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The Space Launch System

First exploration-class
launch vehicle since
Saturn V (and only the
second ever)

10% more thrust at liftoff
than Saturn V, but less
mass to orbit in initial
configuration

Largely built from Space
Shuttle-derived hardware

Capable of supporting
crewed missions to lunar
orbit and beyond
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The Space Launch System

Uses two
Shuttle-like Solid
Rocket Boosters for
first 2 minutes or so

These burn out long
before the first core
stage

So we have to get
rid of them during
ascent

And don’t recontact
the core
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Space Shuttle SRB Separation Video
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Objective

Requirements

Deliver aerodynamic forces on three bodies (CORE, RSRB, LSRB)
for all possible booster positions and flight conditions

Flight certification database will be built on computational database

Provide adequate validation and verification for UQ

Interactions with SLS Program

Close interactions with NASA LaRC UPWT 1891 test

Database implementation and uncertainty quantification by NASA
LaRC Configuration Aerodynamics Branch

Run matrix based on dispersed trajectory analysis from GN&C team
using earlier aerodynamic database

Primary figure of merit for this DB is size of uncertainty

Success/failure determined by simulated probability of booster
recontact
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Approach

Quasi-Steady Force & Moment Database

We need about 20,000 solutions to cover all conditions

Each solution run at fixed conditions

CFD with moving bodies is neither efficient nor accurate for this work

Data Sources

Cart3D selected for database

Huge amount of cases; need efficiency
Extremely complex geometry; cut cells are great for this

OVERFLOW used for flow understanding and code-to-code comparison

Cart3D run on wind-tunnel geometry for code-to-reality

References

Cart3D: Aftosmis, M., Berger, M., and Adomavicius, G., “A Parallel Multilevel
Method for Adaptively Refined Cartesian Grids with Embedded Boundaries,”
38th Aerospace Sciences Meeting, 2000, AIAA Paper 2000-0808.

OVERFLOW: Nichols, R. H., Tramel, R. W., and Buning, P. G., “Solver and
Turbulence Model Upgrades to OVERFLOW2 for Unsteady and High-Speed
Applications,” 36th AIAA Fluid Dynamics Conference, 2006, AIAA Paper
2006-2824.
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Why Is Separation So Difficult?
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How Much Does Aero Matter?

Force & moment database must be
delivered with uncertainties that ensure that
the physical value is in the range of values
delivered

This leads to a probability density function
of force and moment values

With large uncertainties, adverse
aerodynamic forces are possible, and
recontacts are predicted

This was the case with early aerodynamic
models

Conservative uncertainties are a
requirement because the success of the
mission may depend on it!
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Data Sources and Uses

Two CFD solvers and one wind tunnel test

Only Cart3D data goes directly into database

Other two sources used for uncertainty model

Cart3D

Overflow

UPWT 1891

F&M DB

UQ DB

GNC Sims

NASA ARC NASA LaRC NASA MSFC
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List of Run Matrix Input Variables

Independent Variables

Variable Symbol Description
dx ∆x Booster axial translation [ft]
dy ∆y Booster lateral translation, away from core [ft]
dz ∆z Booster translation in +z-direction [ft]

dpsi ∆ψ Booster yaw angle relative to core body axes [deg]
dtheta ∆θ Booster pitch angle relative to core body axes [deg]
alpha α Angle of attack of the core [deg]
beta β Angle of sideslip of the core [deg]

CTBSM CT ,BSM Booster separation motor thrust coefficient

Scheduled Variables

Variable Symbol Description
t t Time since separation [s]

dphi ∆φ Booster roll angle relative to core body axes [deg]
mach M Core Mach number

q q Core dynamic pressure [psf]
CTCSE CT ,CSE Core stage engine thrust coefficient
CTSRB CT ,SRB Solid rocket booster thrust coefficient
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Star-Shaped High-Efficiency Run Matrix

Filled points are
included in the matrix

Open squares are not

Blue points are only
included for α=0,
β=0

5×5×5 regular points
and 12 points for
isolating low/high
values of four
variables

dz

dydψ

dθ
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Run Matrix — Booster Position & Orientation
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Considerations for Single Engine Failure
RS-25 (Core Stage Engine, CSE) Numbering

Any one of these
engines can fail
with equal
probability

Because of near
left-right
symmetry, created
separate database
for failure of
engine 3 or 4
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Cart3D Inputs and Run Strategy

Iteration Control

5 adaptive mesh cycles, 500 iterations each

≥3000 more iterations on final mesh

F&M in database averaged over last 2000 iterations

Output Function

J = CY + 0.5CN + 0.5CA +
13X
i=1

wi
p(xi )− p∞

p∞

Includes all forces except on base/nozzle surfaces

Added some point sensors to help resolve forward BSM exhaust

Initial Mesh

Coarse (maxR=7) with several refinement boxes around crew vehicle and
main engine/SRB exhaust plumes

Highly refined on BSM nozzle interior surfaces (XLev=6)
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Adaptive Meshing Graphics

Original mesh
(∼140k cells)

3 Adaptation cycles
(∼1.2M cells)

1 Adaptation cycle
(∼210k cells)

4 Adaptation cycles
(∼4.8M cells)

2 Adaptation cycles
(∼410k cells)

5 Adaptation cycles
(∼16M cells)
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Time-Accurate Cart3D Comparison
Justification for Using Steady-State Cart3D
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Black: time-accurate Cart3D solution

Red: steady-state Cart3D solution

Blue band: Time-accurate one-sigma band based on iterative sampling error
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Time-Accurate Cart3D Comparison
Justification for Using Steady-State Cart3D
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OVERFLOW Inputs and Strategy

Resources

25 Haswell nodes on NASA’s Pleiades; using 24 cores per node

469 near-body zones with ∼160M grid points

Off-body grid adaption to grow this to 250M grid points

Over 250 cases, ∼4.6M core hours

Inputs

3rd-order HLLC upwind difference scheme

SSOR implicit scheme (enhanced numerical stability in nozzle flow)

Local time-stepping initially; time-accurate (2 subiters) at the end

Spalart-Allmaras turbulence model

Strategy

20k steady-state iters + enough for clean average of 2k time-accurate

Using overlst to control large run matrix and manage files
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OVERFLOW Convergence Plots using overlst
BSM-on dx=10 ft
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OVERFLOW Convergence Plots using overlst
BSM-off dx=8 ft
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Manually Defined OVERFLOW SLS Grid System

BSM-on with Mach contours on y = 0 slice

SLS Booster Separation 18 / 33



Adapted OVERFLOW SLS Grid System

BSM-on with Mach contours on y = 0 slice
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OVERFLOW Solution Highlighting BSM Plumes
Surfaces colored by static pressure
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CDR Database: Lessons Learned

Shock position 3 Shock position 2 Shock position 1

Results from Overflow viscous CFD: position 1 for all cases

Wind tunnel data in agreement, although possibility indicated of a shock
position even farther forward
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Improvements for Cart3D Inputs

Database solution Improvement test run #31

After database completion, much better understanding of solution quality

Tried about 180 different Cart3D input strategies to improve results

Essentially a flow separation—a viscous phenomenon

High upstream resolution + vorticity allows inviscid solver to capture
some of the effect
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Videos of Two Cart3D Solutions 
Surfaces colored by static pressure, dx = 0 ft
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Sample Cart3D Static Pressure Slices
Taken at Last Iteration (No Averaging)

dx=6 ft, z = 0 slice dx=6 ft, y = 0 slice
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Nominal Trajectory Solutions
dx=2 ft (BSMs on)

Translucent z=0 slice y=0 slice

SLS Booster Separation 25 / 33



Nominal Trajectory Solutions
dx=4 ft (BSMs on)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=6 ft (BSMs on)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=8 ft (BSMs on)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=10 ft (BSMs on)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=15 ft (BSMs tailing off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=20 ft (BSMs tailing off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=25 ft (BSMs tailing off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=35 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=50 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=75 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=100 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=125 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=150 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=200 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Nominal Trajectory Solutions
dx=250 ft (BSMs off)

Translucent z=0 slice y=0 slice
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Cart3D-to-OVERFLOW Comparison: SRBs, BSM-On

0 2 4 6 8 10
dx [ft]

0.00

C
A

RSRB (±1.0 )

Overflow RSRB

LSRB (±1.0 )

Overflow LSRB

SRBs/CA

0 2 4 6 8 10
dx [ft]

0.000

C
LL

RSRB (±1.0 )

Overflow RSRB

LSRB (±1.0 )

Overflow LSRB

SRBs/CLL

Black: steady-state Cart3D solution (Database)

Red: OVERFLOW solution

Blue band: Database one-sigma band based on iterative sampling error

Coefficient values are sensitive and not shown
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Cart3D-to-OVERFLOW Comparison: CORE, BSM-On
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Blue band: Database one-sigma band based on iterative sampling error

Coefficient values are sensitive and not shown
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Cart3D-to-OVERFLOW Comparison: SRBs, BSM-Off
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Wind Tunnel Test at NASA LaRC UPWT

Surface without support hardware Surface including support hardware
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Cart3D-to-Wind Tunnel Comparison: SRBs, BSM-On
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Black: statedy-state Cart3D solution (Database)

Green: UPWT 1891 experimental measurement

Blue band: Database one-sigma band based on iterative sampling error

Coefficient values are sensitive and not shown
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Cart3D-to-Wind Tunnel Comparison: SRBs, BSM-On
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Cart3D-to-Wind Tunnel Comparison: CORE, BSM-On

0 1 2 3 4 5 6 7 8

dxR [in]

0.0

C
A

CORE (±1.0 )

UPWT 1891 CORE

CORE/CA

0 1 2 3 4 5 6 7 8

dxR [in]

0.000C
LL

CORE (±1.0 )

UPWT 1891 CORE

CORE/CLL

Black: statedy-state Cart3D solution (Database)

Green: UPWT 1891 experimental measurement

Blue band: Database one-sigma band based on iterative sampling error
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Conclusions

Robust adaptive-meshing analysis for 20,000+ Cart3D simulations
and 8-dimensional database

OVERFLOW mesh adaption with complex flow and geometry

Tested roughly 180 sets of Cart3D inputs before computing this
database

High-fidelity and experimental results used for uncertainty estimates
and to evaluate Cart3D solution quality

Uncertainties reduced (in critical first 10 ft) compared to
preliminary aerodynamic databases

Largest remaining source of uncertainty in current database is
interpolation error
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