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Aerodynamic Shape Optimization
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3. Numerical optimizer iteratively modifies 
shape to improve performance

1. Define goals: 
Minimize objective 
Subject to constraints

min
S

J (S)min
S

J (S)

Cj(S)  0

2. Select design variables 
(shape parameterization)

High-fidelity 
(expensive) 
analysis

Designer-driven

Automated

Baseline aerodynamic shape
S
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Shape Parameterization
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X

Design variable (DV) / degree of freedom
Shape parameter

Deformation 
mode

Find optimal deformation

min
X

J (X)

‣Shape parameterization reduces continuous design 
space into finite search space 
‣Reduces range of reachable shapes



Static Parameterization
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Different optima

Different 
parameterizations

Modify 
GeometryAnalyze

Optimizer



Motivation
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• Choice of shape parameters impacts: 
‣ Coverage (want more DOF). 

‣ Computational cost (want fewer DOF) — especially 
important for optimization driven by high-fidelity simulations. 

• For design of complex vehicles in unfamiliar settings, 
would like ability to 
‣ Efficiently approach the continuous optimal design. 

‣ Quantify optimality in each search space.



Objective
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Develop optimization system with automatic, 
adaptive shape parameterization refinement

Requirements:
‣ Gradually approach continuous optimum (convergent) 
‣ Without a priori knowledge (automated) 
‣ Using as few design variables as possible (adaptive)

Research Goal:



Previous Work
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Progressive
(uniform “h”-refinement)

Redistribution 
(“r”-refinement)

‣Gradually increase resolution 
‣ (1991) Kohli and Carey — Multi-

fidelity shape representation for 
structural optimization 
‣ (1993) Marco et al. — Aerodynamic 

optimization with nested parameters

‣ Improve distribution of shape control 
‣(2004, 2006) Desideri and El Majd, 

Duvigneau — Minimize total variation 
of Bezier/FFD control points 
‣(2012) Hwang and Martins — Equally 

distribute arc-length of curve between 
B-spline control points

These approaches are insensitive to the 
goals of aerodynamic optimization.



Previous Work
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Towards goal-oriented adaptation:

‣(2011) Han and Zingg — Discrete refinement approach 
‣Restrictions: Single-component design, only localized constraints, 

can only add one new variable at a time 
‣(2014) Poole and Allen — Redistribution approach 
‣Restrictions: Only geometric matching of airfoils 

‣(2015) Anderson — Discrete adaptation approach appropriate for 
general aerodynamic design problems



This Work
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• Complete system for automatic, adaptive parameterization 
‣ Novel refinement indicator that enables adaptive 

parameterization for general problems: 
‣ Multiple components 
‣ Multiple classes of shape control 
‣ High curvature variation in design space 
‣ General constraints 

‣ Support for (nearly) arbitrary geometry modelers 
‣ More efficient adaptation strategies and algorithms
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✓ Parametric Shape Optimization 

‣ Adaptive Parameterization
‣ Discrete Adaptation (How?)

‣ Refinement Indicator (Where?) 

‣ Adaptation Strategy 

‣ Verification 

‣ Design Examples



Shape Control Refinement
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Root

View shape parameterization as binary tree:

Level 1

Level 0

Level 2



Shape Control Refinement
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Root

View shape parameterization as binary tree:

Level 1

Level 0

FFD Lattice
Radial basis function

Bump function

Level 2

Splines

NURBS



Shape Control Refinement
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Root

View shape parameterization as binary tree:

Level 1

Level 0

H = 2M�L

Level 2

h

Each “leaf” refines 
to two children



Configuration Design
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Wing stations

Airfoil design

Fuselage cross-sections

a

b



Interface to Arbitrary Modelers
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Parameterization:
• Provide list of 

possible new 
design variables 

• Invoke a particular 
refinement

Deform 
ShapeAnalyze

Optimizer

Refine shape 
control

Geometry 
Modeler

Deformation:
• Provide list of 

existing design 
variables 

• Invoke a particular 
deformation
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✓ Parametric Shape Optimization 

‣ Adaptive Parameterization
✓ Discrete Adaptation

‣ Refinement Indicator 

‣ Adaptation Strategy 

‣ Verification 

‣ Design Examples



Adaptive Refinement
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Priority queue

Refinement Indicator
“Importance”

Goal: Determine most important candidate parameters

Add the 
best ones



Previous Approach
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† (2011) X. Han, D. Zingg. “An Evolutionary Geometry Parametrization for Aerodynamic 
Shape Optimization.” AIAA 2011-3536

A

Prefer A, because 
objective is more 
sensitive to it.
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‣(2011) Han and Zingg rank parameters by magnitude of objective 
gradient with respect to candidate design variables.†



Limitations of Previous Approach
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‣ Ignores constraints
Inconsistent units 
Ignores curvature variation 
Insensitive to redundancy

t � 0.07

Drag is more sensitive to A, 
but thickness constraint 
would be violated

B offers more real potential, 
despite lower objective gradient

A B



Limitations of Previous Approach

21


@J
@XA

�
=

Drag

ft


@J
@XB

�
=

Drag

deg
A

B


@J
@XA

�
=

Drag

ft


@J
@XB

�
=

Drag

deg


@J
@XA

�
=

Drag

ft


@J
@XB

�
=

Drag

deg

@J
@XA

�
?
>


@J
@XB

�
A B

Ignores constraints
‣ Inconsistent units
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Limitations of Previous Approach
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A

B
@J
@Xc

Current design

Higher 
sensitivity

More potential

@2J
@X2

c

Ignores constraints
Inconsistent units 
‣ Ignores curvature variation
Insensitive to redundancy



Limitations of Previous Approach
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A B

Either one would be 
useful, but not both

Ignores constraints
Inconsistent units 
Ignores curvature variation 
‣ Insensitive to redundancy



New Refinement Indicator
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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Feasible region

Quadratic fit

True

Expected feasible 
design improvement

Linear fit



Expected Feasible Design Improvement
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3.2. REFINEMENT INDICATOR 43

The constrained minimizer of the quadratic fit is found by solving the following (contin-

uous) system of equations, called the KKT system4:

"
H @Ca

@S�
@Ca

@S

�T
0

# 
�S?

�

!
=

 
�@J

@S

0

!
(3.12)

where � are the KKT multipliers, with �j 6= 0, �j � 0, �j  0 for constraints of the form

C = c, C  c, and C � c, respectively. If there are only equality constraints, �j are called

Lagrange multipliers.

From the top part of the system, we obtain the modified Newton step to the predicted

constrained minimizer

�S? = �H�1

✓
@J
@S

+ �
@Ca

@S

◆
(3.13)

Next, we solve for the KKT multipliers � by substituting Equation (3.13) into the bottom

part of Equation (3.12). This yields the following system of equations (one per active

constraint): ⌧
@Ca

j

@S
, H�1

✓
@J
@S

+ �i
@Ca

i

@S

◆�
= 0 (3.14)

This system is satisfied when

�i
@Ca

i

@S
= �@J

@S
(3.15)

Equation (3.15) is an over-determined system that is only exactly true at the optimum.

Since we will usually terminate each optimization level before full convergence, we solve for

best-fit KKT multipliers using an iterative bounded least squares solver.5

Substituting Equation (3.13) into Equation (3.8) yields

�J 1
exp = �
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which simplifies to

�J 1
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1

2
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� �
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◆
, H�1
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(3.17)

4For a full derivation of this system see, e.g. [88].
5I used scipy.optimize.leastsq from the SciPy library [89], with high-weighted quadratic penalties on

bounds violations.
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4For a full derivation of this system see, e.g. [88].
5I used scipy.optimize.leastsq from the SciPy library [89], with high-weighted quadratic penalties on

bounds violations.

Solve for Newton step to predicted optimum

Gradients of active constraints

Lagrange multipliers

Quadratic Taylor expansion
Gradient
Hessian

40 CHAPTER 3. SOLUTION-ADAPTIVE SHAPE CONTROL

where J0 is the current objective value and X? is the predicted optimal design.3 This indi-

cator prioritizes search spaces with the highest capacity for design improvement. Naturally,

I(Cc) � 0, as the best design cannot be worse than the current design. As I will show,

computing this indicator requires minimal computational overhead; existing adjoint solu-

tions are leveraged to extract gradient information, and second derivative information is

approximated from the BFGS Hessian in the previous search space.

3.2.1 Estimating Design Improvement Potential

While the idea of maximizing potential for design improvement is straightforward, there are

subtleties that make it necessary to start from the viewpoint of continuous shape optimization

and then show how it projects into a finite search space.

Definitions

This section will make extensive use of the inner product of functions defined on the surface:

ha, bi :=

Z

S
a(x)b(x)dA(x) (3.4)

where x is some surface coordinate of S. If S is a surface, then dA(x) represents a di↵erential

area. If S is a curve, then dA(x) is a di↵erential segment of the curve.

Potential of the Continuous Space

To begin, we denote the total design improvement potential of the continuous design space

as

�J 1
exp := J0 � J (S?) (3.5)

where S? is the optimal shape. Taking a local quadratic fit by Taylor expansion about the

current design, we can write

J (S0 + �S) ⇡ J (S0) +

⌧
@J
@S

, �S

�
+

1

2
hH�S, �Si (3.6)

3One might propose stepping straight to this predicted optimum, but there is no way to do so robustly.
Even with an exact Hessian, if higher order derivatives are large, then the proposed step could actually be
arbitrarily worse than the current design. Instead, I use the Hessian to make predictions about the best
shape control, but then rely on a robust optimizer to actually navigate the search space.
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Expected feasible objective reduction 
in candidate search space:

Use as refinement indicator 

KKT stationarity
0 at optimum

Has sensible units
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Detects redundancy 

Accounts for curvature variation
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Candidate Gradient Computation

Flow 
Solve  
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Objective function of design variables (via surface and flow solution):
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First derivative:
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Adding Multiple Parameters
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• Adaptation: “Find the best N out of M parameters” 
• Properly a combinatorial optimization problem

• Not separable for most deformers 
• But conducive to approximate solutions 

• I use an approximate constructive (greedy) algorithm†

Mode shape depends on locations 
of neighboring controllers

† (2015) Anderson, G.R., Aftosmis, M. J. “Adaptive Shape Control for 
Aerodynamic Design.” AIAA 2015-0398
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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5.2 Subsonic Inverse Airfoil Design

This next study examines inverse design of an airfoil, where the goal is to match a target

pressure profile. As before, the target profile is attainable, but not by the initial parame-

terization. I examine how the pressure profile converges to the target profile as the shape

control is refined. The primary goals of this study are to demonstrate

• The predictive power of the indicator for aerodynamic functionals.

• The robustness of this approach (convergence to same optimal design) with respect to

both the initial shape and the refinement strategy

The objective function is a quadratic penalization of deviations from the target profile:

J =
1

2

NvertsX

i=1

(pi � p⇤i )
2 (5.2)

where p⇤i is the target pressure at vertex i on the discrete curve describing the airfoil. The

free-stream Mach number is 0.3.

5.2.1 Geometry and Parameterization

Picture of geometry and target pressure profile

5.2.2 Indicator Study

The first study evaluates the predictions of two indicators for this aerodynamic functional.

The test follows the process used in the previous shape matching study (Section §5.1.2).

Starting with a baseline, evenly-spaced, 14-DV shape parameterization, the shape is opti-

mized to convergence, as shown by the blue curve in Figure 5.2. All design improvement

possible under the initial parameterization has been attained, but further improvement is

possible when more degrees of freedom are added. The goal of this example is to evaluate

the ability of two indicators (Equations (3.34) and (3.38)) to predict the actual performance

of the various candidate shape parameters.

Figure 5.8: Inverse Airfoil Design: Indicator
verification: Objective convergence under initial pa-
rameterization, followed by subsequent optimiza-
tions each corresponding to addition of one of the
candidate parameters.

The geometry modeler produced a list of

16 candidate shape control refinements from

↵ = 1�
M 0.3

Target
NACA0012

Objective:
Match target 
pressure profile

Parameterization:
2D Radial basis functions 
(localized bumps) 
Flow Solver: Cart3D 
Optimizer: SNOPT

Initial
random perturbation
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Table 5.1: Inverse Airfoil Design: Asymptotic convergence rate of J k
? � J 1

? with respect to
the number of design variables, for di↵erent refinement strategies. (Rate averaged over the final four
refinement levels)

g = 1.5 g = 1.75 g =auto g =auto
case uniform d = 1 d = 1 d = 1 d = 2

1 2.6 2.6 2.2 8.3 5.0
2 2.4 3.2 3.0 5.2 5.6
3 2.7 2.1 2.3 5.7 4.7

mean 2.6 2.6 2.5 6.4 5.2

However, this does not directly imply supe-

rior computational e�ciency. Figure 5.12

deliberately hides the cost of each subop-

timization procedure in order to clarify the

convergence with respect to shape control re-

finement. Devising strategies that are more

computationally e�cient than static param-

eterizations is a more subtle topic that is

examined in later examples. However, to re-

assure ourselves, Figure 5.14 shows that uni-

formly refined progressive parameterization,

when given an aggressive trigger (r = 0.05),

outperforms a fine static parameterization

(d = 6, i.e. 256 DVs) for most of the design

trajectory. The adaptive approach with ag-

gressive trigger is faster yet, achieving a su-

perior design with 90 fewer design variables

(166), by varying the local refinement depth from as coarse as d = 2 in some regions to

d = 10 in others.

Figure 5.15 shows the final adapted parameterizations for each starting point. In all

cases, the system has automatically clustered the shape control at the leading and trailing

edges. This is a common technique used by aerodynamic designers who are aware of the high

sensitivity of flow profiles to those regions — here it was discovered automatically. Aside

from this similarity, each starting point required somewhat di↵erent parameter distributions

Efficient in use of design variables

Table 1. Asymptotic convergence rate of J k
? �J1

?

Uniform Adaptive

Case Strategy 1 Strategy 2

1 2.6 8.3 5.0

2 2.4 5.2 5.6

3 2.7 5.7 4.7

mean 2.6 6.4 5.1

�J
�NDV

* ⇠ 6⇥ ⇠ 54⇥

*
Reduction in objective for 2⇥ increase in NDV
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Table 1. Asymptotic convergence rate of J k
? �J1

?

Uniform Adaptive

Case Strategy 1 Strategy 2

1 2.6 8.3 5.0

2 2.4 5.2 5.6

3 2.7 5.7 4.7

mean 2.6 5.75

�J
�NDV

* ⇠ 6⇥ ⇠ 54⇥

*
Reduction in objective for 2⇥ increase in NDV

1 of 1
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‣ Design Examples
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‣ Sonic boom signature matching 
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• Direct manipulation of surface 
‣ Always CFD-ready resolution 
‣ Optimization of “legacy” geometries 
‣ Exact surface preservation when 

refining parameterization
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Discrete Geometry

(x, y, z)

v1

v2

v3

‣ Serves as geometry engine for optimization 
‣ Script-driven surface mesh deformation 
‣ Implemented custom deformation techniques

• (2012) Anderson and Aftosmis, “Parametric Deformation of Discrete 
Geometry for Aerodynamic Shape Design”. AIAA Paper 2012-0965. 
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SNOPT — Sparse Nonlinear Optimizer 
‣ SQP method 

Handles nonlinear inequality constraints 
‣ Quasi-Newton method  

Gradually builds Hessian approximation  
‣ Use full-memory BFGS  

(Test cases involve <1000 DV’s)

Can also use any general gradient-based optimizer: 
‣ SLSQP, SciPy, Knitro, pyOpt…
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is being o↵ered by the adjoint, and this information can aid directly in selection of design variables for use
in the optimization.

To illustrate, consider the inverse design functional

J =
1

p21

Z
(p� ptarget)

2dS (10)

Optimization of this objective function seeks to minimize the di↵erences between the actual signal pro-
duced and that of a prescribed target. Figure 11 contains a numerical experiment illustrating our discussion.
In this example, the signal from the baseline parametric geometry was extracted at the design flight condi-
tions (M1 = 1.6, ↵ = 0.612�) on-track at a distance of h/L = 2. We then specified a smooth, monotonic
target signal over the forebody portion of the pressure signature (“active target” in Fig. 11). The objective
function in Eq. 10 measures the deviation of this signal (black) from that of the target (blue).

Adjoint solutions show which regions of the flow influence the objective function. This is evident in the
contours of the density adjoint for the baseline geometry shown at the left of Fig. 11. The parallel isoclines
follow flowfield characteristics through the domain and trace di↵erences between the functional and target
back to specific portions of the surface geometry.

Put more precisely, solution of the adjoint equation (Eq. 8) shows the influence of residual perturbations
on the objective, J . When the gradient is computed for an o↵-body functional on a Cartesian mesh, the first
two terms on the right side of Eq. 7 are zero because the objective function is not co-located with the design
variables. Shape design variables a↵ect only the surface thus the mesh sensitivities (@M/@T) are non-zero
only in the cut-cells. The entire gradient expression simplifies to an inner product of the adjoint variables
with the residual sensitivities at the body in the third term on the right of Eq. 7. Therefore, for fixed values
of residual sensitivities, the adjoint variables give a direct measure of the sensitivity of the objective to the
shape.

We can make an additional observation for inverse-design formulations, where pressure, lift, or drag are
being driven to a specific target. The right side of the adjoint contains a term of the form (p � p?) which
is due to the linearization of the square in the objective function (see Eqs. 2, 9, or 10). Therefore as we
approach optimality, i.e. (p ! p?), we expect a weakening of the adjoint field.

The right side of Fig. 11 provides an excellent illustration and summarizes the situation after shape opti-
mization. The shape was modified using 20 parameters controlling the vehicle forebody as design variables
using the objective function in Eq. 10. After 16 design iterations, the optimizer had reduced the value of
the objective by about 1.5 orders of magnitude. The resulting design is shown at the top of the right side
of Fig. 11. Contours of the density adjoint are displayed along with the geometry to graphically illustrate
the optimizer’s progress. Isoclines on the right use the same color map as on the left, with white showing

Figure 11. Forebody inverse-design example. Isoclines of the density adjoint are shown for an inverse design
objective based on the di↵erence between the forebody signal and the active target, Eq. 10. Pressure signals
extracted undertrack at a distance of h/L = 2.
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is being o↵ered by the adjoint, and this information can aid directly in selection of design variables for use
in the optimization.

To illustrate, consider the inverse design functional

J =
1

p21

Z
(p� ptarget)

2dS (10)

Optimization of this objective function seeks to minimize the di↵erences between the actual signal pro-
duced and that of a prescribed target. Figure 11 contains a numerical experiment illustrating our discussion.
In this example, the signal from the baseline parametric geometry was extracted at the design flight condi-
tions (M1 = 1.6, ↵ = 0.612�) on-track at a distance of h/L = 2. We then specified a smooth, monotonic
target signal over the forebody portion of the pressure signature (“active target” in Fig. 11). The objective
function in Eq. 10 measures the deviation of this signal (black) from that of the target (blue).

Adjoint solutions show which regions of the flow influence the objective function. This is evident in the
contours of the density adjoint for the baseline geometry shown at the left of Fig. 11. The parallel isoclines
follow flowfield characteristics through the domain and trace di↵erences between the functional and target
back to specific portions of the surface geometry.

Put more precisely, solution of the adjoint equation (Eq. 8) shows the influence of residual perturbations
on the objective, J . When the gradient is computed for an o↵-body functional on a Cartesian mesh, the first
two terms on the right side of Eq. 7 are zero because the objective function is not co-located with the design
variables. Shape design variables a↵ect only the surface thus the mesh sensitivities (@M/@T) are non-zero
only in the cut-cells. The entire gradient expression simplifies to an inner product of the adjoint variables
with the residual sensitivities at the body in the third term on the right of Eq. 7. Therefore, for fixed values
of residual sensitivities, the adjoint variables give a direct measure of the sensitivity of the objective to the
shape.

We can make an additional observation for inverse-design formulations, where pressure, lift, or drag are
being driven to a specific target. The right side of the adjoint contains a term of the form (p � p?) which
is due to the linearization of the square in the objective function (see Eqs. 2, 9, or 10). Therefore as we
approach optimality, i.e. (p ! p?), we expect a weakening of the adjoint field.

The right side of Fig. 11 provides an excellent illustration and summarizes the situation after shape opti-
mization. The shape was modified using 20 parameters controlling the vehicle forebody as design variables
using the objective function in Eq. 10. After 16 design iterations, the optimizer had reduced the value of
the objective by about 1.5 orders of magnitude. The resulting design is shown at the top of the right side
of Fig. 11. Contours of the density adjoint are displayed along with the geometry to graphically illustrate
the optimizer’s progress. Isoclines on the right use the same color map as on the left, with white showing

Figure 11. Forebody inverse-design example. Isoclines of the density adjoint are shown for an inverse design
objective based on the di↵erence between the forebody signal and the active target, Eq. 10. Pressure signals
extracted undertrack at a distance of h/L = 2.
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Shape



Adaptive Wing Morphing
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Optimize performance at 
every flight condition

Figure 13. Consequently for the optimization work, the 
segments of each individual flap were assumed to be 
directly linked in this circular fashion. This linking of 
the flap segments models a camber change while mostly 
utilizing all three segments of any flap. 

Linking the segments of each flap still results in 16 
possible flap deflections. In the end, the optimal flap 
deflection is expected to be smooth in the spanwise 
direction, especially outboard of the planform break and 
since no flow separation is expected at cruise. 
Consequently, the fourteen smaller outboard flaps are 
deflected using smooth shape functions instead of 
deflecting them individually. The shape functions used 
for this work are Bernstein polynomials of degree 3 
(shown in Figure 14). These polynomials were selected 
mostly because any one of them could be a reasonable 
shape of the spanwise flap-deflection distribution. 
Another attractive feature is that the Bernstein 
polynomials of any lower degree (such as a straight line) 
can be exactly represented by these polynomials. 

The deflection of the inboard flap, because of its 
sheer size, was left as an independent design variable. 
The aileron deflection also remained a separate variable 
since it is significantly larger than the other outboard 
flaps. By using the shape variables in Figure 14 and 
enforcing circular deflection of the individual segments 
of any flap, the VCCTEF deflection was modeled using 
only 6 design variables, a significant reduction from 48. 

B. Design and Off-Design Conditions!
As discussed at the beginning of this section, the first step in this work was to optimize the wing at a single 

design condition to establish a new baseline. A typical simple mission for the GTM is shown in Figure 15. All of the 
work presented is concerned with the cruise segment only. For the entire cruise segment, the aircraft is assumed to 
fly at a constant altitude of 36,000 feet and Mach number of 0.797. To establish a baseline design that is expected to 
perform well at all cruise conditions, the design point chosen is the mid-cruise point shown in blue in Figure 15. At 
this flight condition, the aircraft is assumed to carry 50% of the maximum fuel load. Two off-design conditions at 
the beginning and end of the cruise segment were chosen for Step 2 of the Optimization Procedure. At begin-cruise, 
shown in green in Figure 15, the aircraft is assumed to carry 80% of the maximum fuel load. At end-cruise, shown in 
red, the aircraft carries 20%. 

Because altitude and flight speed are assumed 
constant throughout cruise, the only parameter that 
varies between the design and off-design cases is the 
weight of the aircraft. The weight of the wing, the 
engine, and the fuel all apply direct loads to the aircraft 
structures in addition to the aerodynamic loads. To 
model this effect, a wing-structure weight distribution 
was included in all aero-structural analyses. Likewise, 
the fuel load in the wing was included in the model. 
These load distributions are plotted in Figure 16 over a 
silhouette of the aircraft wing. Note the strips of 
triangles used to transfer loads from the wing surface to 
the structural model are shown. More details of this 
procedure are given in Reference 3. The loads were 
assumed to act through the elastic axis of the wing 
structure and hence did not produce a torque. A point 
load was also added to include the weight and thrust of 
the assumed single engine on the semispan of the wing. 
The spanwise location of this point load is also shown in 

!  8
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Figure 13. “Circular deflection” of a 3-segmented flap.

Takeoff Landing

Climb Descent

Cruise @ 36,000 feet

Mach 0.797

Loiter

Mid-Cruise

50% fuelBegin-Cruise


80% fuel
End-Cruise

20% Fuel

Figure 15. Typical GTM mission profile. The three flight 
conditions analyzed are shown in red, blue, and green.

Figure 14. Bernstein polynomials (degree 3) used as 
shape variables for the outboard flap deflections. Each 
color represents a different variable.
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(2015) Rodriguez, Aftosmis, Nemec, Anderson, “Optimized off-design performance of flexible wings 
with continuous trailing-edge flaps.” AIAA Paper 2015–1409, AIAA SciTech 2015, Kissimmee, FL. 



Truss-Braced Wing (TBW) 
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Strut

Jury strut

Flap Systems

b = 169.3ft

Sref = 1475ft2

AR = 19.4

M = 0.7

CL = 0.766



Flap Refinement
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Strut

Jury strut

Initially two monolithic flaps, can be subdivided…
span-wise

uniformly or adaptively

or stream-wise 



Flap Adaptation Procedure
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J = CD

b = 169.3ft

Sref = 1475ft2

AR = 19.4

M = 0.7

CL = 0.766

1) Morph: Optimize flap deflections 
for minimum drag. 

2) Refine flap topology: Add the one* 
additional flap that would best allow 
the drag to be reduced.

Refine shape 
control

Deflect 
Flaps

Flow 
Solver

Optimizer

*Add flaps one at a time, because the cost 
associated with every flap is real — want to 
find minimal parameterization!
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4 ways to split

Strut

Jury strut

Priority 
Queues

Objective 
gradient only



Results
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4 ways to split

With constraint 
gradients

Strut

Jury strut

Objective 
gradient only

Priority 
Queues



Verification of Ranking
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1
2 3

4

Actual drag reduction 
(over 2 flaps, optimized)

168.9

With constraint 
gradients

Drag values in counts, 
Trimmed to CL constraint

-1.7

-1.0

-0.1 -0.1

Objective 
gradient only

Priority 
Queues
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Results - Baseline TBW Geometry

20

area of significant 
total pressure loss 
indicate wave drag

Flap Deflection History

77

Inboard Outboard

-1.15º -1.65º -0.6º -0.4º

Negative deflection downward. 
Alpha lowered to compensate lift.

Final flap topology

Baseline geometry has 
substantial wave drag 

through truss

 Final deflections
(cumulative deflection at TE)



Cost-benefit of Flaps
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Two reasonable 8-flap 
topologies:

Superior drag reduction 
capability with 6-flap system
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Conclusions
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• Demonstrated adaptive shape parameterization system for 
automated, high-fidelity aerodynamic optimization. 
‣ Enables hands-off design exploration for unfamiliar problems. 
‣ Provides feedback about the design problem. 

• Verification studies confirm that robust convergence to 
continuous optimum is possible. 

• A careful adaptive strategy makes the approach substantially 
more efficient both in terms of design variables and 
computational time.



New Techniques
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• Goal-oriented refinement indicator targeting high potential 
shape parameters.
‣ Substantially improves results over previous best indicator, 

appropriate for general classes of problems. 
‣ Leverages information already available during optimization — 

no a priori knowledge required. 

• Approximate Hessian estimation (prolongation operator)  
‣ Could also be used to accelerate design in finer design spaces. 

• Constructive algorithm to efficiently find an approximate 
solution to the combinatorial adaptation problem. 

• Cost-benefit approaches to automatically determine how 
many parameters to add and when to trigger refinement.



Future Work
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Airfoil design
Wing design

Low-boom design

Flap system design

Major outstanding topic:  
‣ Discovering effective classes of shape control 

Twist Scale
Sweep

radius

Radial basis functions

Flap 
definitions
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Questions?



Optimization Benchmarks
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Adaptive mesh refinement
Progressive parameterization

‣ Combined two automated, adaptive elements:

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)

Transonic wing and airfoil design benchmarks

† (2015) Anderson, Nemec, Aftosmis. “Aerodynamic Shape Optimization 
Benchmarks with Error Control and Automatic Parameterization.” AIAA 2015-1719



How fast is it?
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# design variables 
to solve problem

Cost Static

Uniform 
Refinement

Adaptive

Minimal 
parameterization

Lowest cost



How fast is it?
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Supersonic low-boom case
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Acceleration
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How fast is it?
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Wall clock time 
In minutes, plotted at major search 
iterations, on 20 Ivybridge cores
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Impact of Parameterization
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Progressive 
Start with 7 DV, uniformly 
refine to 15, then 31.

Shape control 
refinements
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Symmetric airfoil transonic design



Why does it work?
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Factors contributing to acceleration:
• Early on there are few design variables: 

• Accelerates BFGS rate of improvement 
w.r.t search direction. 

• Reduces # of shape sensitivities and 
gradient projections. 

• Later, more design variables are added, 
preventing optimization from stalling.

Smoothness
(2009) Chaigne and Desideri 
‣ Optimization is intrinsically anti-smoothing 
‣ Shape parameters precondition the 

optimization 
‣ Multilevel parameterizations have 

smoothing properties



Hessian Estimation
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Scale dependence
(see dissertation)Linear interpolation of 

Hessian approximation from 
previous search space

New Hessian estimate

Bk+1 =
1

2
(Bk +Bk)M



Hessian Estimation — Verification
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Hessian Estimation — Verification
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Hessian prolongation
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Compare predicted and actual design improvement
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

Good ranking —
nearly monotonic
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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Compare predicted and actual design improvement
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NACA0012

Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Mesh is adapted to accurately compute objective

(2014) Nemec and Aftosmis, “Toward Automatic Verification of Goal-Oriented 
Flow Simulations.” NASA TM-2014-218386



Discretization Error Control

98

Design 5 Final

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1

Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

±E

Design 5 Design 59 

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1

Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Error tolerance is set low enough to ensure 
reliable design improvement.Design 5 Final
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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(2013) Nemec and Aftosmis, “Output Error Estimates and Mesh Refinement in 
Aerodynamic Shape Optimization.” AIAA 2013-0865
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Mesh can be adapted for each design iteration.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
1X

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Mesh can be adapted for each design iteration.
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Figure 11: Case I: Comparison of fixed error control vs. progressive error control. Both cases were performed with
identical parameterization strategies and on identical hardware (2013 MacBook Pro with a 2.6GHz Intel Core i7 and
16GB of memory).

which stalled quite early, the optimizer may simply be unable to navigate the design space, as also reported
by Carrier et al. on this problem.12 Starting in a coarse design space appears to smooth the navigation early
on, leading to a more robust search process, an observation we also expand upon in the companion paper.1

On this problem, the adaptive approach (which results in fewer design variables) is slightly faster than
the progressive approach for most of the process. This speedup is largely due to the smaller number of
shape derivative calls to the geometry modeler and gradient projections, and perhaps partly due to the
lower dimensional design space. For slow geometry modelers, this advantage could be even more significant.
However, factors such as the trigger, rate of variable introduction, indicator, scaling, and path-dependence
make it di�cult to draw firm conclusions about the computational advantage of adaptive refinement vs.
uniform refinement from such a cursory study.

2. Error Control Strategy

The adjoint-based mesh refinement technique used here provides a mesh refinement study and discretization
error estimate along with every functional evaluation. While using tight error control throughout the opti-
mization can lend credence to the process, blind application can result in unnecessary expense. Consulting
Figure 11a, we see that a progressive error-targeting scheme has a significant cost advantage over the static
error approach that we used for the Case I benchmark. Early in design, large improvements can be guided
even with fairly coarse meshes. By adopting very loose tolerances early on (Figure ??), the early stages of
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which stalled quite early, the optimizer may simply be unable to navigate the design space, as also reported
by Carrier et al. on this problem.12 Starting in a coarse design space appears to smooth the navigation early
on, leading to a more robust search process, an observation we also expand upon in the companion paper.1

On this problem, the adaptive approach (which results in fewer design variables) is slightly faster than
the progressive approach for most of the process. This speedup is largely due to the smaller number of
shape derivative calls to the geometry modeler and gradient projections, and perhaps partly due to the
lower dimensional design space. For slow geometry modelers, this advantage could be even more significant.
However, factors such as the trigger, rate of variable introduction, indicator, scaling, and path-dependence
make it di�cult to draw firm conclusions about the computational advantage of adaptive refinement vs.
uniform refinement from such a cursory study.

2. Error Control Strategy

The adjoint-based mesh refinement technique used here provides a mesh refinement study and discretization
error estimate along with every functional evaluation. While using tight error control throughout the opti-
mization can lend credence to the process, blind application can result in unnecessary expense. Consulting
Figure 11a, we see that a progressive error-targeting scheme has a significant cost advantage over the static
error approach that we used for the Case I benchmark. Early in design, large improvements can be guided
even with fairly coarse meshes. By adopting very loose tolerances early on (Figure ??), the early stages of
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which stalled quite early, the optimizer may simply be unable to navigate the design space, as also reported
by Carrier et al. on this problem.12 Starting in a coarse design space appears to smooth the navigation early
on, leading to a more robust search process, an observation we also expand upon in the companion paper.1

On this problem, the adaptive approach (which results in fewer design variables) is slightly faster than
the progressive approach for most of the process. This speedup is largely due to the smaller number of
shape derivative calls to the geometry modeler and gradient projections, and perhaps partly due to the
lower dimensional design space. For slow geometry modelers, this advantage could be even more significant.
However, factors such as the trigger, rate of variable introduction, indicator, scaling, and path-dependence
make it di�cult to draw firm conclusions about the computational advantage of adaptive refinement vs.
uniform refinement from such a cursory study.

2. Error Control Strategy

The adjoint-based mesh refinement technique used here provides a mesh refinement study and discretization
error estimate along with every functional evaluation. While using tight error control throughout the opti-
mization can lend credence to the process, blind application can result in unnecessary expense. Consulting
Figure 11a, we see that a progressive error-targeting scheme has a significant cost advantage over the static
error approach that we used for the Case I benchmark. Early in design, large improvements can be guided
even with fairly coarse meshes. By adopting very loose tolerances early on (Figure ??), the early stages of
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which stalled quite early, the optimizer may simply be unable to navigate the design space, as also reported
by Carrier et al. on this problem.12 Starting in a coarse design space appears to smooth the navigation early
on, leading to a more robust search process, an observation we also expand upon in the companion paper.1

On this problem, the adaptive approach (which results in fewer design variables) is slightly faster than
the progressive approach for most of the process. This speedup is largely due to the smaller number of
shape derivative calls to the geometry modeler and gradient projections, and perhaps partly due to the
lower dimensional design space. For slow geometry modelers, this advantage could be even more significant.
However, factors such as the trigger, rate of variable introduction, indicator, scaling, and path-dependence
make it di�cult to draw firm conclusions about the computational advantage of adaptive refinement vs.
uniform refinement from such a cursory study.

2. Error Control Strategy

The adjoint-based mesh refinement technique used here provides a mesh refinement study and discretization
error estimate along with every functional evaluation. While using tight error control throughout the opti-
mization can lend credence to the process, blind application can result in unnecessary expense. Consulting
Figure 11a, we see that a progressive error-targeting scheme has a significant cost advantage over the static
error approach that we used for the Case I benchmark. Early in design, large improvements can be guided
even with fairly coarse meshes. By adopting very loose tolerances early on (Figure ??), the early stages of
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