A Failure Propagation Modeling Method for Launch Vehicle Safety Assessment

Scott Lawrence, Donovan Mathias, and Ken Gee
NASA Ames Research Center, Moffett Field, California

Applied Modeling and Simulation Series
NASA Ames Research Center, November 4, 2014

Presented at the 12th Probabilistic Safety Assessment and Management (PSAM12), June 24, 2014
Outline

• Introduction
 − Role of failure propagation in abort effectiveness assessment

• Method Description and Sample Problem
 − Propagation Process
 − Implementation Enhancements
 − Developing Transition Probabilities
 − Some Example Analyses

• Conclusions and Future Work
Abort Effectiveness In a Nutshell (Avocado?)

- All Failures (Loss of Mission)
 - L-V Loss of Crew
 - Uncontained Failures
 - Stage-Level Explosions
- S-C LOC
Abort Effectiveness In a Nutshell (Avocado?)

- All Failures (Loss of Mission)
- Uncontained Failures
- Stage-Level Explosions
- L-V Loss of Crew
- S-C LOC

Failure Propagation
Abort Effectiveness In a Nutshell (Avocado?)

Failure Environments

S-C LOC

All Failures (Loss of Mission)

L-V Loss of Crew

Stage-Level Explosions

Uncontained Failures
Reality: There are flavors of uncontained, each with its own character

LOC fraction will depend on:
- Mission time (flight conditions, etc.)
- Failure detection (warning time)
• **ESAS**
 - $\text{LOC} = 0.15\times\text{LOM}$

• **Ares 1 Upper Stage Engine**
 - Early: All uncontained \rightarrow Stage Explosion
 - Focus was on environment characterization (blast, fragments)
 - Late: 30% uncontained \rightarrow Stage Explosion
 - Based on analysis by Ken Gee

• **SLS Complexity**
 - Liquid first stage
 - Multiple engines
 - Confined volume
 - Strap-on boosters

• **SLS Core Stage Engine**
 - Early: 50% \rightarrow Stage Explosion (weaker)
 - Current: Why we’re here
Abortability Example

- What is likelihood that, given a main engine turbo-pump burst failure, there will serious injury or death of one or more crew members?
 - What is the likelihood that there will be a “large” explosion (explosion of full stage)?
 - What is the likelihood that a large explosion will critically damage the crew module?

- How does it vary with mission time?
- How does it vary with warning time?

Note: importance of propagation depends on proximity of crew module.
Failure Propagation Model Overview

[Diagram showing the process of failure propagation, including stages, event trees, and binned end-states.]
Selected initiator: Stage 1 turbopump failure
Paths go horizontally and then vertically

<table>
<thead>
<tr>
<th>Initiators</th>
<th>Stage 1 TurboPump</th>
<th>0%</th>
<th>50%</th>
<th>15%</th>
<th>Transition Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 MCC Expl</td>
<td>70%</td>
<td>0%</td>
<td>5%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Aft Skirt Explosion</td>
<td>10%</td>
<td>80%</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE Tank Explosion</td>
<td>20%</td>
<td>10%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Environments</th>
<th>Stage 1 Tank Rupture</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 Intertank CBM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failure Environments</th>
<th>Stage 2 Tank Rupture</th>
</tr>
</thead>
</table>

Event Tree: Stage 1 TP
Stage 1 TP burst causes (leakage) aft skirt explosion
Stage 1 TP burst causes (fragment strike) He tank explosion
Aft skirt explosion causes (overpressure) Stage 1 tank rupture
He tank explosion causes (fragment) Stage 1 inter-tank CBM
Simple Propagation Matrix Example

Event Tree

Stage 1 inter-tank CBM causes (overpressure) Stage 1 tank rupture

<table>
<thead>
<tr>
<th>Stage 1 TurboPump</th>
<th>0%</th>
<th>50%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 MCC Expl</td>
<td>70%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Aft Skirt Explosion</td>
<td>10%</td>
<td>80%</td>
<td>0%</td>
</tr>
<tr>
<td>HE Tank Explosion</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Tank Rupture</td>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Intertank CBM</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2 Tank Rupture</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage 1 TP

- Aft Skirt Expl
- He Tank Expl

Stage 1 Tank Rupture

- Stage 1 Intertank CBM

Stage 1 Tank Rupture
Transition times introduced to enable chronology-based pruning
Monte Carlo results are binned to produce the desired mapping (branch splits) between the initial manifestation and the explosion(s).

Sample Monte Carlo Results

Pruned Event Tree
Transition Data Table Snippet

<table>
<thead>
<tr>
<th>ID</th>
<th>PL</th>
<th>Pre-Launch w/ LAS</th>
<th>First Stage Burn</th>
<th>Staging</th>
<th>Upper Stage Burn, w/ LAS</th>
<th>Upper Stage Burn, no LAS</th>
<th>Spacecraft Staging</th>
<th>Source</th>
<th>Target</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>0/ 0/ 0</td>
<td>0/ 0/ 0</td>
<td>0/ 0/ 0</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 TurboPump</td>
<td>Stage 1 MCC Expl</td>
<td>0.01/0.01</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>90/50/15</td>
<td>90/50/15</td>
<td>90/50/15</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 TurboPump</td>
<td>Aft Skirt Expl</td>
<td>0.1/0.1</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>25/15/5</td>
<td>25/15/5</td>
<td>25/15/5</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 TurboPump</td>
<td>HE Tank Explosion</td>
<td>0.1/0.1</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>100/70/20</td>
<td>100/70/20</td>
<td>100/70/20</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 MCC Expl</td>
<td>Aft Skirt Expl</td>
<td>0.1/0.1</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>5/0/0</td>
<td>5/0/0</td>
<td>5/0/0</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 MCC Expl</td>
<td>HE Tank Explosion</td>
<td>0.01/0.01</td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>100/15/0</td>
<td>15/5/0</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 MCC Expl</td>
<td>Stage 1 Tank Rupture</td>
<td>0.01/0.01</td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>Stage 1 MCC Expl</td>
<td>Stage 1 Intertank CBM</td>
<td>0.1/0.1</td>
<td></td>
</tr>
</tbody>
</table>

Mapping: Dependence on Phase

Stage 1 Shutdown/ Separation

Stage 1 Boost

Pre-Launch
Initiators/Initial Manifestations (Tables)

Intermediate Environments (Facilitate propagation)

Element-Level Environments (Direct threat to Crew/CM)

Transition Probabilities (Points to table)

Summary
15 phases
3 options (Best/Worst/Base)
15 Initiators
9 ELEs
5 IEs
32 Total Envs
90 Trans Probs
5-stage process
11 triggered environments (not including initiator)
4 triggered explosion types
Transition Analysis Thought Process

- Energy Transfer Mode(s)
 - Overpressure
 - Kinetic Energy (Fragments)
 - Shock & Vibration
 - Environment (pressure, temperature)
 - Etc.

- Source Severity
 - Energy type: \([KE]\)
 - Magnitude: \([\text{Velocity and density}]\)
 - Uncertainties: \([\text{Velocity and density}]\)

- Target Vulnerability
 - Energy type: \([KE]\)
 - Magnitude: \([\text{Size, Location, Limit velocity}]\)
 - Uncertainties: \([\text{Limit velocity}]\)

- Energy Decay
 - Natural decay with distance: \([1/d^2]\)
 - Obstructions: \([\%]\)

Example: TP Burst \(\rightarrow\) He tank burst
Engine Section Propagation

- **Modes**
 - **Fragments**
 - Uncontained engine failures
 - COPV bursts (subsequent to being struck), assumed uniform in all directions
 - **Overpressure**
 - MCC explosion
 - COPV burst
 - **Leaks**
 - Propellant
 - Hot Gas
 - TP pre-burners
 - MCC
 - COPV burst

- **Primary Outcomes**
 - LH2 Tank Rupture
 - Core nonCBM
 - ES Burst (rupture)
 - Damage to nozzle propellant lines → multiple engines uncontained or loss of thrust
 - Multiple engines uncontained
 - Many consequences
 - Core loss of thrust
 - LH2 tank rupture (when boosters on and burning)
Conclusions and Future Work

Status

- Propagation model has been implemented
 - Complex interactive process modeled with a number of simpler interactions
 - Automatically generates potentially complex failure event sequences

- Advantages
 - Facilitate communication with engineers regarding consequences of failure
 - Enables complex mission phase behavior to be captured
 - Tracks and accumulates failure evolution times (where available)
 - Easy to set up easy problems but can be expanded to more complex problems

- Currently being used in support of the Space Launch System (SLS) and Commercial Crew programs

Potential Enhancements

- More automated transition probability evaluation
- Integration with CAD-based simulation methodology
Antares Failure: October 28, 2014

T+14.7s

Plume changes color (ΔMR)

+ <1 s

R.U.D.

FTS @ T+20s

Orbital Sciences Antares Rocket

Payload Fairing
- Diameter: 3.9 meters (154 in.)
- Height: 9.9 meters (390 in.)
- Structure: Honeycomb Core. Composite Face
- Separation: Non-Contaminating Frangible Ring

Stage 1
- Two Aerojet AJ26 engines with independent thrust vectoring
- Liquid oxygen/RP fueled
- System development and integration by Orbital
- Core tank design and verification by KB Yuzhnoye (Zenit-derived heritage)
- Core tank production by Yuzhmash
- Avionics Stage Controller uses flight-proven Orbital MACH components

Stage 2
- ATK CASTOR® 30B Solid Motor with Thrust Vectoring
- Orbital MACH Avionics
- 3-Axis ACS

Duel AJ-26 Engines
Fuel (RP) Tank
LOX Tank
AJ-26 Engines

- Antares powered by dual AJ-26 engines
 - LOX-Kerosene
 - Staged combustion
- Both engines on this flight were manufactured for the Soviet N1 rocket in the 1960s and 1970s
- Conversion to AJ-26 involved:
 - Updated electronics for new electromechanical valve actuators
 - Modifications to fuel systems
 - Added hydraulic TVC system
- Acceptance tests were performed for each engine
 - One minute burn
 - Failure in May during one of these acceptance tests
 - Described as an explosion
 - Failure in 2011
 - Kerosene leak leading to fire
 - Traced to stress corrosion cracks in metal