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O ERA Team Methodology
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~@ CEPR Model Implementation in GoldSim
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3 :0 Avionics & PCS Implementation
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0 PPRV Implementation
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(@ ERA Generic Launch Vehicle & Spacecraft
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e Cabin Properties « Crew
—16 m3 air volume — 4 Crew
—Leakage rate of 0.036 Ibm/day — Consume 0.2434 kg/hr of O,
—297 K constant temperature — Produce 0.2554 kg/hr of CO,
—Perfectly controllable O, mass « Consumables

flow rate and O, sensors — 44.7 kg of O, at 100% Full

—Perfect pressure vessel — 167 kg of N, at 100% Full
—Perfect Mixing — 297 K constant temperature
—1Ideal Gas  LiOH Canisters

e Initial Nominal Cabin State — Removes 0.2554 kg/hr of CO, at
—3.234 psi ppO, 100% effectiveness level
—0.058 psi ppCO, « LOC Thresholds & Return Time
—11.408 psi ppN, — Minimum ppO, is 2.3 psi

— Maximum ppCO, is 0.87 psi
— Return Time is 4 Hours

Green indicates Simplifying Assumption / Blue indicates Uncertain Assumption / Black indicates Uncertain Design Requirement
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# Design Insights for Risk-Informed Decisions: @&
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s '@ Blow and Bleed” Sensitivity Study
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& Design Insights for Risk-Informed Decisions: @&

A '@ “Coed the Leak” Sensitivity Study

Time to LOC vs. Leakage Rate
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; . Dynamic Mission Risk Model
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# Risk-Informed Design Example:

'@ Risk Driver Ranking
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h=a Risk-Informed Design Example:

'@ Risk Reduction Trade Study

Trade Study Options

EPS - Enhanced Mass [Ibs]|[ECLSS - Enhanced |Mass [lbs]

Fuel Cell Stack 10.7||Manual Valve 0.3

Heater 1[Manual Valve 0.3

Heat Exchanger 0.65[Manual Valve 0.3

Pressure Regulator 0.635[Manual Valve 0.3

Pressure Sensor 0.22Manual Valve 0.3

Hydrogen Purge Valve 0.1{Manual Valve 0.3

Water Separator 0.5

Total Mass Delta 13.805|Total Mass Delta 1.8
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=< Risk-Informed Design Example:

"REA'® Risk Reduction Trade Study

Risk Reduction Efficiency = ARisk / AMass

LOC Risk Reduction Trade Study
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2@ Summary & Conclusions

e CEPR model is used to predict the time for an initial ECLSS failure to
propagate into a hazardous environment and trigger a LOC event

— Can be utilized as a stand-alone model to aid in decision-making
— Allows for integration of model results into dynamic mission risk models
— Enables the risk analyst to remove the assumption that loss of functionality triggers LOC

e The assumption that loss of functionality triggers LOC has been shown
to be excessively conservative

— Impacts overall risk driver ranking
— Impacts risk reduction trade study results
— Could lead to a suboptimal design that inherently increases the risk of LOC

e Incorporating CEPR results yields more accurate design insights
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