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Presentation Outline 

•  Summary of previous research 
•  Objectives 
•  Implicit DES off-body solver 
•  Validation using HART II rotor 

–  Airload prediction for baseline, 
minimum noise, and minimum 
vibration cases 

–  Wake prediction for the baseline 
case 

•  Summary 
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HART	
  II	
  Work	
  using	
  Helios	
  

HART II Baseline case 

•  2012: Helios V3 (Lim et al., 
AHS 2012) 
–  NSU3D unstructured near-

body solver 
–  Wake prediction using 

Adaptive mesh refinement 
(AMR) in off-body 

–  Airload predictions were in 
good agreement with 
measured data 

–  Poor wake predictions due 
to coarse near-body blade 
grid 
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Lim et al. “Helios Adaptive Mesh Refinement for HART II Rotor  
Wake Simulation”, 68th AHS Forum, Fort Worth, TX, May 2012. 
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HART	
  II	
  Work	
  using	
  Helios	
  

•  2014: Helios V4 (Jain et 
al., J. AHS 2015) 
–  Very fine structured 

blade grid (20M nodes) 
using OVERFLOW 

–  Fixed off-body grid with 
2% chord spacing in 
the finest level 

–  Vortex strength 
predictions in excellent 
agreement with 
measured data 
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Jain et al. “Modular Multisolver Approach for Efficient High-Fidelity 
Simulation of the HART II rotor”, J. of AHS, Vol 60, 2015, pp.1-11 
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HART	
  II	
  Work	
  using	
  Helios	
  
HART II Baseline case - Continued 

•  2016: Helios V5 (Jain et al., AIAA 2016) 
–  Integration of NASA’s FUN3D in Helios 
–  Same unstructured grid as 2014 
–  Airload prediction comparable to OVERFLOW and wake prediction similar 

to NSU3D 

191817

OVERFLOW 

FUN3D 
Jain et al. “Modularization and Validation of FUN3D  as a CREATE-AV Helios Near-
body Solver”, 54th AIAA SciTech Forum, San Diego, CA, January 2016 
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Objec6ves	
  

•  Validate Helios version 6 
–  FUN3D integrated in Helios as a near-body solver 
–  Compare the three-near body solvers: NSU3D, FUN3D, and OVERFLOW 
–  Evaluate SAMCart: Implicit off-body solver with DES 

•  Understand the difference between the structured and unstructured 
grids 

•  Aerodynamic loads comparison for three conditions 
–  Baseline (BL): Very strong blade-vortex-interaction (BVI) 
–  Minimum noise (MN): Includes higher-harmonic control (HHC) to reduce 

noise 
–  Minimum vibration (MV): Includes HHC to  
        reduce vibration 

•  Comparison of wake prediction for BL case 
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Helios	
  Mul6-­‐mesh	
  Paradigm	
  

Multi-Mesh CFD Paradigm
- Unstructured/Structured  Near-Body
- Adaptive Cartesian Off-Body
- Overset Connectivity 

SAMCart 
Off-body solver 
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•  Reynolds-averaged Navier-Stokes (RANS) 

•  2nd order implicit BDF time integration 

•  Unstructured solver 
–  Spatially 2nd order accurate 
–  NSU3D 

o Central difference with artificial dissipation 
–  FUN3D 

o Approximate Riemann solver based spatial discretization 
o 2nd order implicit BDF2OPT time integration 

•  Structured solver 
–  OVERFLOW 

o Central difference up to 5th order  spatial discretization 

Near-­‐body	
  Solvers	
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SAMCart off-body Solver 

•  Replaced ARC3D (used in SAMARC) 
with new “Cart” solver 

•  Implicit solver added 
–  Explicit is fast and efficient but suffers 

from time step restrictions  
–  Implicit – local & global 

•  LU-SGS 
•  ADI – diagonally dominant variation 
•  Gauss Seidel Line relaxation 

–  Viscous  4th-Order terms 
–  SA & DES turbulence modeling 

•  Global implicit scheme intended 
for running on large number of 
processors 
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Simula6on	
  Setup	
  

•  40% Mach-scaled model of Bo105 rotor with 2m radius and 
0.121m chord 

•  Tests conducted at DNW wind tunnel 

•  A descending flight at µ = 0.15 and corrected shaft angle 4.3° 

•  MN and MV cases have HHC with 3/rev and blade root pitch 
control and a corrected shaft angle of 4.12° 

•  Prescribed blade motions from a previously coupled simulation 
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Computa6onal	
  Grid	
  
•  Rotor grid 

–  Extends to one chord from surface 
–  Structured blade grid 

o  5M nodes per blade 
o  Fine mesh with 2% chord spacing from 80% to 

tip 
–  Unstructured blade grid 

o  3.5M nodes mixed element grid 
o  Refinement in the tip region 

•  Fuselage grid  
–  Unstructured fuselage grid with  0.8M nodes 
–  Same fuselage grid for all cases 

•  Off-body Cartesian grid  
–  2.5% c  in fine level with 500M nodes for BL case  
–  5% c in fine level with 113M nodes for MN and MV 

cases 

Unstructured 
fuselage mesh 

Cartesian wake mesh 

Structured/ 
Unstructured 
blade mesh 
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Run	
  Condi6ons	
  

•  Time step 0.1 deg azimuth (3600 time steps/rev) 

•  30 sub-iterations per time step for near-body 

•  12 sub-iterations per time step for off-body 

•  Spalart-Allmaras turbulence model with rotation correction 

•  4 full rotor revolutions for convergence 

•  Computation time in seconds using 1024 processors 

Near-body 
(sec) 

Order of 
convergence 
 

Off-body 
 (sec) 

Total/step 
(sec) 

 Number of 
nodes/blade 

OVERFLOW 2.8 3.5 31 38.4 5M 

NSU3D 7.3 0.5 31 46 3.5M 
FUN3D 20.5 4 31 68.2 3.5M 
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Normal	
  Force	
  –	
  Baseline	
  Case	
  

Radial station r/R = 0.87 Advancing side 

•  All codes agree well with the data 

•  BVI events captured well 

•  Small phase shift in NSU3D  
	
  

Retreating side 
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Normal	
  Force	
  Gradient	
  –	
  Baseline	
  

Radial station r/R = 0.87 Advancing side Retreating side 
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Normal	
  Force	
  Gradient	
  –	
  Baseline	
  

•  Gradient	
  computed	
  as	
  
deriva2ve	
  of	
  airload	
  
with	
  rotor	
  azimuth	
  

•  Important	
  for	
  acous2c	
  
calcula2ons	
  

•  Magnitude	
  of	
  BVI	
  
spikes	
  show	
  the	
  
intensity	
  of	
  noise	
  

•  OVERFLOW	
  predic2ons	
  
compare	
  closely	
  with	
  
data	
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Normal	
  Force	
  –	
  Minimum	
  Noise	
  

Radial station r/R = 0.87 
Advancing side 

•  All codes agree well with the data 

•  BVI events captured well 

•  Small phase shift in NSU3D  
	
  

Retreating side 

3/rev  HHC pitch control input 
ΘHHC = 0.8*cos(3Ψ+300°) 

Gradient of normal force 
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Normal	
  Force	
  –	
  Minimum	
  Vibra6on	
  
Radial station r/R = 0.87 

Advancing side 

•  All codes agree well with the data 

•  Small phase shift in NSU3D  
	
  

Retreating side 

3/rev  HHC pitch control input 
ΘHHC = 0.8*cos(3Ψ+180°) 

Gradient of normal force 
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Measured	
  Vor6city	
  Field	
  
Baseline,	
  r/R	
  =	
  0.87	
  

Pos 17 Pos 18 Pos 19 

Pos 20 

Pos 21 

Pos 22 

Pos 23 

(* Unscaled PIV images) 
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Computed	
  Wake	
  Iso-­‐surface	
  

OVERFLOW 

FUN3D NSU3D 

•  Iso-surfaces of Q criterion 
colored with vorticity 
magnitude (Q = 1e-4) 
	
  

Vorticity 
magnitude 
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Wake	
  Predic6on	
  
Posi6ons	
  1,9,17	
  

•  Vortices at positions 1,9, and 17 are young vortices of high 
strength 

•  Measured peak vorticity ranges from 21 to 52 

•  CFD predictions show significant loss of strength from 
position 1 to position 9 

Near-body blade mesh Off-body wake mesh 
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Wake	
  Predic6on	
  
Posi6ons	
  1,1a,b,c	
  

•  Additional positions (1a, 1b, 1c) near position 1 considered to 
compare the different solvers 

•  OVERFLOW predicts a stronger vortex at 1c 

•  NSU3D prediction of  vortex strength at 1c is weaker compared to 
FUN3D 

Near-body blade mesh Off-body wake mesh 



AVN Rev Guidance/Format 13 Nov 08 .ppt 22 

Comparison	
  of	
  Mesh	
  Resolu6on	
  
Posi6ons	
  1a-­‐c	
  

•  Loss  of unstructured grid resolution  from position 1 to 1c 

•  Same scale is used for all plots 

Vorticity 
magnitude 
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Wake	
  Predic6on	
  
Posi6ons	
  17a-­‐h	
  

•  PIV measurements taken at intervals of 5° wake age starting from 5.3° 

•  OVERFLOW predicts the strongest vortex at 17a 

•  NSU3D predicts a weaker vortex at 17a compared to FUN3D 

•  Finer near-body (20M) and off-body mesh (2% c) with OVERFLOW from Jain et al. 
significantly improves the predictions 

Near-body 
blade mesh Off-body wake mesh 

Ref: Jain et al. “Modular Multisolver Approach for Efficient High-Fidelity 
Simulation of the HART II rotor”, J. of AHS, Vol 60, 2015, pp.1-11 
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Vortex	
  Posi6on	
  

	
  

•  Vortex position is predicted well by all three solvers 
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Advancing	
  Side	
  Predic6ons	
  
Pos 17 Pos 18 Pos 19 

OVERFLOW 

NSU3D 

FUN3D 

Measured data 

•  OVERFLOW predicts 
the strongest vortex at 
17 

•  NSU3D and FUN3D 
have diffused vortices 
at 18 and 19 

•  NSU3D missed the 
shear layer prediction at 
position 17 

Missing shear layer 
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Implicit	
  DES	
  vs	
  Explicit	
  Inviscid	
  Solver	
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•  Implicit DES off-body solver is 
comparable to explicit Euler 

Normal force at r/R = 0.87 

Advancing side vortex strength predictions 

Ref: Jain et al. “Modularization and Validation of FUN3D  
as a CREATE-AV Helios Near-body Solver”, 54th AIAA 
SciTech Forum, San Diego, CA, January 2016 
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Summary	
  
•  Presented a comparison of the three near-body solvers in Helios 

using HART II rotor dataset  

•  Airload Predictions 
–  Airloads for baseline, minimum noise, and minimum vibration cases are 

predicted well by all three solvers 
–  Sharper BVI peaks are better resolved by OVERFLOW 
–  FUN3D predictions are closer to OVERFLOW for all three cases 
–  NSU3D shows a slight phase shift in BVI predictions 

•  Wake Predictions 
–  OVERFLOW predictions of peak vorticity are in closest agreement with 

measured data 
–  FUN3D predicts stronger peak vortex in the near-body region compared 

to NSU3D 
–  Implicit off-body with DES comparable to explicit Euler off-body 

•  Future work will use Strand solver for near-body 
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