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«AMRDEC

Yrbecom)  presentation Outline

« Summary of previous research
« Objectives
* Implicit DES off-body solver

« Validation using HART Il rotor

— Airload prediction for baseline,
minimum noise, and minimum
vibration cases

— Wake prediction for the baseline
case

« Summary
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HART Il Baseline case
« 2012: Helios V3 (Lim et al.,

AHS 2012) %ﬂ%ﬁ
— NSU3D unstructured near- i 0
body solver o N
Hole cut /S0 Wi

— Wake prediction using
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Lim et al. “Helios Adaptive Mesh Refinement for HART Il Rotor
Wake Simulation”, 68t" AHS Forum, Fort Worth, TX, May 2012. WARFIGHTER FOCUSED.
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* 2014: Helios V4 (Jain et
al., J. AHS 2015)

— Very fine structured
blade grid (20M nodes)
using OVERFLOW

— Fixed off-body grid with

N Off-body
= Cartesian mesh

Fuselage and hub
unstructured mesh

——Blade structured or
unstructured mesh

2(%) Chord SpaC|ng in |Rotorwake: ~800 million points, static adaption (noAMR)|
the finest level | Fuselage and hub: 0.8 million points
— Vortex strength —
T . 100 — 123 —
predictions in excellent 17E —
. N\
e~ 1] 22—
agreement with e 7 = [21] ~—
measured data g — o 7
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Jain et al. “Modular Multisolver Approach for Efficient High-Fidelity
Simulation of the HART Il rotor”, J. of AHS, Vol 60, 2015, pp.1-11 WARFIGHTER FOCUSED.
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HART Il Baseline case - Continued

« 2016: Helios V5 (Jain et al., AIAA 2016)
— Integration of NASA’s FUN3D in Helios

— Same unstructured grid as 2014
— Airload prediction comparable to OVERFLOW and wake prediction similar

to NSU3D

FUN3D

Jain et al. “Modularization and Validation of FUN3D as a CREATE-AV.Helios-Near-
body Solver”, 54t AIAA SciTech Forum, San Diego, CA, January 2016 WARFIGHTER FOCUSED.
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Validate Helios version 6

— FUNBS3D integrated in Helios as a near-body solver
— Compare the three-near body solvers: NSU3D, FUN3D, and OVERFLOW

— Evaluate SAMCart: Implicit off-body solver with DES

« Understand the difference between the structured and unstructured
grids
 Aerodynamic loads comparison for three conditions

— Baseline (BL): Very strong blade-vortex-interaction (BVI)

— Minimum noise (MN): Includes higher-harmonic control (HHC) to reduce
noise T

— Minimum vibration (MV): Includes HHC to
reduce vibration

« Comparison of wake prediction for BL case
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— s ——

NSUBD}
near-body solver

. PUNDIT

comain connectivity

near-off body

A

W.ﬁiﬁ“ Q

y SAMCart
y o Off-body solver

Multi-Mesh CFD Paradigm

— Unstructured/Structured Near-Body
- Adaptive Cartesian Off-Body

— Overset Connectivity
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) Near-body Solvers ¢AMRDEC

 Reynolds-averaged Navier-Stokes (RANS)

« 2" order implicit BDF time integration

 Unstructured solver
— Spatially 2" order accurate
— NSU3D
o Central difference with artificial dissipation
— FUN3D
o Approximate Riemann solver based spatial discretization
o 2" order implicit BDF20OPT time integration
« Structured solver
— OVERFLOW
o Central difference up to 5" order spatial discretization
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roEcom ) gAMCart off-body Solver

 Replaced ARC3D (used in SAMARC)
with new “Cart” solver

« Implicit solver added i
— Explicit is fast and efficient but suffers |
from time step restrictions i -
— Implicit — local & global A
+ LU-SGS -
« ADI — diagonally dominant variation S&i ™
- Gauss Seidel Line relaxation : % ;,
— Viscous 4%-Order terms S '
— SA & DES turbulence modeling i “ ; ,
* Global implicit scheme intended ‘

for running on large number of
processors
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) Simulation Setup ¢AMRDEC

* 40% Mach-scaled model of Bo105 rotor with 2m radius and
0.121m chord

 Tests conducted at DNW wind tunnel
A descending flight at y = 0.15 and corrected shaft angle 4.3°

« MN and MV cases have HHC with 3/rev and blade root pitch
control and a corrected shaft angle of 4.12°

 Prescribed blade motions from a previously coupled simulation
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RDECOM ) Computational Grid ¢AMRDEC

80% R

Coarse mesh inboard

T
T

Fine mesh outboard

* Rotor grid
— Extends to one chord from surface :
— Structured blade grid
o SM nodes per blade Couse et a1 | Enemesh
o Fine mesh with 2% chord spacing from 80% to |
tip
— Unstructured blade grid

o 3.5M nodes mixed element grid
o Refinement in the tip region CarteSlaln wake mesh

 Fuselage grid
— Unstructured fuselage grid with 0.8M nodes

— Same fuselage grid for all cases

+ Off-body Cartesian grid | '
— 2.5% c in fine level with 500M nodes for BL case ! ] #Eans Leaniian!
Structured/  Unstructured

— 5% cin fine level with 113M nodes for MN and MVUnstructured fuselage mesh

cases blade mesh
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« Time step 0.1 deg azimuth (3600 time steps/rev)

« 30 sub-iterations per time step for near-body

« 12 sub-iterations per time step for off-body

« Spalart-Allmaras turbulence model with rotation correction
« 4 full rotor revolutions for convergence

« Computation time in seconds using 1024 processors

Near-body Order of Off-body Total/step Number of
(sec) convergence (sec) (sec) nodes/blade
OVERFLOW 2.8 3.5 31 38.4 SM
NSU3D 7.3 0.5 31 46 3.5M
FUN3D 20.5 4 31 68.2 3.5M
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Advancing side Retreating side

Radial station r/R = 0.87

0.05 0.05 005
- : Measured
: Measured : e g‘s’sggLOW
--------- : OVERFLOW ; - 0,025
—-—-—-—1NSU3D A , : 0.025| FUN3D
0.025 FUN3D / \\; II ‘/“\‘\ -
: Nealigti s i
i A 2 of
S A\ 130 1 e 0 -
E 0 Al I ‘ =
) i v N : i
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-0.025 4 ; 5 -
: E E -005 ]lj[}[l[j li|1l|111| _0-027 lllllllll llllllllll I
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v 1
: « All codes agree well with the data
005, 90 180 270 360
Y  BVI events captured well

« Small phase shift in NSU3D
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Radial station r/R = 0.87

Advancing side

Measured
OVERFLOW
NSU3D
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””E”@Iormal Force Gradient — Baseline

0.0125 e Gradient computed as
derivative of airload
, with rotor azimuth
< 11 T
g 141 ; i e Important for acoustic
o O [ 1A calculations
s ol
= AN : : | e Magnitude of BVI
w 0 .
S iy spikes show the
S ' intensity of noise
-0.0125 |~
......... OVERFLOW e OVERFLOW predictions
------- NSU3D compare closely with
FUN3D
data
- Il | | I Il Il Il I Il Il I Il Il | l
0.025 0 90 180 270 360
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rpEcom ) Normal Force — Minimum Noise S0

Radial station r/R = 0.87 Gradient of normal force

01— Advancing side  Retreating side
. Measured
" eeeeeeee- OVERFLOW 0.05

- Measured
-------- OVERFLOW
e —— NSU3D
FUN3D
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0.1 ettt Sppuisinsiced o All codes agree well with the data
] v _ « BVlevents captured well
3/rev HHC pitch control input
Ouye = 0.8*cos(3W+300°) « Small phase shiftin NSU3D
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)Iormal Force — Minimum Vibration Caldatlss

Radial station r/R = 0.87 Gradient of normal force
0.1 - . i i
Advancing side Retreating side
presessesnnisaniannes - 0.025 ~
0.05 L \
Y TR O N
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Oy = 0.8*cos(3W+180°)
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Measured Vorticity Field ) —
" AMRDEC

Baseline, r/R = 0.87

Pos 22

Pos 23 “
=

(* Unscaled PIV images)

el

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
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RDECOM ) Computed Wake Iso-surface

Vorticity
magnitude

 Iso-surfaces of Q criterion
colored with vorticity
magnitude (Q="1e-4)

OVERFLOW
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RDECOM " -AMRDEf:
) Positions 1,9,17 <

Near-body blade mesh : Off-bodv wake mesh
OO ¢ measured © OVERFLOW
I\\o =+ -NSU3D —=—FUN3D
%
G100 | %
3 | \-\O\ )
C .« 17
I i IS o
L 1 "
L L 2 ". O o
- = - @ o -, @= o == o @m0 == . - o am o = o o ;.
10 ——
0 5 10 15 20 25 30
Vortex wake age (deg) =

» Vortices at positions 1,9, and 17 are young vortices of high

strength \-.,i'
« Measured peak vorticity ranges from 21 to 52 \ 4 \
. 5%
« CFD predictions show significant loss of strength from )?\L\ '

position 1 to position 9 =
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) Positions 1,1a b.c <

Near-body blade mesh Off-body wake mesh
e v 1a ¢ measured  --o--OVERFLOW
A
v ~+ NSU3D —=—FUN3D
) (A .
G100 | \ 1]
8 o
o 17
- .
1 ‘\‘\\ L 4
\.— ______________________ ®
R M I S AN R
10 L . ! . ! . L . L . ! . . ! L . . ! . . i . ! . !
0 5 10 15 20 25 30
Vortex wake age (deq)

« Additional positions (1a, 1b, 1c) near position 1 considered to
compare the different solvers

« OVERFLOW predicts a stronger vortex at 1c
« NSUS3D prediction of vortex strength at 1c is weaker compared to
FUN3D
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RDEGDComparlson of Mesh Resolution

Positions 1a-c

Pos. 1 Pos. 1a Pos. 1b Pos. 1c

Vorticity
magnitude

= 0.700

OVERFLOW

M 0000

FUN3D

» Loss of unstructured grid resolution from position 1 to 1c

« Same scale is used for all plots WARFIGHTER FOCUSED.
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) Positions 17a-h <

Near-body

blade mesh Off-body wake mesh

17a

me

100 = 17d

o/Q

. — (
o measured - -OVERFLOW -

~m NSU3D —=—FUN3D
= OVERFLOW/2.0% c (Ref 5)

. . | . | . | . .
0 10 20 30 40 50

Vortex wake age (deg)
* PIV measurements taken at intervals of 5° wake age starting from 5.3°

«  OVERFLOW predicts the strongest vortex at 17a
 NSUS3D predicts a weaker vortex at 17a compared to FUN3D

* Finer near-body (20M) and off-body mesh (2% c) with OVERFLOW from Jain et al.
significantly improves the predictions

Ref: Jain et al. “Modular Multisolver Approach for Efficient High-Fidelity
Simulation of the HART Il rotor”, J. of AHS, Vol 60, 2015, pp.1-11 WARFIGHTER FOCUSED.
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0.4
19
i 18 20 21
0.2 17 f“@ .
22
- : 210 e 23
£
~ 0.0 *
N
¢ measured
0.2 - %--OVERFLOW
) ——FUN3D
- - - =NSU3D
-2 -1 0 1 2

X (M)

* Vortex position is predicted well by all three solvers
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RDECOM ) Advancing Side Predictions

Pos 17 Pos 18 Pos 19

Measured data

Missjng shear layer (a OVERFLOW «  OVERFLOW predicts
the strongest vortex at

17

« NSU3D and FUN3D
have diffused vortices
at 18 and 19

 NSU3D missed the
shear layer prediction at
position 17

(b) NSU3D

() FUN3D WARFIGHTER FOCUSED.
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mplicit DES vs Explicit Inviscid Solver

Advancing side vortex strength predictions

100 ¢
: 23
5 |—|0
i S [22]
19] [21] .
[A ¢ /
a0 4 o« * fou
E N
Normal force at r/R = 0.87 }
0.05 M ' & measured —#-FUN3D =¢=FUN3D (Explicit, Inviscid off-body)
. easured
FUN3D 1T -
FUN3D (Explicit, Inviscid off-bod -2 -1 0 1 2

0.025

« Implicit DES off-body solver is
comparable to explicit Euler

M?C -mean
o

-0.025

Ref: Jain et al. “Modularization and Validation of FUN3D
as a CREATE-AV Helios Near-body Solver”, 54t" AIAA
SciTech Forum, San Diego, CA, January 2016

- Il Il Il l L Il Il I Il Il L Il
0'050 90 180 270 360
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 Presented a comparison of the three near-body solvers in Helios
using HART Il rotor dataset

 Airload Predictions

— Airloads for baseline, minimum noise, and minimum vibration cases are
predicted well by all three solvers

— Sharper BVI peaks are better resolved by OVERFLOW
— FUNBSD predictions are closer to OVERFLOW for all three cases
— NSUS3D shows a slight phase shift in BVI predictions

« Wake Predictions

— OVERFLOW predictions of peak vorticity are in closest agreement with
measured data

— FUNBSD predicts stronger peak vortex in the near-body region compared
to NSU3D

— Implicit off-body with DES comparable to explicit Euler off-body

* Future work will use Strand solver for near-body
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