Recent Advances in the CREATE™-AV Helios Rotorcraft Simulation Code

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office (PR1830, 08 Dec 2015)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Presented by:
Andrew Wissink
Aerospace Engineer
Aviation Development Directorate - AFDD
Aviation and Missile Research, Development and Engineering Center
Moffett Field, CA
Presentation Outline

- **Helios background**
- **New capabilities**
 - Implicit Detached Eddy Simulation in wake
 - Near-body strand solver
 - FUN3D & kCFD unstructured solvers
 - Generalized elastic body motion – support for maneuver
 - Unsteady visualization
- **Concluding Remarks**
Helios code

- Helios is the Rotary-wing product of the CREATE™-AV program
 - Relative motion, complex geometry, multi-mesh
 - Targets govt rotary-wing acquisition programs
Components Recently Added to Helios

- Developments to existing codes and addition of new codes
- Extensible infrastructure supports components developed under CREATE as well as those developed externally
 - External codes have wide user base and trusted validation
 - New codes introduce advanced algorithms and concepts

Components:
- NSU3D
- FUN3D
- mStrand
- OVERFLOW
- kCFD
- SAMRAI
- SAMCart
- CART
- Near-body solver
- PUNDIT
- Domain connectivity
- SAMCart
- Off-body solver
- Python-based Infrastructure
 - Shared grid and solution data
 - CSD Flight Dyn
 - COVIZ Run-time Flow viz
 - MELODI Mesh Motion Fluid/structure
 - RCAS
 - CAMRAD
 - Paraview

Existing (v1-v5)
New (v6-v7)
New Capabilities

- **Implicit off-body solver with DES**
 - Leffell et al, AIAA-2016-0066, *Mon 9:00am*

- **Near-body Strand solver**
 - Lakshminarayan et al, AIAA-2016-1581, *Thur 9:00am*

- **Support for complex generalized aeroelastic motions & maneuver**
 - Roget et al, AIAA-2016-1057, *Wed 12:00pm*

- **New unstructured near-body solver options**
 - **FUN3D**: New turbulence models, transition, near-body AMR, optimization
 Jain et al, AIAA-2016-1298, *Thur 2:30pm*
 - **kCFD**: Interfaces to CASTLE® flight dynamics model and Firebolt propulsion/airframe integration model
 AIAA-2016-1928, *Thur 4:00pm*

- **New unsteady in-situ flow visualization**
SAMCart off-body Solver

- Replaced ARC3D (used in SAMARC) with new “Cart” solver
- Implicit solver added
 - Explicit is fast and efficient but suffers from timestep restrictions
 - Implicit – local & global
 - LU-SGS
 - ADI – diagonally dominant variation
 - Gauss Seidel Line relaxation
 - Viscous w 4th-Order terms
 - SA & DES turb modeling
- Global implicit scheme intended for running on large number of processors

Leffell et al
AIAA-2016-0066

Global implicit LU-SGS formulation

j=k=l=1

“Lower surfaces”
Communicate these three planes during forward sweep

“Upper surfaces”
Communicate these three planes during backward sweep

j=jmax
k=kmax
l=lmax

More details
• Detached Eddy Simulation
 – RANS with SA turbulence model near the wall
 – LES everywhere else
 – Improved resolution of turbulent wake

• DES enabled by implicit solver
 – Helios v4-v5 SAMARC had explicit DES but stability issues prevented widespread use
 – Helios v6 implicit solver provides stability for DES with larger timesteps
TRAM Rotor

- **Tilt Rotor Aeroacoustics Model (TRAM)**
 - Quarter-scale model V-22 Osprey
 - Tested in DNW-LLF facility
 - Definitive dataset for CFD validation

- **Computational conditions**
 - Isolated hover
 - Rigid blade
 - 15 revs, 0.25 deg/timestep
 - $M_{\text{tip}}=0.625$, $Re_{\text{Tip}}=2.1M$

- **Unstructured/Cartesian grid**
 - Blade – 56K surf nodes surf, viscous
 - Centerbody – 1.4K surf nodes, inviscid
 - Rotor off-body – 0.05c finest level
 - Near body: 8M nodes
 - Off-body: 13M-315M nodes
 - 576 procs Cray XC30
 - Compute stats in paper
Implicit Off-body Accuracy

Explicit RK3 Euler

<table>
<thead>
<tr>
<th>15 revs</th>
<th>Thrust C_T/σ</th>
<th>Power C_Q/σ</th>
<th>Figure of Merit</th>
<th>% Diff from Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>0.1495</td>
<td>0.01596</td>
<td>0.774</td>
<td>--</td>
</tr>
<tr>
<td>Explicit RK3 Euler</td>
<td>0.1474</td>
<td>0.01662</td>
<td>0.780</td>
<td>+0.6%</td>
</tr>
<tr>
<td>Implicit BDF2 Euler</td>
<td>0.1488</td>
<td>0.01675</td>
<td>0.785</td>
<td>+1.0%</td>
</tr>
<tr>
<td>Implicit BDF2 DES</td>
<td>0.1488</td>
<td>0.01675</td>
<td>0.785</td>
<td>+1.0%</td>
</tr>
</tbody>
</table>

Implicit BDF2 Euler

Implicit BDF2 DES

Biggest difference explicit vs implicit

Nearly identical results
Implicit off-body Convergence & Soln Time

Off-body solver	**Time/step**
Explicit Euler | 16.5 sec
Implicit Euler | 18.9 sec
Implicit DES | 26.3 sec
Implicit DES (25/25) | 55.5 sec
Strands

- **Overarching goal is automated near-body mesh generation**
 - Multi-strand generation from CAD

 R. Haimes
 - Fast parallel overset connectivity

 J. Sitaraman
 - High order strand solver

- **mStrand Solver**

 V. Lakshminarayan

 - 2\(^{nd}\) Order FV gradient-based spatial discretization
 - 2\(^{nd}\) Order BDF2 time integration w GMRES
 - Supports quad and tri surface elements
 - Spalart-Allmaras turbulence model
 - Supports multi-strand meshes generated by CREATE™ Capstone

Complex geometries

Automatic strand mesh generation

MOSS

quads

Tris (at tip)
mStrand Solver

- Accuracy commensurate with best solutions we obtain with NSU3D

![Graphs showing comparison between mStrand and NSU3D]

- Good computational performance

![Graphs showing computational performance]

More details: Lakshminarayan et al. AIAA-2016-1581
• **FUN3D**
 - NASA’s primary unstructured code, broad userbase in govt, industry, academia
 - Developed, maintained, and supported by NASA Langley since 1980s
 - Advanced turbulence and transition models
 - Near-body AMR
 - Adjoint-based optimization and error estimation
 - Multiple chemical species

• **kCFD**
 - Developed by CREATE™-AV Kestrel team
 - Large and growing userbase in DoD for fixed-wing and store separation problems
 - Interfaces to flight dynamics packages like CASTLE®
 - Firebolt airframe/propulsion engine integration model

Courtesy: http://fun3d.larc.nasa.gov
• **Uses Helios near-body solver interface**
 - Same interface used for NSU3D, OVERFLOW, mStrand

• **Demonstrated for tandem H-47**
 - Blades modeled with OVERFLOW, Fuselage with FUN3D, wake with SAMCart
 - Rotor structural dynamics modeled with RCAS
 - Steady free-flight trim

More details

Jain et al

AIAA-2016-1581
• **Utilizes AV-Core package**
 J. Forsythe
 - Interchangeable with other Helios solvers
 - Utilizes Kestrel mesh manager, output manager, event-based execution

• **Demonstrated for Navy “Example Helicopter” (ExHel)**
 - Generic UH-60 like configuration
 - Flight dynamics managed by CASTLE®
 - Blades modeled by actuator line model (CastleCoupler, AIAA-2015-0556)
• Mesh Motion, Loading, and Deformation Interface (Melodi)

 - Generalized hierarchical representation of bodies and frames supporting rigid-body and aeroelastic motion

 - Replaces the old mesh motion (mmm), flight/fluid dynamics interface (ffdi), and fluid structure interface (fsi) in past versions

 - Supports multiple-connected rigid and elastic motions for rotors, wings, and fuselage

UH-60A C11029 UTTAS Pull-Up maneuver

(b) Variation of aircraft angle of attack, pitch attitude, and flight path angle

(c) Variation of air velocity
• **UH-60A C11029 UTTAS Pull-Up maneuver**
 - 40 revs, 9 sec (real-time)
 - Flight path angle 3 deg at start to 35 deg at end

Roget et al
AIAA-2016-1057
• **In-Situ co-visualization – particle traces**

 – Coviz introduced in Helios v4 (2013)

 – Generates “extracts” in fieldview and paraview formats during the simulation

 – Utilizes parallel HPC resources and avoids massive data transfers

 – Leverages visualization capabilities from Paraview

 – Particle traces added in v6
• **Moving contour planes**
 – Size, location, and resolution of contour plane specified in input
 – Outputs quantities of interest (e.g. max velocity) on the plane to *.csv file for quantitative analysis
Concluding Remarks

• **Helios version 6 & 7 add a number of key new capabilities**
 – Improved turbulent modeling of wake (implicit DES off-body) – Hv6.0 *released*
 – Incorporation of FUN3D unstructured near-body solver – Hv6.1 *Spring 2016*
 – In-situ particle traces & moving planes – Hv6.1 *Spring 2016*
 – Support for maneuver – Hv6.1 *Spring 2016*
 – Automation and efficiency with new Strand near-body solver – Hv7.0 *Fall 2016*
 – Interfaces to CASTLE and Firebolt engine/airframe integration through kCFD – Hv7.0 *Fall 2016*

• **Advances enabled by extensible infrastructure**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual mesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor-Fuselage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-rotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propellers/Propulsers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maneuver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIF, PUNDIT, SAMARC, NSU3D, RCAS, SAMRAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMRADII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVIZ OVERFLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELODI SAMCart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUN3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mStrand kCFD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Automated meshing
Unsteady transition
Multi-species flow
Engine/airframe
3D Structures
High order solvers
Design optimization
etc…
Material presented in this paper is part of CREATE™-AV Helios software development under the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office.

The authors would also like to acknowledge the contributed efforts of:

Helios Development Team
- Dr. Roger Strawn
- Dr. Anubhav Datta

Quality Assurance Team
- Dr. Joe Laiosa
- Dr. Jennifer Abras

Integration Team
- Mr. Stephen Adamec
- Mr. Brian Pittman

CREATE-AV Management Team
- Dr. Bob Meakin
- Dr. Nathan Hariharan

The Helios development team is jointly supported by the US Army and CREATE, and is housed at the Aviation Development Directorate AFDD at Moffett Field, CA.