N

(f) = i⇡

NX

k=�N

sgn(k)�(

|k|
N

)

ˆ

f

k

e

ikx

• � - concentration factors
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Jacobi Polynomials
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• Eigenfunctions of the Sturm-Liouville problem:

((1� x

2
)!(x)P

0
k(x))

0
= ��k!(x)Pk(x) � 1  x  1

with weight !(x) = (1� x

2
)

↵

• The polynomial modal coe�cients also show a lowered decay rate:

ˆ

fk =

1

�k
[f ](x)(1� x

2
)!(c)P

0
k(x) +O(

1

�

2
k

)

where �k = k(k + 2↵+ 1)
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Jacobi Polynomials

40

• Concentration property for Jacobi polynomials with �1  ↵  0:

��⇡
p
1� x

2

N

SN (f)

0
(x)� [f ](x)

��  Const

(1� x

2
)

↵/2+1/4
· logN

N

• Legendre Polynomials are special cases (↵ = 0) of Jacobi Polynomials

• Can be applied on the modal coe�cients similar to filter



Aerospace Computing Laboratory

Nonlinear Enhancement

41

• As N ", this separation increases

• However, we generally have small N . We need further separation of
scales.

✏

�p/2(K✏ ? f(x))
p ⇠

(
✏

p/2
, at a smooth point x 6= c

([f ](c))p✏�p/2
, at a discontinuity x = c
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Performance at low orders
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❖ Good separation of scales even at “low” orders
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Implementation in 1D

❖ Pre-compute the Concentration matrix C  

❖ Choose a quantity: E.g. Density and normalize the 
elemental solution to [0,1]  

❖ Compute the kernel by pre-multiplying by C

45
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Implementation in 1D

❖ Perform Nonlinear Enhancement  

❖ If any point in the element has this value greater than 
threshold, mark element for filtering  

❖ Threshold: In between max. kernel values for step and 
ramp

46
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Extension to 2D and 3D
❖ For tensor product elements, use 1D method along x and y (and z) 

slices

47
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Extension to 2D and 3D
❖ For triangles and tetrahedra, transform to equivalent tensor product 

elements by un-collapsing

48
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Positivity Preservation

❖ Entropy-based limiter proposed by Zhang & Shu, 
improved by Lv and Ihme.  

❖ Two step process:

❖ Limit Density at all quadrature points to stay positive

❖ Limit Pressure to satisfy entropy bound

53
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Positivity Preservation

❖ High-order accurate in smooth regions; first order near 
discontinuities  

❖ Preserves positivity of cell average at next time-step if 
you follow a CFL condition  

❖ Use TVD RK3 scheme or SSP scheme 

54
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Numerical Experiments

55
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Numerical Experiments

❖ 2D and 3D simulations run using an in-house code 
ZEFR developed by Josh Romero, ACL.   

❖ Uses DFR (Direct Flux Reconstruction) - Triangles and 
Tets using a collapsed-edge tensor product formulation  

❖ Run on GPU clusters - ICME GPU Cluster, XStream 
cluster 

56
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1D Shock Tube
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Image Courtesy: Internet 

Num Elements Order Filter Order Final Time

100 6 2 0.4s

⇢(x, 0) =

(
1 for x <

1
2 ,

0.125 for x � 1
2

p(x, 0) =

(
1 for x <

1
2 ,

0.1 for x � 1
2

u(x, 0) = 0
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1D Shock Tube
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Variable Weak Filter Strong Filter

Error in L2
Error in L1

Error in L2
Error in L1

⇢ 0.007615 0.059184 0.017483 0.094786

u 0.037212 0.512378 0.074807 0.613601

p 0.006965 0.085243 0.015243 0.110720

M 0.031808 0.431799 0.065749 0.510206

Table 1: Norms of the di↵erence between the numerical and analytical

solutions at t = 0.4 for the two testcases.
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2D Transonic Flow: Quads
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Mach AoA Num Elem Order Filter Order Filt Strength

0.8 1.25° 4096 5 2 1

❖ Euler Equations 

❖ NACA 0012 airfoil  

❖ Steady State; p-Multigrid 

❖ 64 x 64 O-mesh
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2D Transonic Flow: Quads
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2D Transonic Flow: Quads

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

−
C

P

Top
Bottom

Reference: Vassberg and Jameson, Journal of Aircraft, 2010

FLO82  
4096 x 4096 points320 x 320 points 
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2D Transonic Flow: Quads
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2D Transonic Flow: Quads

CL CD

Mean 0.352052 0.022468
Std 0.000178 0.000039

NDOF = 102, 400

Reference: Vassberg and Jameson, Journal of Aircraft, 2010
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2D Transonic Flow: Quads
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❖ 6-8x iteration; 2-3x wall-clock time speedup
❖ Can we do better?
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2D Transonic Flow: Quads

❖ Take a cue from JST 

❖ Add a 4th order 
filter in smooth 
regions! 

❖ Can be switched off 
after initial speed-up 
for order of accuracy
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2D Transonic Flow: Triangles
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Mach AoA Num Elem Order Filter Order Filt Strength

0.8 0° 11464 4 2 1

❖ Euler Equations 

❖ NACA 0012 airfoil  

❖ Steady State 

❖ Unstructured Tri mesh
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2D Transonic Flow: Triangles
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2D Transonic Flow: Triangles

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

−
C

P

Top

Bottom



Aerospace Computing Laboratory

2D Supersonic Viscous Flow

71

Mach AoA Re Num Elem Order Filter 
Order

Filt 
Strength

1.2 2° 60,000 72,790 4 6* 1

❖ Navier-Stokes Equations 

❖ NACA 0012 airfoil  

❖ Hybrid Mesh  

❖ Adiabatic no-slip wall
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2D Supersonic Viscous Flow

T = 3.85
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2D Supersonic Viscous Flow

T = 3.85
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Supersonic flow over a step
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Mach Flow Angle Num Elem Order Filter Order Filt Strength

3.0 0° 63,004 3 2 5

❖ Euler Equations 

❖ Structured Quad Mesh  

❖ Sensor at ramp  

❖ Positivity Limiter
0.6

3

0
.2

1

Ma = 3

Wind Tunnel with Step
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Supersonic flow over a step

Density



Aerospace Computing Laboratory 77

T = 4

T = 4

Ref: Woodward and Colella
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T = 4

T = 4
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Shock Wave-Boundary Layer Interaction

79

Reference: Degrez et al., JFM, 1987
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Shock Wave-Boundary Layer Interaction
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❖ Navier Stokes 
Equations 

❖ Laminar flow  

❖ Structured Quad Mesh

Mach AoA Re Num Elem Order Filter 
Order

Filt 
Strength

2.15 30.8° 100,000 19,000 3 2 1
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Shock Wave-Boundary Layer Interaction

82
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Shock Wave-Boundary Layer Interaction
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Our Simulation
U. Bergamo
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Our Solution
U. Bergamo

Reference: 4th Int’l Workshop on High-Order Methods in CFD
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3D Transonic Flow over a sphere
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Mach AoA Num Elem Order Filter Order Filt Strength

0.7 0° ~80,000 3 2 1

❖ Euler Equations 

❖ Steady State 

❖ Spherical Domain
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3D Transonic Flow over a sphere
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3D Transonic Flow over a sphere
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Our Solution Reference Solution

Reference: Karanjkar P, UoF
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Summary

❖ Novel approach for shock detection  

❖ Efficient and Robust shock capturing strategy

❖ Minimizes Parameter fine-tuning

❖ Aliasing, Convergence Acceleration, Mesh 
Adaptation

❖ General - other high-order schemes, PDEs
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Thank You  
 

Questions?
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Appendix
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References

❖ F1 image: Pointwise v17 Release picture

❖ Lungs: Youbing Yin, U Iowa
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❖ MHD: Vriesema Jess, Uni. of Arizona

❖ Presented at NASA SC14
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Details of pyFR vs STARCCM+
❖ DNS of Taylor Green:  

❖ Re 1600, Ma = 0.1, Run until t = 20t_c; Figure at 15t_c

❖ 256^3 hexahedral elements for STARCCM+

❖ Show results are with pyFR P 8 scheme (29^3 = 261^3 DOF)

❖ Circular Cylinder:

❖ Re 3900, Ma = 0.2

❖ ~ 13.5 million DOFs for both; pyFR used P 4

❖ pyFR - implicit LES; STAR - WALE SGS Subgrid scale model

❖ Similar phases in the vortex shedding cycle
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Insights Gained
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❖ Vincent et al. considered a spatially varying flux 
wherein the DG case develops aliasing instabilities (case 
from Hesthaven and Warburton). 

❖ For such a case, with central flux, DG blows up, but c- 
scheme blows up at an earlier time. SD and G2 don’t 
blow up.
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Discontinuous Solutions
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Discontinuous Solutions
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❖ Loss of pointwise convergence 
at the shock

❖ Reduction to first order 
accuracy away from shock

❖ Persistent Oscillations 
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Notes on DFT/Fourier coeffs
❖ DFT can be applied on any non-periodic function - The DFT 

will be equivalent to the Fourier coefficients of the N-periodic 
continuation of the non-periodic function.  

❖ Non-uniform DFT (NDFT) also uses some polynomial 
interpolation (Lagrange or Newton), so it is more natural to just 
use the polynomial version  

❖ If f is C^k, the decay rate is 1/n^k. But if the k+1 derivative is 
piecewise continuous, the decay rate is 1/n^{k+1}
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T = 0.026s T = 0.038s
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T = 2.5

T = 2.5
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Shock Wave-Boundary Layer Interaction
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Separation Point Reattachment Point
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3D Transonic Flow over a sphere
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3D Transonic Flow over a sphere
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3D Transonic Flow over a sphere
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Angle 114 degrees Angle 111.7 degrees
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Part II: Linear Stability 
Analysis
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Background
❖ FR approach - proposed by 

Huynh in 2007 & 2009  

❖ VCJH correction functions -  
stable family of FR schemes in 1D  

❖ Extended to triangles and 
tetrahedra
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Image Courtesy: PhD Thesis, Williams D. M. 
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Tensor Product Elements
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(�1,�1) (1,�1)

(1, 1)(�1, 1)

v1
k

v2
k

v3
k

v4
k

x

y

⇠

⌘

Figure 1: Transformation from physical to reference domain
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Tensor Product Elements

❖ Simple Extension of 1D  

❖ Normal continuity 

107

But is this stable?
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1st Difficulty
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• Consider flux representation in 1D vs 2D:

ˆfD
=

PX

i=0

li(⇠) ˆf
D
i vs. ˆfD

=

pX

i=0

pX

j=0

li(⇠)lj(⌘) ˆf
D
ij

• Now consider taking pth derivative of the conservation law:

@ûD
k

@t
= � ˆr · ˆfk

D
� ˆr · ˆfk

C

Does not vanish :(
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2nd Difficulty
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(�1,�1) (1,�1)

(1, 1)(�1, 1)

v1
k

v2
k

v3
k

v4
k

x

y

⇠

⌘

Jacobian not constant inside an element, even for straight-sided elements
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2D Linear Advection Equation
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• Consider the 2D conservation law on a periodic domain

@u

@t
+r · f = 0 in ⌦ ,

• f is a linear flux of the form

f = au with f =

✓
F
G

◆
and a =

✓
a
b

◆
.

• We want to show that a certain suitable norm of the solution is non-

increasing
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Proof of Stability
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Lemma 1.

1

2

d

dt

Z

⌦k

Jk(u
D
k )2d⌦k = �

Z

⌦S

ûD(r̂ · f̂D)d⌦S �
Z

�S

ûD(f̂C · n̂)d�S

� c

1Z

�1

dp+1hL(⇠)
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@pûD
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✓ pX
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�Lj lj(⌘)

◆
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@pûD

@⇠p

✓ pX

j=0

�Rj lj(⌘)

◆
d⌘

| {z }
A2

� c
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dp+1hL(⌘)
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@pûD

d⌘p

✓ pX
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�Bj lj(⇠)
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A3
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1Z
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@pûD
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Proof of Stability
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Lemma 2.

1

2
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2

� @

@t
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✓
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����
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� c
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Proof of Stability
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Lemma 3.
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@pûD

@⌘p
dp+1hR(⌘)

d⌘p+1

✓ pX

j=0

�Tj lj(⇠)

◆
d⇠

| {z }
A4

+

✓ pX

j=0

�Lj

@plj(⌘)

@⌘p

◆✓
� @pûD
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Proof of Stability
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Lemma 4.
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Proof of Stability
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• Combining the lemmas, we get

d

dt
kuDk2

W

2p,2
�

= ⇥

adv

+ c⇥
extra

• The norm is a broken Sobolev norm defined as

kuDk2
W
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�
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Proof of Stability
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Main Result
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Theorem 1. If the FR scheme for a 2D conservation law with

periodic boundary conditions is used in conjunction with the

Lax-Friedrichs formulation for the common interface flux with

0  �  1, then it can be shown that for a linear advective

flux and any Cartesian mesh, the following holds:

d

dt
kuDk2 = ⇥

adv

+ c⇥
extra

 0 if c � 0
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Insights Gained
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❖ The VCJH parameter shows up explicitly, unlike 1D  

❖ As c increases, dissipation increases  

❖ Negative values of c make the scheme less stable, but 
could provide lesser dissipation
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Linear Advection-Diffusion
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• Consider the 2D Advection-Di↵usion Equation

@u

@t
+r · f(u,ru) = 0 in ⌦

• We solve this by splitting it into a system of first order PDEs:

@u

@t
+r · f(u, q) = 0

q �ru = 0
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Main Result
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• Six Lemmas later ...

d

dt
kuDk2

W 2p,2
�

 0 when c � 0


