Recent Advances of the Lattice-Boltzmann Method for the Simulation of Transonic Flows

Swen Noelting

With contributions from: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan, Yanbing Li et al.
Ehab Fares, Damiano Casalino, Benedikt König, Benjamin Duda, André Ribeiro et al

Applied Modeling & Simulation (AMS) Seminar Series
May 10, 2016
Outline

- Motivation: CFD Applications in Aerospace
- Overview of PowerFLOW Projects at NASA
- Theory & Background
 - LBM
 - Turbulence model
 - Wall treatment
 - Extension to transonic flows
- Transonic Code Validation and Application Examples
 - Fundamental Validations
 - Industrial Application Examples
CFD Applications in Aerospace

- **CFD (RANS) well established**
 - Analysis at Design Point
 - Steady-State CFD

- **Limited Use of CFD**
 - Some off-design configurations
 - Limited unsteady CFD

- **No Productive Use of CFD**
 - Towards virtual certifications
 - Full flight envelope
 - LES (?)
Motivation – Vision 2030

- CFD Vision 2030
 - 2014 Report to NASA by Key Industry Players (Boeing, Lockheed, Pratt&Whitney,...)

- Main challenges for CFD to move beyond current status:
 - Efficient handling of unsteady turbulent flows with significant regions of separation
 - Mesh generation
 - Robustness and automation of CFD simulations
 - Efficient use of HPC infrastructure
 - Managing very large amounts of data
 - Multi-disciplinary analysis & optimization

- Hybrid RANS-LES and wall-modeled LES seen as best prospects

- Can LBM provide a contribution to address these challenges?
Outline

- Motivation: CFD Applications in Aerospace

- Overview of PowerFLOW Projects at NASA

- Theory & Background
 - LBM
 - Turbulence model
 - Wall treatment
 - Extension to transonic flows

- Transonic Code Validation and Application Examples
 - Fundamental Validations
 - Industrial Application Examples
Aeroacoustic Predictions
NASA ERA Project

- Simulation-based airframe noise predictions
 - Simulated geometry: As-built 18% scale Gulfstream model
 - Baseline configurations
 - 39° flap deflection, main gear removed
 - 39° flap deflection, main gear deployed
 - Most flap and gear concepts simulated prior to wind tunnel testing
 - ROLD, FENoRFins, FLEXSEL, etc.
 - Solid and porous versions of knee, wheel, brake fairings
 - Sample quiet configuration
 - FENoRFins plus fully treated main gear

- Accomplishments
 - Predicted farfield noise for baseline and quiet configurations in good agreement with14x22 measurements
 - Established computational simulations as an accurate predictive tool
 - Paved the way for application to full-scale
Airframe Noise – Flap Edge Noise

NASA ERA Project – G550

Time-averaged

© Exa Corporation
Airframe Noise – Flap Edge Noise

All simulations were carried out prior to wind tunnel tests.
Airframe Noise – Noise Reduction Concepts

Baseline

FLEXSEL

ROLD

FENoRFins
Computational Mesh

~2.6m half-span

~1mm hole size

© Exa Corporation
Baseline v. quiet Configurations

Flap 39º, main gear on configuration

Baseline Configuration (flap 39º, main gear on)

Treated Flap and Gear Configuration (flap 39º, main gear on)

Baseline Quiet
Flap Noise Reduction Concepts

Experiment 14x22 WT

<table>
<thead>
<tr>
<th></th>
<th>FLEXSEL</th>
<th>ROLD*</th>
<th>FINS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OASPL (baseline – concept) [dB] (1kHz – 30kHz)</td>
<td>3.6</td>
<td>3.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

PowerFLOW Simulations

<table>
<thead>
<tr>
<th></th>
<th>FLEXSEL</th>
<th>ROLD*</th>
<th>FINS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OASPL</td>
<td>4.3</td>
<td>4.7</td>
<td>3.9</td>
</tr>
</tbody>
</table>

All simulations were carried out prior to wind tunnel tests

The aerodynamic values shown here correspond to the smallest holes and fin diameter tested
Flow Control

Source
AIAA 2012-3239
Tail Rudder with Active Flow Control
Aerodynamic Simulation of Realistic 3D Ice Shapes

3D Ice Shapes provided by NASA/Glenn

Drag

Lift

Moment
3D Ice Shape – Surface Flow Visualization

Wind Tunnel Oil Flow

PowerFLOW Skin Friction Lines

reattachment
Fan Noise: RC2 Fan/OGV Configuration
Flow results between rotor & stator – comparison with NASA measurements

R = 100 % r_max

R = 80% r_max

R = 60% r_max
Far-field noise results

Measurements from:
Comparison of Far-Field Noise for Three Significantly Different Model Turbofans

Richard P. Woodward
NASA Glenn Research Center, Cleveland, Ohio 44135

Sideline emission angle (deg)

OASPL (dB)
High Speed Applications
Outline

- Motivation: CFD Applications in Aerospace
- Overview of PowerFLOW Projects at NASA

Theory & Background
- LBM
- Turbulence model
- Wall treatment
- Extension to transonic flows

Transonic Code Validation and Application Examples
- Fundamental Validations
- Industrial Application Examples
Boltzmann kinetic theory describes fluid behaviour based on particle density distribution function

\[f(\bar{x}, \bar{c}, t) \]

particle number density at time t and position x with velocity \(\bar{c} \)

Boltzmann Equation:

\[
\frac{\partial}{\partial t} f(\bar{x}, \bar{c}, t) + \bar{c} \cdot \nabla f(\bar{x}, \bar{c}, t) = \Omega
\]

- LHS represents advections of particle distribution in space at fixed velocity for each \(\bar{c} \)
- RHS defined the collision process that involves inter-particle interactions
- Collision process can be modeled as simple relaxation to its equilibrium state (e.g. the BGK form*)
Lattice Boltzmann Methods

Discretization in space and time, using a finite set of discrete particle velocity values to represent the hydrodynamic properties:

Lattice Boltzmann Equation:

\[f_i(\vec{x} + \vec{c}_i, t + 1) - f_i(\vec{x}, t) = \Omega_i(\vec{x}, t) \]

BGK form of collision:

\[\Omega_i(\vec{x}, t) = -\frac{1}{\tau} \left[f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right] \]

Lower order LBE model recovers the Navier-Stokes equation at the nearly incompressible limit**

*Chen & Doolen 1998, **Qian et al. 1992., Chen et al 92
Macroscopic quantities are direct results of the moments of particle density distributions

- **Density** \(\rho(\vec{x}, t) = \sum_{i} f_i(\vec{x}, t) \)
- **Velocity** \(\rho(\vec{x}, t)\vec{u}(\vec{x}, t) = \sum_{i} \vec{c}_i f_i(\vec{x}, t) \)
- ...

Pressure obeys the thermally perfect gas law

\[
P = \rho \theta \quad \theta = RT
\]
No-slip/freeslip BCs are achieved via bounce-back/specular-reflection process*

![Diagram of bounce-back and specular reflection](image)

Momentum flux across the fluid-solid interface corresponds to surface pressure and wall shear stress*

\[
\mathbf{F} = p\hat{n} + \tau_w \hat{t} \sim \sum_{m \in \text{Pgrams, out}} \left(\mathbf{c}_m f_m \right)^\text{out} - \sum_{n \in \text{Pgrams, in}} \left(\mathbf{c}_n f_n \right)^\text{in}
\]

Generalized slip algorithm has been formulated to realize turbulence wall boundary conditions (slip velocity with imposed wall frictions)
Remarks

- Properly constructed LBE models can recover N-S physics, ... and beyond!
- LBM is a very accurate solver with extremely low numerical dissipation
 - Convection is exact due to the limited discrete velocities
- Very efficient for performing time dependent flow simulations
- A very robust solver due to realizability, and stability condition is a priori guaranteed

Plus Special Features of LBM Implementation in PowerFLOW
- Near wall physics (surfel concept)
- LBM-VLES turbulence model
- Variable resolution
- Efficient parallel implementation
- Extension to supersonic speeds
LBM-VLES Turbulence Model

- LBM-VLES turbulence model concept
 - Single turbulence model for all flow conditions
 - Resolved turbulent structures are simulated directly, unresolved scales are modeled
 - Subgrid contributions are accounted for by an effective relaxation time scale

\[
 f_i(\bar{x} + \bar{c}_i \Delta t, t + \Delta t) - f_i(\bar{x}, t) = -\frac{1}{\tau} \left(f_i - f_i^{eq} \right)
 \]

\[
 F_i(\bar{x} + \bar{c}_i \Delta t, t + \Delta t) - F_i(\bar{x}, t) = -\frac{1}{\tau_{\text{effective}}} \left(F_i - F_i^{eq} \right)
 \]

- Modification of turbulent flow relaxation time
 - Derived from a systematic renormalization group (RNG) procedure

\[
 \tau_{\text{effective}} = \tau_0 + \tau_{\text{turb}}, \quad \tau_{\text{turb}} = C_{\mu} \frac{k^2}{\varepsilon T} \frac{1}{\sqrt{1 + \tilde{\eta}^2}}, \quad \tilde{\eta} = \psi(\eta_s, \eta_\Omega, \eta_h, \ldots)
 \]

 - where \(\tilde{\eta} \) is the time scale of mean flow (strain, swirl, buoyancy, ...)
 - Effectively reduces eddy-viscosity in regions of high vortical fluctuations (e.g. separated regions)
 - Conceptually similar to DDES & SAS

- LBM-VLES contains HOT to account for non-linearity of the Reynolds stress

Near Wall Physics in PowerFLOW

- **Surfel Concept**
 - *Arbitrary orientation & shape of elements*
 - *Near wall Sampling*
 - All needed weights pre-computed based on near wall volume elements
 - Ensure Conservation
 - **Momentum exchange**
 - Correspond to changes in pressure and friction
 - *Second Order Accuracy*
 - *Extended wall model for high Re#*
 - Including pressure gradient effects
Once surface grids and regions of refinement are defined, volume grid generation is fully automatic.
Efficient Parallel Implementation

<table>
<thead>
<tr>
<th></th>
<th>Power-FLOW</th>
<th>CFL3D</th>
<th>CEDRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turb. Model</td>
<td>VLES</td>
<td>MDDES</td>
<td>ZDES</td>
</tr>
<tr>
<td>Number of Elements</td>
<td>123M</td>
<td>43M</td>
<td>61M</td>
</tr>
<tr>
<td>Number of Procs.</td>
<td>276</td>
<td>240</td>
<td>480</td>
</tr>
<tr>
<td>CPU-hrs for 1s</td>
<td>21,000</td>
<td>854,000</td>
<td>1,960,000</td>
</tr>
<tr>
<td>simulated time*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Manoha (Onera), Caruelle (Airbus), AIAA-2015

Lagoon (BANC-III)

Velocity PSD

Farfield PSD

© Exa Corporation
Efficient Parallel Implementation

Stanford WMLES*
CPU-hrs: 17,000,000**

PowerFLOW***
CPU-hrs: 5,000**

** CPUh normalized for 1 flow pass and a span of 1 chord

*** Simulations executed in collaboration with NASA
Rigorous Theory based on Hermite Expansions
(Shan et al, 1998, 2006)

- **Projection of LBM in Hermite Polynomials**
 - Expansion coefficients are the moments of distribution function
 - No assumption on small Ma# or constant Temperature

- **Truncate the expansion to certain order**

- **Represent solution in Velocity Space**
Extension of LBM to Transonic/High speed Flows

- High order multi-speed LBE models (D3Q27, D3Q39, D3Q125 ...)

- Hybrid approach to couple with thermal dynamics field

\[
\partial_t S + u_\alpha \partial_\alpha S = -\frac{1}{\rho \theta} \partial_\alpha q_\alpha + \frac{\Phi}{\rho \theta}, \quad S = c_v \ln \left(\frac{\theta}{\rho^{\gamma-1}} \right)
\]

Outline

- Motivation: CFD Applications in Aerospace
- Overview of PowerFLOW Projects at NASA
- Theory & Background
 - LBM
 - Turbulence model
 - Wall treatment
 - Extension to transonic flows
- Transonic Code Validation and Application Examples
 - Fundamental Validations
 - Industrial Application Examples
Transonic Code Validation & Application

Fundamental Validations
- CDV nozzle
- Shock over Wedge
- RAE 2822 Airfoil
- Transonic Bump
- CRM

Industrial Applications
- Fan Noise
- Flow Control
- Jet Noise
- Buffet
2D CDV Nozzle (DNS): Sub-sonic/Transonic/Supersonic Flow Conditions

- Converge-Diverge Nozzle configuration
- Compared with analytical 1D inviscid flow solution
- Simulated at low viscosity at various flow conditions
Collision of a Planar Shock with a Finite Wedge Setup

Shock Tube Setup

High Pressure

Low Pressure

Fixed Wall

Outlet

Finite Wedge

Initial Conditions:
P4/P1 = 4.0, T4/T1 = 1

Boundary Conditions:
No-slip walls
Outlet pressure P1
Re 50000

Grid Resolutions:
Coarse h/128
Medium h/256
Fine h/512
Collision of a Planar Shock with a Finite Wedge

Animation of the plane shock moving over the finite wedge (Animation time 0.001 s)

Planar shock moves at Mach 1.34
Collision of a Planar Shock with a Finite Wedge

$t = 91 \ \mu \text{sec}$

$t = 0$ corresponds to the instant, when the planar shock first collides with the finite wedge
Collision of a Planar Shock with a Finite Wedge

\[t = 128 \, \mu \text{sec} \]

\[t = 0 \text{ corresponds to the instant, when the planar shock first collides with the finite wedge} \]
Collision of a Planar Shock with a Finite Wedge

t = 0 corresponds to the instant, when the planar shock first collides with the finite wedge.

$t = 151 \mu \text{sec}$

Experiment
AOA (Angle of Attack) = -2°

L_ref = 1 m
Area_ref = 1 m^2

Uoo
T_ref

P_ref

L_ref

X

Y

AOA

Inlet

Constant Grid Distribution

Frictionless Walls

VR-Interface

7.2 * L_ref

3.6 * L_ref

Outlet

2D-Turbulent-Simulation
Moo = 1.4
Re = 3.24E+07

P_ref
Rho_ref = 1.161 kg/m^3
T_ref = 300° K
AOA = -2°

P_ref = 100000 Pa

Re = 3.24E+07

© Exa Corporation
Grid
Resolution 512 per chord (coarse)
Voxel-Size 1000/512 = 1.95 mm
Total Voxels 1.46 Mill.
Fine Equivalent Voxels 1.01 Mill.
Supersonic Diamond Airfoil

Pressure Distribution for Moo 1.4 and AOA -2

Compression waves

Expansion waves

\[
P/P_{oo} \quad [\cdot] \\
0.7 \quad 1.4
\]
Supersonic Diamond Airfoil

P/P_{oo} on the Upper- and Lowerside of the Diamond Airfoil at Moo 1.4 and AOA -2°

- Simulation Upperside (Medium Grid)
- Simulation Lowerside (Medium Grid)
- Analytic-Solution (Upperside)
- Analytic-Solution (Lowerside)
Supersonic Diamond Airfoil

<table>
<thead>
<tr>
<th>Angle of Attack AOA °</th>
<th>-2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow Mach Number Moo</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grid</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>Analytic-Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift Cl [-]</td>
<td>0.1471</td>
<td>0.1474</td>
<td>0.1463</td>
<td>0.1473</td>
</tr>
<tr>
<td>Drag Cd [-]</td>
<td>0.0165</td>
<td>0.0165</td>
<td>0.0165</td>
<td>0.0165</td>
</tr>
</tbody>
</table>

Pressure Relation P1/Poo	1.0502	1.0501	1.0502	1.0502
Pressure Relation P2/Poo	0.7821	0.7819	0.7820	0.7838
Pressure Relation P3/Poo	1.2823	1.2820	1.2821	1.2841
Pressure Relation P4/Poo	0.9551	0.9555	0.9530	0.9553

Mach Number M1	1.3617	1.3637	1.3661	1.3650
Mach Number M2	1.5616	1.5625	1.5652	1.5690
Mach Number M3	1.2109	1.2165	1.2215	1.2152
Mach Number M4	1.4241	1.4260	1.4267	1.4310

Resolution coarse = 512 per chord
Resolution medium = 768 per chord
Resolution fine = 1024 per chord
Axisymmetric Transonic Bump

- Part of NASA’s 40% challenge
- Includes shock-induced separation, widely-used dataset for many years, axi-symmetry removes 2D questions
- RANS typically overestimates separation bubble by 20-30%

Axisymmetric Transonic Bump

- Volume cut shows location and sharpness of shock
- Skin friction contours indicate flow separation
- Iso-surfaces of λ_2 highlight resolved turbulent fluctuations in wake
- Unsteady flow in separation after shock captured
- Improved prediction of separation length and skin friction compared to standard RANS
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Case 1 no shock
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma [-]</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA [°]</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re [10^6]</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Case 6 moderate shock
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma [-]</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA [°]</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re [10^6]</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

A strong shock wave is observed in Case 10, indicating a very high level of turbulence and pressure change in the flow. The table below summarizes the Mach number (Ma), Angle of Attack (AoA), and Reynolds number (Re) for each case:

<table>
<thead>
<tr>
<th>Case</th>
<th>Ma [-]</th>
<th>AoA [°]</th>
<th>Re [10⁶]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.676</td>
<td>1.8148</td>
<td>5.7</td>
</tr>
<tr>
<td>Case 6</td>
<td>0.729</td>
<td>2.4508</td>
<td>6.5</td>
</tr>
<tr>
<td>Case 9</td>
<td>0.73</td>
<td>2.6873</td>
<td>6.5</td>
</tr>
<tr>
<td>Case 10</td>
<td>0.75</td>
<td>2.7147</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

Case 10
coarse

<table>
<thead>
<tr>
<th></th>
<th>coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>X-fine</th>
<th>XX-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (cells / chord)</td>
<td>592</td>
<td>888</td>
<td>1333</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>Voxels ([10^3])</td>
<td>63</td>
<td>138</td>
<td>300</td>
<td>667</td>
<td>1500</td>
</tr>
<tr>
<td>CPUh</td>
<td>30</td>
<td>65</td>
<td>160</td>
<td>480</td>
<td>1880</td>
</tr>
<tr>
<td>Wallclock on 32 cores [h]</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>X-fine</th>
<th>XX-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (cells / chord)</td>
<td>592</td>
<td>888</td>
<td>1333</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>Voxels [10^3]</td>
<td>63</td>
<td>138</td>
<td>300</td>
<td>667</td>
<td>1500</td>
</tr>
<tr>
<td>CPUh</td>
<td>30</td>
<td>65</td>
<td>160</td>
<td>480</td>
<td>1880</td>
</tr>
<tr>
<td>Wallclock on 32 cores [h]</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>X-fine</th>
<th>XX-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (cells / chord)</td>
<td>592</td>
<td>888</td>
<td>1333</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>Voxels $[10^3]$</td>
<td>63</td>
<td>138</td>
<td>300</td>
<td>667</td>
<td>1500</td>
</tr>
<tr>
<td>CPUh</td>
<td>30</td>
<td>65</td>
<td>160</td>
<td>480</td>
<td>1880</td>
</tr>
<tr>
<td>Wallclock on 32 cores [h]</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 Airfoil

Case 10

<table>
<thead>
<tr>
<th>Resolution (cells / chord)</th>
<th>coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>X-fine</th>
<th>XX-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voxel $[10^3]$</td>
<td>63</td>
<td>138</td>
<td>300</td>
<td>667</td>
<td>1500</td>
</tr>
<tr>
<td>CPUh</td>
<td>30</td>
<td>65</td>
<td>160</td>
<td>480</td>
<td>1880</td>
</tr>
<tr>
<td>Wallclock on 32 cores [h]</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th>Resolution (cells / chord)</th>
<th>coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>X-fine</th>
<th>XX-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>592</td>
<td>888</td>
<td>1333</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>Voxels [10^3]</td>
<td>63</td>
<td>138</td>
<td>300</td>
<td>667</td>
<td>1500</td>
</tr>
<tr>
<td>CPUh</td>
<td>30</td>
<td>65</td>
<td>160</td>
<td>480</td>
<td>1880</td>
</tr>
<tr>
<td>Wallclock on 32 cores [h]</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th>Case</th>
<th>Ma [-]</th>
<th>AoA [°]</th>
<th>Re [10^6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.676</td>
<td>1.8148</td>
<td>5.7</td>
</tr>
<tr>
<td>Case 6</td>
<td>0.729</td>
<td>2.4508</td>
<td>6.5</td>
</tr>
<tr>
<td>Case 9</td>
<td>0.73</td>
<td>2.6873</td>
<td>6.5</td>
</tr>
<tr>
<td>Case 10</td>
<td>0.75</td>
<td>2.7147</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma [-]</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA [°]</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re [10^6]</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma [-]</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA [°]</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re [10^6]</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Transonic Flow over the RAE 2822 airfoil

Shock-induced separation expected to be better captured in 3D

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 6</th>
<th>Case 9</th>
<th>Case 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma [-]</td>
<td>0.676</td>
<td>0.729</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>AoA [°]</td>
<td>1.8148</td>
<td>2.4508</td>
<td>2.6873</td>
<td>2.7147</td>
</tr>
<tr>
<td>Re [10^6]</td>
<td>5.7</td>
<td>6.5</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
3D Onera-M6

Span, b 1.1963 meters
Mean Aerodynamic Chord, c 0.64607 meters
Aspect Ratio 3.8
Taper Ratio 0.562
Leading-edge Sweep 30.0 degrees
Trailing-edge Sweep 15.8 degrees

<table>
<thead>
<tr>
<th>Mach #</th>
<th>Reynolds #</th>
<th>AoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84</td>
<td>11.72E6</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>AR</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1.196 m</td>
</tr>
<tr>
<td>Λ_{LE}</td>
<td>30°</td>
</tr>
<tr>
<td>Λ_{TE}</td>
<td>15.8°</td>
</tr>
<tr>
<td>λ</td>
<td>0.562</td>
</tr>
<tr>
<td>τ</td>
<td>0.646 m</td>
</tr>
<tr>
<td>S</td>
<td>1.506 m²</td>
</tr>
</tbody>
</table>
Flow-field Images

Mach

T/To

P/Po

rho/rho0
3D Onera-M6
Sectional Cp on Surface
NASA-CRM Model

- DPW4 Geometry
 - Reference CFD Data
 - Wing-body & tail
 - Supercritical wing
 - Built to the design-shape
 - Twist correction information available

- Measured at several Windtunnels
 - ETW, NTF, NASA Ames 11ft, JAXA JTWT
Wing Twist Correction

![Graph showing twist correction with baseline and twist corrected data.]

PowerDELTA® morphing
Simulated Geometry

ETW blade sting support including rounding
Computational Mesh*

<table>
<thead>
<tr>
<th></th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (cells / MAC)</td>
<td>683</td>
<td>1024</td>
<td>1536</td>
</tr>
<tr>
<td>Voxels [10^6]</td>
<td>30</td>
<td>88</td>
<td>274</td>
</tr>
<tr>
<td>CPUh [10^3]</td>
<td>5.4</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>Wallclock on 360 cores [d]</td>
<td>0.6</td>
<td>2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

* Simulated with Symmetry
* additional resolution to resolve sting negligible
Results

Results

- DPW4 Geometry (NASA CRM model)

Results

- DPW4 Geometry (NASA CRM model)

Results – Wing Twist and Sting Effects

M=0.85
Re=5×10⁶
Results – Wing Twist and Sting Effects

- DPW4 Geometry (NASA CRM model)

M=0.85 Re=5×10^6
Results – Wing Twist and Sting Effects

M=0.85
Re=5\times10^6
\alpha=2.9^\circ
Transonic Code Validation & Application

Fundamental Validations

- CDV nozzle
- Shock over Wedge
- RAE 2822 Airfoil
- Transonic Bump
- CRM

Industrial Applications

- Fan Noise
- Flow Control
- Jet Noise
- Buffet
• Full Span Flap (FSF) Configuration
• Re = 4.3 M
• Mach = 0.2
• Laminar to turbulence transition (LTT) included
TrapWing: Drag & Lift

Lift vs. AOA

Drag vs. AOA

Cl vs Cd

Moment vs AoA
Sectional Surface Pressure

LTT
Full-Turb

Locations of Pressure Taps (Config 1 - deployed)

Section 50
Surface Streamlines – AoA 32

LT

FullTurb

© Exa Corporation
NASA - Active Flow Control

Unactuated, Cmu=0.0

Actuated, Cmu=1.5%

C_p at 89% span

Exp. data (Cmu=0.0)
Exp. data (Cmu=1.0%)
Exp. data (Cmu=1.5%)
CFD (Cmu=0.0)
CFD (Cmu=1.0%)
CFD (Cmu=1.5%)

© Exa Corporation
Applications

- S&C Data
- Unsteady Loads
- Airframe Noise
- Control Surfaces & Spoilers
- Sting Correction
- Aero Loads Data (static)
- Propulsion Aerodynamics
- High Speed Wing Design
- Inlet Design
- Jet & Installation Noise
- Aft Body Design
- WT Corrections
- Icing
- Wing Body Fairing
- Nacelle Design
- Flow Control
- Ground Effect
- High-Lift Design
- Buffet Boundary
- Engine Integration
- Fan Noise
- Vortex Generators
Jet Noise: SMC000 (SP46): $Ma=0.9$, $T_j/T_o=2.7$

<table>
<thead>
<tr>
<th>$M_j = U_j/a_j$</th>
<th>$M_a = U_j/a_{inf}$</th>
<th>T_j/T_{inf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.548</td>
<td>0.90</td>
<td>2.70</td>
</tr>
</tbody>
</table>
3D SMC Jet, SP46: Centerline mean and RMS velocity

Mean velocity

RMS velocity
3D SMC Jet, SP46: Radical profiles of mean and RMS velocity

SMC000-sp46, profiles-vx at downstream locations from jet exit
Mj=0.5, Tj/To=2.7

Exp.
Reso-90
Reso-60
Reso-40

Exp. Consensus, Bridges Wemet 2010
• LBM-VLES (reso-90)
LBM-VLES (reso-40)
3D SMC Jet, SP46, FW-H OASPL and Far-field probes

\[R = 100 \text{ D}_j \]

OASPL

![Graph showing SPL (dB) at 250 Hz and 2000 Hz vs. Observation angle (deg) for different angles of 90°, 135°, and 150°.]

Measurements (Brown, Bridges 2006)
- PowerFLOW (1-domain FW-H)
- PowerFLOW (2-domain FW-H)

© Exa Corporation
Co-axial Nozzle case

<table>
<thead>
<tr>
<th>jet</th>
<th>M</th>
<th>Ma</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>0.87</td>
<td>1.41</td>
<td>2.65</td>
</tr>
<tr>
<td>secondary</td>
<td>0.90</td>
<td>0.90</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tinney & Jordan, JFM 611, 2008 – co-axial subsonic jets © Exa Corporation
Supersonic Jets (Work in Progress)
RC2 Case @12567 rpm

Density on rotor suction side
Flow analysis: slice @ r/R=0.8

Relative Mach number

Total Pressure

Mach [dimensionless]

Total Pressure [Pa]
Flow analysis: slice @ r/R=0.8

Density

Density Gradient

Density [kg/m^3]
0.700 0.852 1.005 1.157 1.309 1.500

grad_rho [kg/m^4]
0.00 20.00 40.00 60.00 80.00
Liner Simulation - Preview

- 1 DoF honeycomb liner
- Realistic orifice diameter, face sheet thickness and porosity (> 8000 orifices and honeycomb cells)
- Optimal design for BPF-2 and ~BPF-4
- Expected broadband properties because of slightly variable depth
Outlook: High-Speed Buffet
Buffeting study on OAT15A Supercritical Airfoil

- Shock wave- boundary layer interaction involving large scale instabilities.
- Preliminary 2D simulation at $M = 0.73$, angle of attack $= 3.5^\circ$, $Re \approx 3e6$

- Close agreement of average coefficient of pressure over the surface and amplitude of oscillation with experiments*.

Buffeting study on OAT15A Supercritical Airfoil (2D)

Frequency of oscillation (experiments): 78 Hz
Obtained frequency: 82 Hz
Summary

- Extension of LBM to transonic & supersonic flows
 - Achieved through hybrid higher-order LBM scheme
 - Enables simulations up to ~Mach 2.0
 - Preserves all key advantages of low speed LBM versions

- Main Initial Application Targets
 - Unsteady high-speed aerodynamics (buffet, ...)
 - Flow control
 - Propulsion noise: fan, jet & installation noise

- Status of LBM with regard to CFD Vision 2030 Report
 - Efficient handling of unsteady turbulent flows with significant regions of separation
 - Mesh generation
 - Robustness and automation of CFD simulations
 - Efficient use of HPC infrastructure
 - Managing very large amounts of data
 - Multi-disciplinary analysis & optimization
Thank You!