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“The location of transition is of critical importance in the 
design of [...] hypersonic vehicles as both the 
aerodynamic heating and skin friction are higher in 
transitional and turbulent flows compared to laminar 
flow. 

[...] A delay of the transition from a laminar-to-turbulent 
state will facilitate the optimal design of hypersonic 
vehicles [...] 

Chokani et al. (2005)
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• Various paths to transition

• Low disturbance environment, no surface 

roughness ⇒ path A

Schematic of transition stages. (Terwilliger (2011)) Paths to transition (Terwilliger (2011))
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• Various paths to transition

• Low disturbance environment, no surface 

roughness ⇒ path A

Schematic of transition stages. (Terwilliger (2011)) Paths to transition (Terwilliger (2011))

Focus here on parts of path A
B

C

D
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• Sharp leading edges, relatively low angles of attack results in high Mach numbers in the 

Boundary Layer

• Most amplified waves: 2D second mode waves (Compressible LST, Mack (1969))
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Disturbance wave schematic (Fedorov et al. 2001)

• Second mode waves are acoustic waves in ultrasonic frequency spectrum (confirmed by 

experiments: Stetson et al. (1983))

• Relative supersonic flow region in Boundary Layer

•Trapped acoustic waves (Fedorov et al. (2001))

Introduction/Motivation

Sonic line acts like a waveguide

c = disturbance phase 
speed
a = local speed of sound
U = mean flow velocity

relative 
supersonic flow

(c - U > a)
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Idea: Stabilization of second mode waves 
through absorbing acoustic energy of 

trapped acoustic waves (Fedorov et al. 2001)

Introduction/Motivation

Disturbance wave schematic (Fedorov et al. 2001)
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• Many numerical studies have been conducted for the linear stability regime to confirm the 

stabilizing behavior of porous walls (Fedorov (2010), Bres et al. (2008/2009), Sandham et al. 

(2009), Wartemann et al. (2010), ...)

• Boundary Conditions employed to account for presence of porous wall

• Few numerical studies have been conducted of porous walls for the nonlinear stability regime 

where the pores are resolved (de Tullio et al. (2010))

• Experiments showed potential of porous walls to stabilize BL (Rasheed et al. (2002), Chokani et 

al. (2005), Fedorov et al. (2006))

• Fair agreement between experiments and numerical results 

Related Research
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• Passive laminar flow control techniques important for design optimization

• Stabilization of dominant second mode through porous walls

• Interest in effect of porous walls on nonlinear regime

Intermediate Summary

Schematic of sharp cone model (Fedorov et al. 2005)

Micrograph of perforated sheet (Fedorov et al. 2005)
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Equations and assumptions:

• Solution of the compressible Navier Stokes Equations

Numerical Scheme:

• Convective terms: Upwind biased centered finite differences, O(Δx9) (Zhong (1998)), van Leer 

flux splitting scheme

• Viscous terms: Centered finite differences, O(Δx8)

• Time integration: Runge-Kutta, O(Δt4)

• perfect gas (Pr = 0.72, γ = 1.4, cp = const.)

• Sutherland’s law to compute viscosity
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Temporal approach for disturbance simulations:

• many pores per disturbance wavelength have to be resolved ⇒ high resolution requirements for 

spatial DNS 

• traveling wave ansatz:

Temporal Model Spatial Model

assumptions:
• α is real
• ω is complex

 disturbance grows in time

• amplification for ωi > 0, decay for ωi < 0
• non-parallel effects through boundary layer 
growth not captured (parallel Base Flow 
enforced)

• amplification for αi < 0, decay for αi > 0
• most realistic case
• computationally very expensive 

 disturbance grows in space

assumptions:
• α is complex
• ω is real
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Boundary Conditions:

• periodic in streamwise direction

• symmetry in spanwise direction

• no slip, adiabatic wall

• exponential decay at upper boundary

Schematic of computational domain for temporal approach

Porous wall:

• physically resolved with higher-order Immersed Boundary Method (Brehm & Fasel, JCP, 2013 

Vol. 242, Brehm et al. AIAA 2014-2093, Brehm et al. AIAA 2014-2093)

Base Flow forcing:

• suppress boundary layer growth in 

streamwise direction
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• Initial condition: similarity solution of 

compressible BL equations

• adiabatic wall

• Flow conditions: consistent with Sandham et 

al. (2009), Wartemann et al. (2010), deTullio et 

al. (2010) and Fedorov et al.(2011)

• reference length scale: displacement 

thickness δ*

• Re δ*  = 20000

• x0/δ* = 114.54

• Disturbance forcing: volume force in y-

momentum equation

0.0 0.5 1.0 1.5
U, T/Tmax

0

1

2

y/
δ*

U
T/Tmax
sonic line
generalized 
inflection point
critical layer

Flow conditions:
• M = 6
• Te = 216.65 K
• Tw/Te = 7.0272
• Pr = 0.72
• λ = 1.4

Base Flow profiles
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• forcing function

computational domain

wave fronts
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• ωr: frequency

• αr = 2 π/λx: streamwise wavenumber

• βr = 2 π/λz: spanwise wavenumber

•  fundamental wavenumber defined by domain size (Lx, Lz)

• αfund = 2 π/Lx; βfund = 2 π/Lz

• wave angle is controlled by extent of computational domain
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• forcing function
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• ωr: frequency

• αr = 2 π/λx: streamwise wavenumber

• βr = 2 π/λz: spanwise wavenumber

•  fundamental wavenumber defined by domain size (Lx, Lz)

• αfund = 2 π/Lx; βfund = 2 π/Lz

• wave angle is controlled by extent of computational domain
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• forcing function

computational domain

wave fronts
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• ωr: frequency

• αr = 2 π/λx: streamwise wavenumber

• βr = 2 π/λz: spanwise wavenumber

•  fundamental wavenumber defined by domain size (Lx, Lz)

• αfund = 2 π/Lx; βfund = 2 π/Lz

• wave angle is controlled by extent of computational domain

mode (n,m)

αn,m = n · αfund

λx = Lx/n
n = 0 ⇒ 90º wave

βn,m = m · βfund

λz = Lz/m
m = 0 ⇒ 0º wave

Terminology



Applied Modeling & Simulation Seminar Series, NASA Ames Research Center09/09/2014 20

• Higher order finite differences for inviscid and viscous terms

• Perfect gas

• Higher order Immersed Boundary Method to physically resolve porous walls

• Temporal Simulations 

• M = 6 Base Flow

• Freestream temperature of T = 216.65 K (cold flow)

• Volume forcing to introduce disturbances

• (n,m) mode terminology important for later discussions

Intermediate Summary
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• Identify most amplified disturbance, 2D, mode (1,0)
• Two unstable regions (first mode/second mode)
• Most amplified case: λx = 3 corresponding to α ≈ 2.09

ωi,ref = 0.034

Smooth wall

Temporal growth rate vs streamwise wavenumber (mode (1,0)) Frequency vs streamwise wavenumber (mode (1,0))
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• Immersed smooth wall at y = 0.1
• Equidistant grid up to y = 2.0 to avoid grid 
stretching effects
• immersed boundary scheme converges with 
order > 2
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Grid schematic

Error convergence of temporal growth rate.

Immersed Boundary: Validation

Immersed smooth wall schematic.
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Comparison of normalized streamwise velocity disturbance amplitude 
distributions for immersed smooth wall and a body fitted grid

Comparison of normalized pressure disturbance amplitude distributions 
for immersed smooth wall and a body fitted grid

• Excellent match between amplitude distributions with body fitted grid and immersed boundary 
method
• Decay of amplitude distributions to zero at free stream boundary 

Immersed Boundary: Validation



Porous wall parameters:

• b = pore width

• d = pore depth

• np = number of pores per disturbance 

wavelength

• φ = porosity

Applied Modeling & Simulation Seminar Series, NASA Ames Research Center09/09/2014
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Schematic of porous wall
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Grid Convergence Study

• Fix number of pores per wavelength and cavity depth
• variation of number of points per pore (npore)
• Average temporal growth rate
• approximately 100 points in wall normal direction within cavity

Results of grid study in steamwise direction
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Porous Wall Simulations (2D)

• Good match of temporal growth rates 
obtained with immersed boundary approach 
and LST results by Fedorov
• Porous walls are destabilizing for narrow 
cavities
• Maximum stabilization for d = 0.3
• For sufficiently deep pores the effect of a 
further increase in cavity depth becomes small

 Temporal growth rate versus cavity depth for np = 8 and φ = 0.25.

No coating - 
reference destabilizing

strongly stabilizing
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Intermediate Summary

• Find most amplified disturbance 
• Convergence study to find wall normal grid spacing needed at the immersed boundary 
• Convergence study to find number of points needed across a cavity
• Good match between results obtained with Immersed Boundary Method and previous studies
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• Initiating breakdown through so called controlled breakdown scenarios

• Focus here on fundamental and subharmonic resonance scenario 

• Forcing of a primary (2D) and secondary (3D) disturbance wave at small amplitudes

Fundamental Resonance Subharmonic Resonance

 αr(1,1) = αr(1,0)

 ωr(1,1) = ωr(1,0)

 αr(1,1) = αr(2,0)/2

 ωr(1,1) = ωr(2,0)/2

• Primary wave: mode (1,0)

• Secondary wave: mode (1,1)
• Primary wave: mode (2,0)

• Secondary wave: mode (1,1)
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• Forcing amplitudes: A(1,0) = 10-3, A(1,1) = 10-5

• phase speed locking → resonance

• ‘better’ phase speed match seems to lead to stronger resonance

Maximum disturbance amplitude and disturbance phase speed 
vs. time

Maximum disturbance amplitude and disturbance phase speed 
vs. time
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• Forcing amplitudes: A(1,0) = 10-3, A(1,1) = 10-5

• phase speed locking → resonance

• ‘better’ phase speed match seems to lead to stronger resonance
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• Forcing amplitudes: A(1,0) = 10-3, A(1,1) = 10-5

• phase speed locking → resonance

• ‘better’ phase speed match seems to lead to stronger resonance
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• find wave angle of mode (1,1) for which growth rate after the resonance onset becomes maximal

• growth rate of secondary wave before resonance onset: ωi(1,1)

• growth rate of secondary wave after resonance onset: σi(1,1)

• fundamental resonance: strongest resonance for ψ = 45º

• subharmonic resonance: strongest resonance for ψ = 60º
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• Before running breakdown simulations identify regions where wall normal grid needs to be highly 

resolved

• Near wall resolution critical

• Transition occurs first at critical layer: ‘precursor transition’ (Pruett & Zang 1992)

• Resolution at critical layer important

Schematic of turbulent spot development in high speed flow (Fischer & Weinstein (1972))
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• Rescale grid spacing with friction velocity based on turbulent estimate of skin friction
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• ∆y+ ≈ 0.3 at the wall

• ∆y+ ≈ 1 at critical layer

• Approximately 130 points within Boundary Layer

Rescaled grid spacing vs. wall normal coordinate Wall normal coordinate vs. grid index j
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• F: fundamental resonance

• S: subharmonic resonance

• 45: ψ = 45º

• 60: ψ = 60º

• sw: smooth wall

• pw1: porous wall setup 1; np = 8, d = 0.30, φ = 0.25 

• pw2: porous wall setup 2; np = 8, d = 1.00, φ = 0.25 



Applied Modeling & Simulation Seminar Series, NASA Ames Research Center09/09/2014

Skin friction evolution

38

• transition onset (time where cf departs from its laminar value) significantly delayed due to porous 

walls for both resonance scenarios

• skin friction evolution altered by presence of porous walls

• skin friction for S60_sw drops back to laminar value before rapidly approaching turbulent 

estimate

• S60_pw1 significantly delays transition
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• amplitude evolution altered, ‘saturation’ occurs 

at much later time

• mode (1,0) keeps growing slightly for porous 

wall cases

• mode (0,2) becomes dominant along with 

mode (0,1)
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• amplitude evolution altered, ‘saturation’ occurs 

at much later time

• mode (1,0) keeps growing slightly for porous 

wall cases

• mode (0,2) becomes dominant along with 

mode (0,1)
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Amplitude evolution (fundamental)
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• amplitude evolution altered, ‘saturation’ occurs 

at much later time

• mode (1,0) keeps growing slightly for porous 

wall cases

• mode (0,2) becomes dominant along with 

mode (0,1)
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Amplitude evolution (subharmonic)
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• similar to fundamental resonance case

• primary wave keeps growing for porous wall 

case

• presence of porous wall significantly alters 

mode evolution

S60_sw

S60_pw1porous wall does not only 
delay transition/ transition 

onset it also alters the mode 
evolution
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Energy Spectra
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• power spectra (extracted at y ≈ 1) show that modes for porous wall cases contain significantly 

less energy in x compared to smooth wall cases although extracted at much later time

• harmonics appear in porous wall spectra which are not observed in smooth wall case
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Energy Spectra
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• similar to fundamental resonance

• modes in x and z have significantly less energy although extracted at much later times

• harmonics as seen in fundamental resonance case could not be observed 
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Van Driest Transformed Profiles
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• breakdown process 

is significantly delayed 

by porous walls

• log layer develops 

much later or is not 

even observable for 

porous wall cases 

compared to smooth 

wall 

• breakdown occurs 

much more rapidly for 

subharmonic case
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Flow Structures (fundamental)
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• smooth wall: typical formation of Λ-vortices and hairpin vortices, breakdown to small scales

• porous wall: development of Λ-vortices massively delayed, spanwise rollers at cavities

F45_sw F45_pw1

t = 291.2 t = 455.0 t = 670.6 t = 714.0



Applied Modeling & Simulation Seminar Series, NASA Ames Research Center09/09/2014

Flow Structures (subharmonic)
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• smooth wall: typical staggered vortical patterns form, breakdown to small scales

• porous wall: spanwise vortices at the top of the cavities, predominantly two dimensional 

structures, breakdown to smaller scales occurs at a much later time

S60_sw S60_pw1

t = 613.2 t = 655.2 t = 697.2 t = 760.2
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Outline
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Introduction/Motivation

Nonlinear Regime

Base Flow and Disturbance Generation

Linear Regime

Governing Equations and Numerical Methods

Summary
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Final Summary (1/2)
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• higher-order immersed boundary method successfully applied to (nonlinear) transition 

simulations 

• performed nonlinear simulations of smooth and porous wall geometry for fundamental and 

subharmonic breakdown scenario

• transition onset delayed for both scenarios in presence of porous wall

• porous wall significantly changes mode evolution, energy redistribution and as a consequence 

the evolution of vortical structures

• spanwise vortices observed at top of cavities
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Final Summary (2/2)
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Future work/suggested improvements:

• apply immersed boundary to compute influence of roughness elements on transition on a cone 

(M = 6)

• Using 2D and 3D roughness for ‘tailoring’ the nonlinear breakdown process: Promising due to 

the stabilizing effects of compressibility on secondary instabilities

surface heat flux

surface wall shear A1,±1 = 4%, kc = 20, f* = 210 kHz • include high temperature effects 

(non-constant cp)

• run porous wall cases further into 

turbulence

• use more realistic flight conditions 

(isothermal wall/hot gas)
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Thank you for your 
attention!


