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Challenge #1: Black box models
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[Kroo 1994]

» Disciplinary separations
» Expensive function evaluations
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Evaluate
objective and
constraints

Insight

» Surprisingly, many relationships in engineering design
have an underlying convex structure.

Change
design

Benefits

Is the design

Design

optimal? » Globally optimal solutions
» Numerically stable algorithms
e » No initial guesses; no solver parameter tuning
ificati .
Spec e » Extremely fast solutions, even for large problems

[Adapted from Alonso 2012]
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General nonlinear program

minimize fo(x)
subject to  fi(x) <0, i=1,...,N;
hi(z)=0, j=1,..,N,

» In general, extremely difficult to solve



General nonlinear program Convex program

minimize fo(x) Same as nonlinear program, except
subject to fi(x) <0, i=1,...,N; — fi(x) must be convex
hj(x) =0, j=1,..,N, — hj(x) must be affine

» In general, extremely difficult to solve » Very efficient to solve



“

. the great watershed in optimization isn't between linearity and
nonlinearity, but convexity and nonconvexity.”

— R. Rockafeller, SIAM Review 1993
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Geometric program: definition

Monomial function

m(x) = cHzE“, c>0 (e.g., 3pV2CLS)
i=1

Posynomial function: sum of monomials

K n
. 02
p(z) = ch Hﬁglk, k>0 (eg,cat LA)

k=1 i=1 e
Geometric program (GP)

minimize  po(x)
subject to p;(x) <1, i=1,...,N;
mij(x) =1, j=1,...,N,

with p; posynomial, m; monomial
x = (z1,22,....,2,) >0
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variable change: y; := log z;
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Geometric program: convex formulation

variable change: y; := logx;

» Monomials m(x) = c[]}_, z*: affine in y after log transform
logm=b+a’y  (b=logc)
» Posynomials p(x) = Zle ci [Ty ™ convex in y after log transform
K
log p = log (Z ebk"’azy)
k=1

» GP in convex form
minimize  log 25:01 exp(bor + a&y))

subject to log Zle exp(bix + aﬁy)) <0, i=1,...,N,
Gy+h=0
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Solving geometric programs

Interior-point methods

Figures: [Boyd 2004]

Benefits:
» Globally optimal solution, guaranteed
» Robust: no initial guesses or parameter tuning
» Off-the-shelf solvers

Boyd GP benchmarks (2005) [1]

» dense GP: 1,000 variables, 10,000 constraints:
less than 1 minute

» sparse GP: 10,000 variables, 1,000,000 constraints:
“minutes”
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Modeling warm-up: monomial examples

Steady level flight relations
L o L o
W= §pV CLS, T = §pV CpS,

Non-dimensional coefficients

Sizing parameters

T=—, A= —,
c Cr

Empirical power law models

Winain = 0.011W S8 NQ2S L% N2l

and ““main~ " wheel
gear

TV = hfuel mfuel TlthmTlengTprop

Ny

ss

0- 5Vta|| [Raymer 2006]
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Modeling example

Breguet range equation

h
/ L log(1 +

R _J
770 ch

RgCD
thLUO

) =14 b

exp(

GP formulation

> RgC’D
~ hyCrno
22 23
z —|- AT + *' + ..
3! empty

1: Taylor expansion

—exact
—4—term Taylor approx
- -3—term Taylor approx
1.5¢
R
==
0.5-
0 . .
0 0.2 O 0.8
gRD/(hfuean )




Modeling example 2: Implicit posynomial fitting
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Modeling example 2: Implicit posynomial fitting
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Modeling example 3: Local function approximation
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Modeling example 3: Local function approximation
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Modeling example 3: Local function approximation

Stress limit:
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Modeling example 3: Local function approximation

Stress limit:

UsafeS'root > NliftMroot

t'cap 7Ar el [Drela 2010]
= T \i:;:»:—/:—;:» -
I« Whox ¢ -
Applied root moment:
Wb [2)+1
My > —
4 [3XA+3

M

Al

1y ===

Ly

J

b 4
3 |
L, 1 -
hrmSWtcap + Icap < §wtcap
—(2A+1)/(3A+3)
—2—term posynomial approximation
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Modeling example 4: spanwise discretization
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Modeling example 4: spanwise discretization

0 0‘.2 014 0.‘6 0‘.8 “I

y

Problem: Cp < (ACP)1+(ACP)2+...+(ACP)N ?

Solution: Cp < N(ACp) (constant power per bin)
YN + L?N <1



Modeling example 5: Fitting models from data
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using XFOIL [Drela 1989]
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A

~ 10,000 data points from
Cd(CL, Re, T)

for NACA-24xx airfoils, generated
using XFOIL [Drela 1989]

» 7 ranging from 8% to 16%

» Re ranging from 10° to 107
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Modeling example 5: Fitting models from data

Al S

o
=}
©

— max-affine

~ 10,000 data points from _ —$callgqtsoffttmax
— ImpIiCIt softmax

o
o
J

Cd(CL,Re,T) ,50‘067
§ 0.05"
for NACA-24xx airfoils, generated g
using XFOIL [Drela 1989] 200
» 7 ranging from 8% to 16% 0031
» Re ranging from 10° to 107 0.02
(small homebuilt to small jet) 001, . ,‘i . -

» (1, ranging from 0 to stall



GPkit: GP modeling in python

» substitution instead of constants

gpkit.Variable("R", 8, "meters")

» unit checking and conversions
gpkit.Variable("W", 4.94, "kilonewtons")
» interactive explorations
gpkit.interactive.widget (gp)
» sweeps over the design space
gp.sub("R", ("sweep", [4, 6, 8]))
» Experimental: optimization involving random variables

gpkit.Variable("\sigma_max", min=220, expected=276, "MPa")

http://gpkit.readthedocs.org


http://gpkit.readthedocs.org
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Which trade studies should we conduct?

» Dual variables quantify sensitivity of objective to each constraint.

» Primal-dual interior point algorithms determine optimal dual
variables for free.

Example The dual variable associated with constraint ¢ is -0.27.
esign
Interpretation If we relax constraint i by 1% and then re-solve, we
expect the optimum to improve by 0.27%.
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Change dual
specifications

Specifications

Baseline
design

Evaluate
objective and
constraints

Change
design

Is the design
optimal?

sensitivities
Optimal
Design

Constraint sensitivities

Which trade studies should we conduct?

» Dual variables quantify sensitivity of objective to each constraint.
» Primal-dual interior point algorithms determine optimal dual
variables for free.
Example The dual variable associated with constraint ¢ is -0.27.

Interpretation If we relax constraint i by 1% and then re-solve, we
expect the optimum to improve by 0.27%.

» Guide trade studies
> Direct engineering effort to most important areas
» Better understand uncertainty propagation

Applications
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When constraints cannot all be satisfied, GP solvers provide a mathematical certificate
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minimize  po(x) minimize s
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Feasibility Analysis

When constraints cannot all be satisfied, GP solvers provide a mathematical certificate
that no feasible point exists.

In this case, look for closest feasible point:

Original GP Closest Feasible Point GP

minimize  po(x)

minimize s
subject to  pi(z) <1, i=1,...,Np, subject to  p;(x) <'s
j

mji(x) =1, j=1,..,Ny m;

. i=1,...,N,,
2)=1, j=1,.,N,

The closest feasible point GP is always* feasible, and its optimal point is within
100(s — 1)% of satisfying the original inequality constraints.

*assuming monomial equality constraints are feasible
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System-level design

scheduling
layout problem cutting

problem
. routing
g FEM model routing I~
problem
bl
CFD model e
scheduling scheduling
problem problem

Conceptual Preliminary Detailed
Design
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Take-aways

» Importance of mathematical structure
» Key to tractability: convexity

» Result: reliable and efficient optimization
that scales to large problems

Current research interests

» Variable transformations for quasi-convex
functions

» Signomial programming

» Fitting convex optimization models to data
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Constraint sensitivities

» Consider perturbed GP:

Ky
minimize Zc()kxao"'
k=1
K;
subject to Zcik:c‘”’“ <wg, i=1,...,m.
k=1

» Define p*(u) = optimal objective value of perturbed GP
p*(u)

_ 9 (p*(1)>
u=1 9 (%)

0log p*(u)
dlog u;

=\

u=1
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Obijective (Drag) [N]

450
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208.

Pareto frontier “linearization”

—True objective value
---Dual variable approximation
-+ Unperturbed optimum




Pareto frontier “linearization”

—True Pareto frontier
3601 - - -Dual variable approximation||
- Original GP solution
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Some Useful Bounds

Dual Sensitivity Analysis Design Averaging

» Perturb constraints (via u) » Consider two designs 61, 65, with

L o
» Performance bound: objective values p7, p3

» Form geometric mean design
logp*(u) > logp*(1) + A"

(8 _ (1) ()
» An optimistic estimate 03 07765
» Performance bound:
p3 < \/DPips

» A pessimistic estimate
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Posynomial Equality Relaxation

minimize  po(z)

When can we guarantee h(z) =1 subject to  p;(z) <1, i=

1...

will hold at optimum ? mi(x) =1, j=1,..
T h(z) <1
A

If 3 2, s.t.:

d . . | I . . amj
» X does not appear In monomial equa |ty constraints, 1.e. Bz

» pg monotone strictly decreasing in xy, i.e. 6—52 <0

v

. . 8p1
All p; monotone decreasing in xg, i.e. T <0

» h is monotone strictly increasing in xy, i.e. (% >0

— Conditions satisfied for all relaxations presented today.

Extensions exist for multiple h;(z), 3 61”0 = 0 case [Boyd et. al., 2007]

=0
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Conceptual Design — Modeling Summary

Fuselage Pressure Loads
Fuselage Bending Loads
Fuselage Weight

Steady Level Flight Relations
Wing Moments and Stresses
Wing Weight

Stability

Tail Moments and Stresses
Tail Weight

Engine Weight

Turbine Cycle Analysis
Noise

CG Envelope

Active Gust Response

Wing Profile Drag

V-speeds and critical loading cases
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Wing Induced Drag

Tail Drag

Fuselage Drag

Interference Drags

Airfoil Shape Optimization
Laminar Flow Control
Compressibility Effects

Propulsive Efficiency

Blade Element Momentum Theory
APU Sizing

Hydraulic, Fuel, & Electrical System
Weights

Mission Breakdown and Fuel Burn
Cruise Climb

Loiter Performance/Endurance
Takeoff Distance & 50" obstacle

clearance
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Landing Distance

Spoiler Sizing

Climb Performance
Engine-Out Operation
Windmilling Drag
Maneuverability

High Lift System Sizing
Control Surface Sizing
Landing Gear Sizing
Engine Ground Clearance
Tail Strike Clearance
Maintenance Costs
Material Costs
Manufacturability
Assembly/Integration Time and Cost

Fastener Count

Supply Chain Dynamics
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gpkit

Open source python modeling tool

Interfaces with MOSEK and cvxopt solvers
Stable version release planned for November 2014
http://github.com/appliedopt/gpkit


http://github.com/appliedopt/gpkit

gpkit — coupling graphs




coupling graphs
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Lagrange Dual of GP

Primal problem (in convex form):

Ko

minimize logz exp(agyy + box)
k=1
K;

subject to logZexp(aZ,;y +bix) <0, i=1,...,m,
k=1



Lagrange Dual of GP

Primal problem (in convex form):

Ko

minimize logz exp(agyy + box)
k=1
K;
subject to logZexp(aZ,;y +bix) <0, i=1,...,m,
k=1

Lagrangian and dual function:

Ko m K; m
L(y,z,A\,v) =log Z exp 2ok + Z A log Z exp z; + Z vIi(Ajy +b; — z;)
k=1 i=1 k=1 i=0

g(Av) =inf L(y,z,A,v).
Y,z



Lagrange Dual of GP

m K;
.. v;
maximize g VZ-TbZ-—g vir log 1Tl
i=0 k=1

m
subject to Z vIiA; =0

=0

k
v;
v;>0, 2=0,....m

17y, = 1.

» An equality-constrained entropy maximization

» (unnormalized) probability distributions v; satisfy 1Ty, = )\
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Fitting Reduced-Order GP-compatible Models

disciplinary

X — output
analysis output(s)

—>
inputs —2|

» GP-compatible models can approximate any
log-convex data [Boyd 2007]

» Given set of data points
(1,91)s s (Tm,ym) ER" xR
» Minimize fitting error ||y — f(x)]||, subject to f € F

log z
SN S R R S - S

log z

O 4 M w & @ N ®

L
S
i

— max-affine: RMS error = 0.177p4
—— softmax-affine: RMS error = 0.127P9

+ input data E

|
N

-1 0
y=logx

+ input data
— max-affine: RMS error = 0.17764
—— softmax-affine: RMS error = 0.12729
—scaled softmax: RMS error = 0.12657
—— implicit softmax: RMS error = 0.011219




Fitting Reduced-Order GP-compatible Models

. ——Z| disciplinary 8 —
inputs analysis output(s) 7 —n'l‘;'i‘_iff?:ez HMSerror:0.177E4 h
o —— softmax-affine: RMS error = 0.127p9 '/
5.‘~ /‘/
. - 'h 3
» GP-compatible models can approximate any R /
84 N /
log-convex data [Boyd 2007] B /
» Given set of data points ! \ e
o Seasasestrs T
(x1,11) (x ) €R" xR
1,Y1)y -+ ms Ym -1 = 5 :
« . . . . . y=logx
» Minimize fitting error ||y — f(x)]||, subject to f € F .
. + input data
> Several choices for F, e.g. T o eine: S arer 015758
. . 6 ——scaled softmax: RMS error = 0.12657
» Max-affine functions o\ [ mlci softmax: RS error - 0011219
> Softmax affine functions .
» Implicit posynomials g,
2]
1
0

L
S
i



Fitting Reduced-Order GP-compatible Models

> disciplinary
i —> N — output
inputs > analysis utput(s) —— max-affine: RMS error = 0.177p4

softmax-affine: RMS error = 0.127p9

+ input data %

GP-compatible models can approximate any
log-convex data [Boyd 2007]

log z
SN S R R S - S

Given set of data points
(37173/1)7 sy (mm)ym) e R" xR

-2 -1 0 1
« . . . . . y=logx
Minimize fitting error ||y — f(x)||, subject to f € F .
. + input data
Several choices for F, e.g. T | maaine: S anor - 012738
> M ﬂ: f ti 6 ——scaled softmax: RMS error = 0.12657
ax-aftfine runctions —— implicit softmax: RMS error = 0.011219)
5
> Softmax affine functions .4
> Implicit posynomials g,
Fitting problem solved offline using trust region f
Newton methods o

|
N
|



Fitting Reduced-Order GP-compatible Models

inputs ——Z| disciplinary

h « input data
—> analysis
>

— max-affine: RMS error = 0.177p4
softmax-affine: RMS error = 0.127p9

— output(s)

O 4 N W & P N ®

GP-compatible models can approximate any %
log-convex data [Boyd 2007]
Given set of data points e
(@1,%1)5- -5 (T, Ym) € R X R g Bl 1
« . . . . . y=logx
Minimize fitting error ||y — f(x)||, subject to f € F .
. + input data
Several choices for F, e.g. T | maaine: S anor - 012738
. . 6 ——scaled softmax: RMS error = 0.12657
» Max-affine functions o\ [ mlci softmax: RS error - 0011219
> Softmax affine functions .4
> Implicit posynomials g,
Fitting problem solved offline using trust region f
Newton methods o

L
S
i

Many extensions, e.g. conservative fitting, sparse
fitting
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