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Overcoming the Barriers to @
Practical High Speed Vehicles

Environmental Barriers

Sonic Boom
» Design for low noise sonic boom
* Understand Community Response

Airport Noise
* Noise levels not louder than subsonic
aircraft at appropriate airports

High Altitude Emissions

* No or minimal long term impact
at supersonic cruise altitudes

Efficiency Barriers

Efficient Vehicles

- Efficient airframe and
propulsion throughout
flight envelope

Efficient Operations\

Light Weight, Durable Vehicles - Airspace-Vehicle interaction for

« Low airframe and propulsion weight in a full utilization of high speed
slender flexible vehicle operating at
supersonic cruise temperatures

Solutions to Barriers Drive the Selection of NASA Research Themes




Overland Supersonic Flight @

Most significant barrier to

opening new markets for

supersonic civil aircraft

— FAA: No flight at Mach > 1.0 _g Design for Low Boom

— ICAOQO: No sonic boom
disturbance

Rule change driven by

improved technology and Modeling of Atmospheric

industry interest Effects

International cooperation is

required

NASA has a long history of low

boom research and a clear role Modeling of

in the technology and science Transmission into
behind a rule change as a Structures

national laboratory
|3L=

Modeling of Human
Response to Booms




Background on Mitigation @

« Sonic waves from existing aircraft coalesce into an N-wave sonic boom

 Durations less than a second

— Impulsive noise
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Background on Mitigation @

* N-waves have significant energy at frequencies that humans
perceive well

T Frequency Domain

Energy Speactral Density, dB/Hz

_ L Lol | i Ul |
10° 10’ 10° 10° 10

Frequency, Hz



Background on Noise Measures @

« Multiple models have been developed and evaluated in experiments
 Humans perceive noises to be louder if they are 600 Hz to 10,000 Hz
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Background on Mitigation

« Current low-boom designs prevent coalescence

Pressure (PSF)
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Background on Mitigation @

« Which significantly reduce energy at these important frequencies
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Prediction of Loudness (Annoyance) @

 (Generation of the acoustic

disturbances

Propagation through real
atmosphere

— Winds, temperature variation,
molecular relaxation, and
maneuvering aircraft

Atmospheric turbulence

Response of structures
(typically below 10 Hz)

Perception of noise and
annoyance correlated to noise
measures through experiments

\f% \.“\\j\//f,
“N EAR-FIELD”\]

ATMOSPHERIC™ %, %
PROPAGATION * %

GROUND

ANALYSIS

(PLdB)
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First AIAA Sonic Boom Workshop &

* Assess state-of-the-art near- ¢s§7
field CFD as part of sonic boom SN SN
prediction ]

*  One-day workshop before R \]\}l\\/,
American Institute of NEAR-FIELD

Aeronautics and Astronautics
(AIAA) SciTech January 2014

conference
» Impartially compare relevant ATMOSPHERIC", ",
measures of near-field PROPAGATION '

signatures to each other and
wind tunnel measurements

« Following successful AIAA
workshop model

GROUND

ANALYSIS

(PLdB)

[image: Mathias Wintzer]



AlAA Sonic Boom Workshop Participants

19 groups
— Individuals and collaborations of up to 5 people
— 13 US, 3 France, and 3 Japan
— 10 Government, 5 Companies, 4 University

U. of Miami

S Organizations
(o]
Tokyo U \ .

o,
Standford U >%

5%

Boeing
4%

INRIA
4%

Sanko
Software

(o)
5% ONERA
9%

Lockheed
Martin
9%

-

Gulfstream

4%
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AIAA Sonic Boom Workshop Models &

LM1021 Full
Configuration

Simple Delta Wing Body
Flat-top signature

axisymmetric SEEB-ALR

[image: Aftosmis, Nemec AlAA-2014-558]



SEEB-ALR Near-Field Pressure &

dp_pinf
= 0.05
0.025

-0.025
-0.05

« Axisymmetric body designed by Lockheed
Martin for the validation of a flat-top
signature design method

— Seebass and George with aft lift relaxation

« 18in long, examining at H=21.2in, 42.0in
Mach 1.6
64 extracted signatures submitted
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All SEEB-ALR Near-Field Signatures &

Wind Tunnel Mean and
Uncertainty from an Ensemble
of Measurements
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Fine-Grid SEEB-ALR Near-Field Signatures &
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Fine-Grid SEEB-ALR Ground Signatures @

Pressure (PSF)
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Statistical Method @

« Goal is to identify “different” results, not “correct” or “wrong”

« Median +/- (1.7 coverage factor)*(standard deviation)
— Assume a uniform distribution

« Small sample size with correlated results (same person, same code,
different grid)

« Used by other AIAA workshops (e.g., Drag Prediction, High Lift)
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All SEEB-ALR Perceived Level &
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Finest-Grid SEEB-ALR Perceived Level &
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Expected Grid Convergence

Consistent methods should approach a value as the grid is refined
to “zero” h

First-order

—

Characteristic Grid Length (h)

Second-order

&
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SEEB-ALR Perceived Level Grid Convergence@

PL (dB)
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Validation Metric

* Integral of the absolute value of the difference between the
submitted signatures and wind tunnel measurement

— Inherently imperfect (measurement is not “truth”)

— Used in validation exercises and the First AIAA Shock
Boundary Layer Interaction Workshop

Y

&
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SEEB-ALR Validation Metric
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AIAA Sonic Boom Workshop Models &

LM1021 Full
Configuration

Simple Delta Wing Body
Flat-top signature

axisymmetric SEEB-ALR

[image: Aftosmis, Nemec AlAA-2014-558]




D

elta Wing Body

PL (dB) from 21.2in
(] O O O O
o - \} W N

o]
(o]

[o¢]
(o]

&

Very similar statistics to the SEEB-ALR
Uniform grid refinement did not converge to as tight a range

— Stronger stocks
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Delta Wing Body @

« Very similar statistics to the SEEB-ALR

« Uniform grid refinement did not converge to as tight a range
— Stronger stocks

0.02

0.01

0
[T
£
\g Wind Tunnel
© — — — — WT Uncertainty
-0.01 Participants
-0.02
_ | | | ! ] | | | [ | | | | ] | | | | J
O'030.8 0.9 1 1.1 1.2
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AIAA Sonic Boom Workshop Models &

LM1021 Full
Configuration

Simple Delta Wing Body
Flat-top signature

axisymmetric SEEB-ALR

[image: Aftosmis, Nemec AlAA-2014-558]



LM1021 (Lockheed-Martin) &

* Developed for NASA by Lockheed-Martin under contract

« Complex configuration with wing, body, tails, and nacelles examined
at 2.1 degree angle of attack

« 22.4in long, 4in half span
« Mach 1.6

* Wind tunnel Reynolds number and blade sting mount increase
loudness
— Full-scale free-flight has a typical carpet of 85 PL (dB)

« 11 sets of extracted signatures (optional case)

[image: CIiff, et al.]




LM1021 Pressure on Centerline




LM1021 Ground, R/(b/2)=7.9, Centerline
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LM 1021 Background and Motivation @/

o
. oo’
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LM 1021 Background and Motivation
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Examine Size of Variation Sources @

* Physical model

« Far-field multipole correction

« Signature close-out reconstruction

« Contribution of each shock (i.e., nose and tail shocks)
« Extraction distance

« Off-track

33



LM1021 Signatures, R/(b/2)=7.9, Centerline @
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LM1021 Ground, R/(b/2)=7.9, Centerline
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Multipole Far-Field Correction

« Page and Plotkin AIAA-91-3275

« Corrects for diffraction of acoustic sources in span wise direction
— Mitigate sampling near-field pressure too close to the configuration
— Correction is configuration dependent and decreases to zero with distance

-
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LM 1021 Far-Field (Multi-Pole) correction (&

o
o
o
PL extracted at different H/L Multi-pole correction
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LM 1021 Far-Field (Multi-Pole) correction (&

PL extracted at different phi Multi-pole correction
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Tail closure

« LM1021 wind tunnel model aft signature must be
recreated to remove the mounting sting from the
measurements and simulation

0.015 |-
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Q. B .
1?} - Near-field
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~0.005 :_ Step, Whitham,
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- WT alp=2.32 Ramp
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X
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Tail closure @

* The steepness of the aft shock of this model is sensitive
to the aft signature reconstruction method

Pressure Difference (PSF)
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Tail closure @

« Higher frequencies are impacted by tail shock steepness

120
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Background on Noise Measures @

« Humans perceive noises to be louder if they are 600 Hz to 10,000 Hz

« Measures have been evaluated in experiments (PL best loudness
correlation)

« ASEL is a good surrogate for PL and is a continuous weighting

A-Weighted Sound Exposure Level Stevens JASA (1971)
°F °r Perceived Loudness (PL)

1

o

Gain (dB)
Gain (dB)

-101 10° 10° 0* | R R Ll Ll Ll
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A-Weighted Sound Exposure Level (ASEL) and PL

Range of both axes is 11 dB

% 3 Line has unity slope
M with offset of 14.5 dB
BE Scatter of about 2 dB
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Time Domain A-Weighted Filter

« Continuous weighting of ASEL enables time domain filtering

 Integrated to yield ASEL as a function of position
— See the contribution of each ground signature feature to the total

&
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LM1021 Ground Signature @
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LM1021 A-Filtered Pressure and Ground Signature @
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LM1021 ASEL and A-Filtered Pressure
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LM1021 Ground and ASEL

ASEL (dB)
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LM1021 Ground Signature
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LM1021 Ground Signature and ASEL @
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LM1021 Ground Signature and ASEL
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LM1021 Ground Signature and ASEL @
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LM1021 Ground Signature and ASEL
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LM 1021 Background and Motivation &
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LM 1021 Background and Motivation &

PL extracted at different H/L

At centerline
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LM 1021 Background and Motivation &
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LM 1021 Background and Motivation &

®
®
®
PL extracted at different H/L ASEL extracted at diff. H/L
95 - 81¢
713 80 F
o3| 79 -
o2 F 78 /
ot ey T
90 F B /6F ———— RI/(b/2)=10.4
: I ——— Ribr2)=17.4
89 w75 - R/(b/2)=25.0
- < =
88 |- 74 -
87 F 73F I
86 F 72 F S
85 F A=
gqbo v 70: | ! . ! | ! . ! ! |
0 5 10 15 20 25 30 250 300 350
R/(b/2) Time (ms)
At centerline At centerline

57



LM 1021 Phi = 50 Degrees &
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LM 1021 Phi = 50 Degrees Ground &
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LM 1021 Phi = 50 Degrees &
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LM 1021 Phi = 50 Degrees ASEL @
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Conclusions @'

« Successful first workshop with international participation that
includes government agencies, industry, and academia

« The simpler required configurations each had 60+ submissions
« The optional full-configuration case had 11 submissions
« SEEB-ALR: 91.8 PL (dB) median, 0.3 dB standard deviation

« Delta Wing Body on centerline: 95.5 PL (dB) median, 0.2 dB
standard deviation

« LM1021 wind tunnel configuration: large 85 PL (dB) to 95 PL (dB)
variation and small sample size (no statistics)

» EXxclusion of coarser grids in the uniform grid refinement study had a
negligible effect on median and limits for SEEB-ALR and Delta Wing
Body



Conclusions @

- LM1021 signature was more sensitive to inviscid and viscous
simulations than simpler configurations (tail shock) but did not
produce clear trends in Perceived Level (PL)

« Multiple sources of variation for LM1021 PL and ASEL

— Centerline ground noise measures are dominated by the tail shock

— Both bow and tail shocks contribute to the 50 degree off-track ground noise
measures

« A-weighted Sound Exposure Level (ASEL) is a useful surrogate for
Perceived Level (PL)

« ASEL is continuous and can be applied in both the frequency and
time domains
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Recommendations

Design for reduced PL and ASEL sensitivity to small localized
signature changes

|dentify the sensitive portions of the signal (and model) to target for
adequate grid refinement

A uniform grid refinement study may have provided insight into the
LM1021 PL sensitivity

Minimize the variation introduced during reconstruction of aft
pressure signature for models with sting or extend aft boundary for
free-flight models

Apply far-field (multipole) correction into participant evaluations in a
more consistent manner to quantify the impact of extraction distance

Use A-weighted filter and ASEL with PL for compiling statistics

&
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Participate @

* Visit http://Ibpw.larc.nasa.gov for
— Presentations and references

— Geometry, grids, submitted data, and derived data are available:
independent analysis encouraged!

— Sign up for the low-traffic announcement e-mail list

« See you for the next workshop
— AIAA SciTech 2017, 7-8 January 2017, Grapevine, Texas, USA
— Lower PL configurations from 90s to 70s

— Expand participation to include propagation and noise metric experts
— Include propulsion effects for optional case
— Provide uniformly refined grids for all cases
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Flight Demonstration Concept Formulation & Plannin@

Recent Technical progress has created an opportunity for a new
effort to overcome the sonic boom barrier

Requirements

Demonstrate that noise from sonic booms
can be reduced to a level acceptable to the
population residing under future supersonic
flight paths.

Create a community response database
that supports an International effort to

develop a noise based rule for supersonic
overflight

Approach

Build on recent NASA progress to prepare for a future flight demonstration

Partner with regulatory agencies and communities to create a roadmap for community
response study and rule development

Revitalize the excitement of manned X-Planes using a focused and cost-effective
approach to design and operate a low boom research aircraft

Flight demonstration project is under consideration as a new project
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ICAO/FAA Notional Roadmap for
Sonic Boom Noise Standard
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Typical Mission Boom Carpet @
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