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  Higher-Order Shock Capturing Schemes 
              Overview of different higher-order shock capturing schemes in LAVA. 

    

  Test Problems 
             Various test problems: 1D shock problems to isotropic turbulence. 

  Computational Performance 
              Analysis and comparison of computational cost. 

  Summary & Future Work 
            Summary of results and what tasks lie ahead.  
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  Motivation 
             Motivation of higher-order schemes for LAVA. 

  Accuracy  
             Accuracy study including nonlinear weights, filtering, and dissipation terms. 



q  Developed by the authors* at NASA 
Ames Research Center 

q  Supports Cartesian AMR, block 
structured-curvilinear overset, and 
unstructured arbitrary polyhedral cells 

Block-Structured Cartesian Solver:  

q  For accuracy and efficiency 
q  Adaptive mesh refinement (AMR) for 

tracking flow features with local 
refinement (gradient, entropy adjoint, 
and geometry based) 

q  High-performance MPI-parallel AMR 
data-structures and inter-level 
operators from Chombo library. 

Motivation: 

  Launch Ascent & Vehicle Aerodynamics 

*Kiris et al.(2014), Sozer et al. (2014)  
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Motivation: 

  Why Higher-Order Methods? 
q  Initial stage of rocket launch involves highly unsteady flow fields: 

 

 
 
 
 

q  Rocket launch CFD simulations involve highly unsteady and shocked flows 
q  Unsteady jet impingement simulations* require high-fidelity computations to 
correctly capture noise signature  

*Brehm et al.(2013)  
 

Launch Acoustics IOP 

2nd-order 5th-order 



  Higher-Order Shock Capturing Schemes 
              Overview of different higher-order shock capturing schemes in LAVA. 
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  Motivation/Introduction 
              Introduction and motivation of higher-order schemes for LAVA. 

  Test Problems 
            

  Computational Performance 
            . 

  Summary & Future Work 
             

  Accuracy  
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Numerical Methods: 

  Higher-Order Shock Capturing Schemes 
q  Central FD with Explicit Artificial Dissipation (Central) 

§  Lowest computational cost of all higher-order schemes considered here 
§  Relies on explicit second-difference dissipation term for shocked flows 

q  Localized Artificial Diffusivity (LAD) 
§  Add artificial transport properties to regularize equations 
§  Promises low computational cost (not as cheap as Central) 
§  High spectral resolution is achieved with compact finite-differences 
§  High artificial viscosities may reduce Δt limit especially on stretched grids 

q  Weighted Essentially Non-Oscillatory (WENO) 
§  Well established method for shock capturing  
§  Relies on non-linear smoothness indicator, locally reduces order-of-accuracy 
§  Very robust and provides sharply resolved shocks 
§  Steady-state convergence issues reported in the literature 
§  Characteristic variable transform is most expensive component 
§  Recent developments on improving spectral resolution accuracy 
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Numerical Methods: 

  Central FD with Artificial Dissipation 

The dynamic viscosity is given by µ, � is the bulk viscosity, and the strain rate tensor S is defined

as S = 1

2

⇣
ru+ (ru)T

⌘
. For the remainder of the paper, the inviscid equations are considered,

with the exception of the LAD scheme where artificial flow properties are added to the physical flow
properties.

II.A. Explicit Time Stepping with Generalized Shu-Osher Formulation

Within the LAVA solver, there are explicit and implicit time-stepping schemes available.1 Explicit
schemes benefit from the simplicity/performance of not requiring a left-hand-side (LHS) lineariza-
tion, but they are restricted by the explicit CFL limit. Implicit schemes can significantly enhance
convergence on meshes that contain high-aspect ratio cells (encountered with body-fitted meshes).
For the present research we only utilized the explicit solver within LAVA.

LAVA supports explicit time stepping using the Shu-Osher formulation:42
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In Equation (3) W represents the conservative variables and F is the right-hand-side term of the
governing equations. Using this generalized formulation, various explicit schemes can be easily used.
The solver supports the standard Runge-Kutta (RK) schemes (1,2,4), as well as the strong-stability-
preserving Runge-Kutta (SSPRK) family.43 Optimally smoothed multi-stage schemes44 can be
e↵ectively used for achieving steady-state convergence with local time-stepping, implicit residual
smoothing and multigrid.

II.B. Central Finite-Di↵erence Scheme with Artificial Dissipation

The central finite-di↵erence formulas of the convective flux, F , in x-direction for the second-, fourth-,
and sixth-order schemes are:
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where D(n)

x

represents the nth-order accurate central finite-di↵erence operator of the first derivative.
It is well-known that the central finite-di↵erence discretization is generally not stable with explicit
time-stepping for the Euler-equations. The central scheme can be stabilized by adding artificial
dissipation.45 The implementation of the artificial dissipation term is similar to the one in OVER-
FLOW.17,24,25 A pressure gradient switch and spectral radius scaling identifies discontinuities and
large gradients in the flow field. Pulliam25 presented an extension of the artificial dissipation for
up-to a 5th-order finite-di↵erence discretization, essentially reducing the dissipation in smooth flow
regions:
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q  Sixth-Order Explicit Finite-Difference Scheme: 

q  Explicit Artificial Dissipation: 

 
§  Pressure gradient switch and spectral radius scaling identifies 

discontinuities and large gradients in the flow field 

II.B. Central Finite-Di↵erence Scheme with Artificial Dissipation

The central finite-di↵erence formulas of the convective flux, F , in x-direction for the second-, fourth-,
and sixth-order schemes are:
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where D
(n)
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represents the nth-order accurate central finite-di↵erence operator of the first deriva-
tive. It is well-known that the central finite-di↵erence discretization is generally not stable with
explicit time-stepping for the Euler-equations. The central scheme can be stabilized by adding
artificial dissipation.45 The implementation of the artificial dissipation term is similar to the one
in OVERFLOW.17,24,25 A pressure gradient switch identifies discontinuities and large gradients in
the flow field. Pulliam25 presented an extension of the artificial dissipation for up-to a 5th-order
finite-di↵erence discretization, essentially reducing the dissipation in smooth flow regions. Inside
the LAVA solver the artificial dissipation (AD) has been formulated for the primitive variables
Q = (p, u, v, w, T )T , and takes the following form
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where �
i+

1
2
and �

p,i+

1
2
are the average spectral radius and change of variable matrix (over nodes i

and i+1). The scheme above is presented for the x-direction, similar discretizations are used in the
other directions. Typical values for the dissipation coe�cients, ✏

2

⇡ 1 (for use in flows with shock
waves), and ✏

6

= 0.001 for 5th-order accuracy, are provided in literature.25

II.C. Localized Artificial Di↵usivity Scheme

The localized artificial di↵usivity (LAD) scheme is an attractive method for capturing discontinuities
and provide high-order spectral resolution for simulating turbulent flows. The approach goes back to
Cook and Cabot’s26,27 work on hyperviscosity. Further extensions and modification of this method
were recently introduced by Kawai and Lele,33,35 Fiorina and Lele,32 and Mani et al.34 The method
is based on the idea of locally adding artificial shear viscosity, bulk viscosity, thermal conductivity,
and species di↵usivity to the fluid properties in order to smooth out discontinuities, thus eliminating
spurious numerical oscillations across shocks, contacts, or material discontinuities. It has received
wide attention due to its simplicity, low computational cost, localization of discontinuities and high-
order accuracy for turbulent flow simulations.
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q  Basic Scheme: 

II.B. Central Finite-Di↵erence Scheme with Artificial Dissipation

The central finite-di↵erence formulas of the convective flux, F , in x-direction for the second-, fourth-,
and sixth-order schemes are:
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and i+1). The scheme above is presented for the x-direction, similar discretizations are used in the
other directions. Typical values for the dissipation coe�cients, ✏
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= 0.001 for 5th-order accuracy, are provided in literature.25

II.C. Localized Artificial Di↵usivity Scheme

The localized artificial di↵usivity (LAD) scheme is an attractive method for capturing discontinuities
and provide high-order spectral resolution for simulating turbulent flows. The approach goes back to
Cook and Cabot’s26,27 work on hyperviscosity. Further extensions and modification of this method
were recently introduced by Kawai and Lele,33,35 Fiorina and Lele,32 and Mani et al.34 The method
is based on the idea of locally adding artificial shear viscosity, bulk viscosity, thermal conductivity,
and species di↵usivity to the fluid properties in order to smooth out discontinuities, thus eliminating
spurious numerical oscillations across shocks, contacts, or material discontinuities. It has received
wide attention due to its simplicity, low computational cost, localization of discontinuities and high-
order accuracy for turbulent flow simulations.
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tive. It is well-known that the central finite-di↵erence discretization is generally not stable with
explicit time-stepping for the Euler-equations. The central scheme can be stabilized by adding
artificial dissipation.45 The implementation of the artificial dissipation term is similar to the one
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the flow field. Pulliam25 presented an extension of the artificial dissipation for up-to a 5th-order
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II.C. Localized Artificial Di↵usivity Scheme

The localized artificial di↵usivity (LAD) scheme is an attractive method for capturing discontinuities
and provide high-order spectral resolution for simulating turbulent flows. The approach goes back to
Cook and Cabot’s26,27 work on hyperviscosity. Further extensions and modification of this method
were recently introduced by Kawai and Lele,33,35 Fiorina and Lele,32 and Mani et al.34 The method
is based on the idea of locally adding artificial shear viscosity, bulk viscosity, thermal conductivity,
and species di↵usivity to the fluid properties in order to smooth out discontinuities, thus eliminating
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II.B. Central Finite-Di↵erence Scheme with Artificial Dissipation
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represents the nth-order accurate central finite-di↵erence operator of the first deriva-
tive. It is well-known that the central finite-di↵erence discretization is generally not stable with
explicit time-stepping for the Euler-equations. The central scheme can be stabilized by adding
artificial dissipation.45 The implementation of the artificial dissipation term is similar to the one
in OVERFLOW.17,24,25 A pressure gradient switch identifies discontinuities and large gradients in
the flow field. Pulliam25 presented an extension of the artificial dissipation for up-to a 5th-order
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where �
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2
and �
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1
2
are the average spectral radius and change of variable matrix (over nodes i

and i+1). The scheme above is presented for the x-direction, similar discretizations are used in the
other directions. Typical values for the dissipation coe�cients, ✏

2

⇡ 1 (for use in flows with shock
waves), and ✏

6

= 0.001 for 5th-order accuracy, are provided in literature.25

II.C. Localized Artificial Di↵usivity Scheme

The localized artificial di↵usivity (LAD) scheme is an attractive method for capturing discontinuities
and provide high-order spectral resolution for simulating turbulent flows. The approach goes back to
Cook and Cabot’s26,27 work on hyperviscosity. Further extensions and modification of this method
were recently introduced by Kawai and Lele,33,35 Fiorina and Lele,32 and Mani et al.34 The method
is based on the idea of locally adding artificial shear viscosity, bulk viscosity, thermal conductivity,
and species di↵usivity to the fluid properties in order to smooth out discontinuities, thus eliminating
spurious numerical oscillations across shocks, contacts, or material discontinuities. It has received
wide attention due to its simplicity, low computational cost, localization of discontinuities and high-
order accuracy for turbulent flow simulations.
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*Buning and Pulliam (2011), Pulliam (2011), Jameson (1981)  
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Numerical Methods: 

  Localized Artificial Diffusivity Method 
q  Idea: 

Locally add artificial shear viscosity, bulk viscosity, thermal conductivity,  and 
species diffusivity to the fluid properties to smooth out discontinuities 
 

q  Cook and Cabot (2004): 
Introduced this method as an alternative for LES of flows involving shocks 
Ø  referred to Artificial-Fluid Large-Eddy Simulation (AFLES) 

q  Artificial Shear Viscosity:                                                  and 
 

Fµ=(S:S)1/2 … treats unresolved turbulence 

q  Artificial Thermal conductivity: 
 

Fκ=e=p/(ρ(κ-1))… addresses contact discontinuity and unresolved turbulence 
 

q  Artificial Bulk Viscosity: 

Fβ=S or Div(u)… smoothes shock waves 
fsw … localizes bulk viscosity near shocks (Ducros type sensor × H(-Div(u))) 
 

The dissipation coe�cients and pressure sensor or smoothness indicator are
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The scheme above is only presented for the x-direction and can be used in the y- and z-directions in
the same manner. Typical values for the dissipation coe�cients: ✏

2

⇡ 1 (for use in flows with shock
waves), ✏

4

⇡ 0.01 for 3rd-order accuracy and ✏
6

= 0.001 for 5th-order accuracy assuming ✏
4

= 0 are
provided in literature.25

II.C. Localized Artificial Di↵usivity Scheme

The localized artificial di↵usivity (LAD) scheme is an attractive method for capturing discontinuities
and provide high-order spectral resolution for simulating turbulent flows. The approach goes back to
Cook and Cabot’s26,27 work on hyperviscosity. Further extensions and modification of this method
were recently introduced by Kawai and Lele,33,35 Fiorina and Lele,32 and Mani et al.34 The method
is based on the idea of locally adding artificial shear viscosity, bulk viscosity, thermal conductivity,
and species di↵usivity to the fluid properties in order to smooth out discontinuities, thus eliminating
spurious numerical oscillations across shocks, contacts, or material discontinuities. It has received
wide attention due to its simplicity, low computational cost, localization of discontinuities and high-
order accuracy for turbulent flow simulations.

The basic idea of the scheme is to add grid-dependent artificial transport coe�cients to the fluid
properties. In this process artificial di↵usivity coe�cients are introduced in a way that they target
the unresolved high wavenumber content. Cook28 initially introduced this method as an alternative
method for LES of flows involving shocks. The idea was that instead of filtering the governing
equations, it was postulated that the large-scale behavior of a LES fluid, here a fluid with artificial
properties, will be similar to that of a real fluid, provided the artificial properties obey certain
constraints.28 Cook and Cabot28 introduced the artificial shear viscosity in way that it behaves
like a subgrid scale model for the unresolved vortical motions.46 The method was referred to as
artificial-fluid large-eddy simulation (AFLES). The artificial di↵usivities are modeled as
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*Cook and Cabot (2004, 2005), Cook (2007), Fiorina and Lele (2007), Mani et al. (2009), Kawai et al. (2008, 2010), Olson et al. (2013)  
Gaitonde and Visbal  (2000) 

(polyhamonic operator) 
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Numerical Methods: 

  Localized Artificial Diffusivity Method 
q  Flux derivative … Sixth-Order Compact/Explicit Finite-Difference 

q  Fourth derivative … Sixth-Order Compact/Explicit Finite-Difference 

q  Truncated Gaussian Filter … stencil widths= 3 & 4 

q  Eight-Order accurate Compact/Explicit filter …  

N
f

d1 d2 d3 d4 d5

5 3565
10368

3091
12960
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25920
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12960
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103680

4 0.3635412351000008 0.22734407367499943 0.08527626802115411 0.00560904075384607 0

Table 2. Truncated Gaussian Filter Coe�cients

of using the second variant with N
f

= 4 is that it reduces the stencil size and thus the number of
points which need to be exchanged at box/domain boundaries. Especially on structured curvilinear
meshes with overset connectivity it is important for the grid generation to reduce the number of
fringe points for making it easier to avoid orphan points. While numerically experimenting with
these two options, no strong e↵ect on the solution accuracy and robustness was noted between these
two filters.

For the spatial di↵erentiation of first derivatives in the Navier-Stokes equations, the sixth-order
compact scheme by Lele47 is employed,
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The coe�cients are ↵ = 1/2, � = 1/20, a = 17/12, b = 101/150, and c = 1/100. After each Runge-
Kutta step a compact eighth-order accurate filter is applied to the conservative variables once along
each grid line to achieve partial dealiasing:
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The eighth-order filter is obtained with a
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. The higher-order filter coe�cients for
boundary points are provided in Table 3.
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Table 3. Compact filter coe�cients at domain boundary points

II.D. Weighted Essentially Non-Oscillatory (WENO) Scheme

WENO schemes are frequently employed for solving hyperbolic conservation laws in finite volume
and finite di↵erence form. In the finite volume formulation cell averages, �

i

, are used to obtain point
values at the face, �±

i+1/2

, where �+

i+1/2

and ��
i+1/2

are referred to as the left and right states at the
face. The main advantage of the finite volume approach is that any exact or approximate Riemann
solver can be used for the numerical flux at the face, f̂(��

i+1/2

,�+

i+1/2

). Moreover, it can generally
be applied to any types of mesh. In the finite di↵erence formulation, the original PDE is discretized
directly instead of reverting to the integral form of the PDE as in the finite volume formulation. The
finite di↵erence formulation relies on reconstruction of the numerical fluxes at the faces based on
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appropriate alternative33,35 to the polyharmonic operator. The polyharmonic operator provides a
kr wavenumber damping characteristic. Hence, a large value of r is desired to provide a sharp cuto↵
behavior. In the current study, we set r = 4, C

µ

= 0.002, C
�

= 1, and C


= 0.01 unless otherwise
noted.

The fourth derivatives, @4F
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, were approximated by the general
compact finite-di↵erence formula, on a uniform grid of cells indexed by i with mesh spacing �x:
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Di↵erent orders-of-accuracy of the fourth derivative can be achieved by choosing di↵erent values
of ↵, a and b.47 Sixth-order accuracy is achieved with ↵ = 7/26, a = 19/13, and b = 1/13 and
fourth-order accuracy with ↵ = 1/4, a = 3/2, and b = 0. At the domain boundaries fourth-order
accurate explicit finite di↵erence formulas are used
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The coe�cients for the boundary stencils are summarized in Table 1. No significant di↵erence in
the solution was noted between the forth and the sixth-order accurate scheme.
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Table 1. Boundary stencil coe�cients for @
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To smooth out cusps introduced by the absolute value operator in Equations (8a), (8b), and (8c)
a Gaussian filter, symbolized by an overbar, is applied in Equations (8a)-(8c) and is defined as
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For the numerical implementation of the filter we used a truncated Gaussian filter with L = 4�x
k

which is applied sequentially along each grid line and direction k as
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Two implementations of the truncated Gaussian filter shown in Table (2) were tested. The advantage
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= 0.01 unless otherwise
noted.

The fourth derivatives, @4F
µ

/@x4

k

, @4F
�

/@x4

k

, and @4F


/@x4

k

, were approximated by the general
compact finite-di↵erence formula, on a uniform grid of cells indexed by i with mesh spacing �x:

↵
@4�

@x4

k

����
i�1

+
@4�

@x4

k

����
i

+ ↵
@4�

@x4

k

����
i+1

=

b(�
i+3

+ �
i�3

) + 6a(�
i+2

+ �
i�2

)� (24a+ 9b)(�
i+1

+ �
i�1

) + (36a+ 16b)�
i

6�x4

(9)

Di↵erent orders-of-accuracy of the fourth derivative can be achieved by choosing di↵erent values
of ↵, a and b.47 Sixth-order accuracy is achieved with ↵ = 7/26, a = 19/13, and b = 1/13 and
fourth-order accuracy with ↵ = 1/4, a = 3/2, and b = 0. At the domain boundaries fourth-order
accurate explicit finite di↵erence formulas are used

@4�

@x4

k

����
i

=
1

�x4

8X

m=1

c
i,m

f
m

. (10)

The coe�cients for the boundary stencils are summarized in Table 1. No significant di↵erence in
the solution was noted between the forth and the sixth-order accurate scheme.

i c
i,1

c
i,2

c
i,3

c
i,4

1 3 �14 26 �24

2 2.83 �14 28.5 �30.6

3 0.816543433779761 �2.882470703125 3.147412109375 �0.0790201822916673

i c
i,5

c
i,6

c
i,7

c
i,8

1 11 �2

2 18.5 �6 0.83

3 �2.087646484375 1.352587890625 �0.284195963541667 0.0167898995535715

Table 1. Boundary stencil coe�cients for @

4
�/@x

4
k

To smooth out cusps introduced by the absolute value operator in Equations (8a), (8b), and (8c)
a Gaussian filter, symbolized by an overbar, is applied in Equations (8a)-(8c) and is defined as

� (x) =

Z
L

�L

G (|x� �|, L)�(�)d3�, with (11)

G (�, L) =
e�6�

2
/L

2

R
L

�L

e�6�

2
/L

2d�
. (12)

For the numerical implementation of the filter we used a truncated Gaussian filter with L = 4�x
k

which is applied sequentially along each grid line and direction k as

�
i

=

N

fX

m=1

d
m

(�
i+m�1

+ �
i�m+1

) . (13)

Two implementations of the truncated Gaussian filter shown in Table (2) were tested. The advantage
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N
f

d1 d2 d3 d4 d5

5 3565
10368

3091
12960

1997
25920

149
12960

107
103680

4 0.3635412351000008 0.22734407367499943 0.08527626802115411 0.00560904075384607 0

Table 2. Truncated Gaussian Filter Coe�cients

of using the second variant with N
f

= 4 is that it reduces the stencil size and thus the number of
points which need to be exchanged at box/domain boundaries. Especially on structured curvilinear
meshes with overset connectivity it is important for the grid generation to reduce the number of
fringe points for making it easier to avoid orphan points. While numerically experimenting with
these two options, no strong e↵ect on the solution accuracy and robustness was noted between these
two filters.

For the spatial di↵erentiation of first derivatives in the Navier-Stokes equations, the sixth-order
compact scheme by Lele47 is employed,

�
@�

@x
k

����
i�2

+ ↵
@�

@x
k

����
i�1

+
@�

@x
k

����
i

+ ↵
@�

@x
k

����
i+1

+ �
@�

@x
k

����
i+2

= a
�
i+1

� �
i�1

2�x
k

+ b
�
i+2

� �
i�2

4�x
k

+ c
�
i+3

� �
i�3

6�x
k

.

(14)

The coe�cients are ↵ = 1/2, � = 1/20, a = 17/12, b = 101/150, and c = 1/100. After each Runge-
Kutta step a compact eighth-order accurate filter is applied to the conservative variables once along
each grid line to achieve partial dealiasing:

↵
f

�̂
i�1

+ �̂
i

+ ↵
f

�̂
i+1

=

N

fX

m=0

a
m

�
i+m

+ �
i�m

2
. (15)

The eighth-order filter is obtained with a
0

= 93+70↵

f

128

, a
1

= 7+18↵

f

16

, a
2

= �7+14↵

f

32

, a
3

= 1�2↵

f

16

, and

a
4

�1+2↵

f

128

. The free parameter ↵
f

is set to 0.495 which falls into the desired range �0.5 < ↵
f


0.5. The filter becomes sharper for increasing values of ↵

f

. The higher-order filter coe�cients for
boundary points are provided in Table 3.

N
f

d
1

d
2

d
3

d
4

d
5

d
6

d
7

5 1+14↵

16

3+2↵

4

3+2↵

8

�1+2↵

4

1�2↵

16

7 �1+2↵

64

3+260↵

32

49+300↵

64

50+60↵

16

�15+300↵

64

3�60↵

32

�1+2↵

64

Table 3. Compact filter coe�cients at domain boundary points

II.D. Weighted Essentially Non-Oscillatory (WENO) Scheme

WENO schemes are frequently employed for solving hyperbolic conservation laws in finite volume
and finite di↵erence form. In the finite volume formulation cell averages, �

i

, are used to obtain point
values at the face, �±

i+1/2

, where �+

i+1/2

and ��
i+1/2

are referred to as the left and right states at the
face. The main advantage of the finite volume approach is that any exact or approximate Riemann
solver can be used for the numerical flux at the face, f̂(��

i+1/2

,�+

i+1/2

). Moreover, it can generally
be applied to any types of mesh. In the finite di↵erence formulation, the original PDE is discretized
directly instead of reverting to the integral form of the PDE as in the finite volume formulation. The
finite di↵erence formulation relies on reconstruction of the numerical fluxes at the faces based on
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Numerical Methods: 

  Weighted Essentially Non-Oscillatory 
q    WENO (FD): 

q   Final interface φ (q or f): 

q   Standard smoothness indicator: 

q   WENO-JS (Jiang & Shu 1996):                                 and  
 
q   WENO-M (Henrick 2005): mapping function f(wk) increases accuracy at crit. pts. 

q   WENO-Z (Borges 2008): mimic WENO-M with reduced cost (~25%)                                                                                          

q   WENO6 (Hu et al. 2010): centered finite-difference, additional candidate stencil  

q   WENO5B (LAVA): basically a blend with WENO5 and WENO6 

q   CWENO5 (Ghosh & Baeder 2012): compact finite-difference, tri-diagonal solve, 
block/domain treatment 

  

q  Standard smoothness indicators:  

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as

�Z

k

=
�
k

+ ✏

�
k

+ ⌧
5

+ ✏
, (22)

with ⌧
5

= |�
2

� �
0

|. The nonlinear weights are

!Z

k

=
↵Z

kP
2

i=0

↵Z

i

, ↵Z

r

=
c
k

�Z

k

= c
k

✓
1 +

⌧
5

�
k

+ ✏

◆
. (23)

The smoothness indicators are used in the same form as suggested by Liu and Osher.49

�L

0

=
13

12
(�

i�2

� 2�
i�1

+ �
i

)2 +
1

4
(�

i�2

� 4�
i�1

+ 3�
i

)2 (24a)

�L

1

=
13

12
(�

i�1

� 2�
i

+ �
i+1

)2 +
1

4
(�

i�1

� �
i+1

)2 (24b)

�L

2

=
13

12
(�

i

� 2�
i+1

+ �
i+2

)2 +
1

4
(3�

i

� 4�
i+1

+ �
i+2

)2 (24c)

The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50

f̂0

i+1/2

=
1

3
f
i�2

� 7

6
f
i�1

+
11

6
f
i

, (25a)

f̂1

i+1/2

= �1

6
f
i�1

+
5

6
f
i

+
1

3
f
i+1

, and (25b)

f̂2

i+1/2

=
1

3
f
i

+
5

6
f
i+1

� 1

6
f
i+2

. (25c)
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10 

Standard smoothness indicator 

where a0,k, a1,k and a2,k are found according to Eq. (3) and from the cell average values of the primitive function at the stencil
nodes. Thus, for each stencil shown, a different 3rd-order approximation of the numerical flux function results. These
approximations are evaluated at the cell face i + 1/2 and give the f̂ k;iþ1=2 of Eq. (6), i.e.

f̂ 0;iþ1=2 ¼
1
6
ð2f i$2 $ 7f i$1 þ 11f iÞ;

f̂ 1;iþ1=2 ¼
1
6
ð$fi$1 þ 5f i þ 2f iþ1Þ;

f̂ 2;iþ1=2 ¼
1
6
ð2f i þ 5f iþ1 $ fiþ2Þ:

ð8Þ

Since these linear combinations define the numerical flux at any cell face of the domain, an index-shift by $1 returns the
corresponding f̂ k;i$1=2. Taylor-series expansions of Eq. (8) result in

f̂ k;iþ1=2 ¼ hiþ1=2 þ AkDx3 þOðDx4Þ; ð9Þ

where Ak are independent of Dx. The weights xk in Eq. (6) are normalized by ak, and defined as

xk ¼
akP2
k¼0ak

; ak ¼
dk

ðbk þ !Þ
q : ð10Þ

Here, d0 ¼ 1
10 ; d1 ¼ 3

5 and d2 ¼ 3
10 are optimal weights since they generate the 5th-order upwind scheme, by which the

numerical flux is computed from a 5-point stencil S5, as shown in Fig. 1. ! > 0 prevents division by zero and q = 1 or 2 is cho-
sen to adjust the distinct weights at non-smooth parts of the solution. bk are the smoothness indicators defined by

bk ¼
X2

j¼1

Dx2j$1
Z xiþ1=2

xi$1=2

dj

dxj f̂ kðxÞ
 !2

dx; ð11Þ

which have the discrete form

b0 ¼
1
4
ðfi$2 $ 4f i$1 þ 3f iÞ

2 þ 13
12
ðfi$2 $ 2f i$1 þ fiÞ2;

b1 ¼
1
4
ðfi$1 $ fiþ1Þ2 þ

13
12
ðfi$1 $ 2f i þ fiþ1Þ2;

b2 ¼
1
4
ð3f i $ 4f iþ1 þ fiþ2Þ2 þ

13
12
ðfi $ 2f iþ1 þ fiþ2Þ2:

ð12Þ

Expansion of Eq. (12) as Taylor-series about fi gives

b0 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 $ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ;

b1 ¼ f 02i Dx2 þ 13
12

f 002i þ
1
3

f 0i f 000i

! "
Dx4 þOðDx6Þ; ð13Þ

b2 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 þ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ:

The basic strategy of the weight definition Eq. (6) is that in smooth regions of the solution the smoothness indicators bk are
all small and have about the same magnitude, generating weights xk that approximate the optimal weights dk. It can be
found that a sufficient condition [7,4] for 5th-order accuracy of Eq. (5) is given by xk $ dk ¼ OðDx3Þ. On the other hand, if

Fig. 1. The computational uniform grid xi: the 5-point stencil S5 composed of three 3-points stencils S0, S1, S2 and the 6-points stencil S6 with an extra 3-
point stencil S3.

8954 X.Y. Hu et al. / Journal of Computational Physics 229 (2010) 8952–8965

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division

8 of 37

American Institute of Aeronautics and Astronautics

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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Numerical Methods: 

  Weighted Essentially Non-Oscillatory 
q    WENO (FD): 

q   Final interface φ (q or f): 

q   Standard smoothness indicator: 

q   WENO-JS (Jiang & Shu 1996):                                 and  
 
q   WENO-M (Henrick 2005): mapping function f(wk) increases accuracy at crit. pts. 

q   WENO-Z (Borges 2008): mimic WENO-M with reduced cost (~25%)                                                                                          

q   WENO6 (Hu et al. 2010): centered finite-difference, additional candidate stencil  

q   WENO5B (LAVA): basically a blend with WENO5 and WENO6 

q   CWENO5 (Ghosh & Baeder 2012): compact finite-difference, tri-diagonal solve, 
block/domain treatment 

  

q  Standard smoothness indicators:  

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as

�Z

k

=
�
k

+ ✏

�
k

+ ⌧
5

+ ✏
, (22)

with ⌧
5

= |�
2

� �
0

|. The nonlinear weights are

!Z

k

=
↵Z

kP
2

i=0

↵Z

i

, ↵Z

r

=
c
k

�Z

k

= c
k

✓
1 +

⌧
5

�
k

+ ✏

◆
. (23)

The smoothness indicators are used in the same form as suggested by Liu and Osher.49

�L

0

=
13

12
(�

i�2

� 2�
i�1

+ �
i

)2 +
1

4
(�

i�2

� 4�
i�1

+ 3�
i

)2 (24a)

�L

1

=
13

12
(�

i�1

� 2�
i

+ �
i+1

)2 +
1

4
(�

i�1

� �
i+1

)2 (24b)

�L

2

=
13

12
(�

i

� 2�
i+1

+ �
i+2

)2 +
1

4
(3�

i

� 4�
i+1

+ �
i+2

)2 (24c)

The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50

f̂0

i+1/2

=
1

3
f
i�2

� 7

6
f
i�1

+
11

6
f
i

, (25a)

f̂1

i+1/2

= �1

6
f
i�1

+
5

6
f
i

+
1

3
f
i+1

, and (25b)

f̂2

i+1/2

=
1

3
f
i

+
5

6
f
i+1

� 1

6
f
i+2

. (25c)
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Standard smoothness indicator 

where a0,k, a1,k and a2,k are found according to Eq. (3) and from the cell average values of the primitive function at the stencil
nodes. Thus, for each stencil shown, a different 3rd-order approximation of the numerical flux function results. These
approximations are evaluated at the cell face i + 1/2 and give the f̂ k;iþ1=2 of Eq. (6), i.e.

f̂ 0;iþ1=2 ¼
1
6
ð2f i$2 $ 7f i$1 þ 11f iÞ;

f̂ 1;iþ1=2 ¼
1
6
ð$fi$1 þ 5f i þ 2f iþ1Þ;

f̂ 2;iþ1=2 ¼
1
6
ð2f i þ 5f iþ1 $ fiþ2Þ:

ð8Þ

Since these linear combinations define the numerical flux at any cell face of the domain, an index-shift by $1 returns the
corresponding f̂ k;i$1=2. Taylor-series expansions of Eq. (8) result in

f̂ k;iþ1=2 ¼ hiþ1=2 þ AkDx3 þOðDx4Þ; ð9Þ

where Ak are independent of Dx. The weights xk in Eq. (6) are normalized by ak, and defined as

xk ¼
akP2
k¼0ak

; ak ¼
dk

ðbk þ !Þ
q : ð10Þ

Here, d0 ¼ 1
10 ; d1 ¼ 3

5 and d2 ¼ 3
10 are optimal weights since they generate the 5th-order upwind scheme, by which the

numerical flux is computed from a 5-point stencil S5, as shown in Fig. 1. ! > 0 prevents division by zero and q = 1 or 2 is cho-
sen to adjust the distinct weights at non-smooth parts of the solution. bk are the smoothness indicators defined by

bk ¼
X2

j¼1

Dx2j$1
Z xiþ1=2

xi$1=2

dj

dxj f̂ kðxÞ
 !2

dx; ð11Þ

which have the discrete form

b0 ¼
1
4
ðfi$2 $ 4f i$1 þ 3f iÞ

2 þ 13
12
ðfi$2 $ 2f i$1 þ fiÞ2;

b1 ¼
1
4
ðfi$1 $ fiþ1Þ2 þ

13
12
ðfi$1 $ 2f i þ fiþ1Þ2;

b2 ¼
1
4
ð3f i $ 4f iþ1 þ fiþ2Þ2 þ

13
12
ðfi $ 2f iþ1 þ fiþ2Þ2:

ð12Þ

Expansion of Eq. (12) as Taylor-series about fi gives

b0 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 $ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ;

b1 ¼ f 02i Dx2 þ 13
12

f 002i þ
1
3

f 0i f 000i

! "
Dx4 þOðDx6Þ; ð13Þ

b2 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 þ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ:

The basic strategy of the weight definition Eq. (6) is that in smooth regions of the solution the smoothness indicators bk are
all small and have about the same magnitude, generating weights xk that approximate the optimal weights dk. It can be
found that a sufficient condition [7,4] for 5th-order accuracy of Eq. (5) is given by xk $ dk ¼ OðDx3Þ. On the other hand, if

Fig. 1. The computational uniform grid xi: the 5-point stencil S5 composed of three 3-points stencils S0, S1, S2 and the 6-points stencil S6 with an extra 3-
point stencil S3.

8954 X.Y. Hu et al. / Journal of Computational Physics 229 (2010) 8952–8965

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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Numerical Methods: 

  Weighted Essentially Non-Oscillatory 
q    WENO (FD): 

q   Final interface φ (q or f): 

q   Standard smoothness indicator: 

q   WENO-JS (Jiang & Shu 1996):                                 and  
 
q   WENO-M (Henrick 2005): mapping function f(wk) increases accuracy at crit. pts. 

q   WENO-Z (Borges 2008): mimic WENO-M with reduced cost (~25%)                                                                                          

q   WENO6 (Hu et al. 2010): centered finite-difference, additional candidate stencil  

q   WENO5B (LAVA): basically a blend with WENO5 and WENO6 

q   CWENO5 (Ghosh & Baeder 2012): compact finite-difference, tri-diagonal solve, 
block/domain treatment 

  

q  Standard smoothness indicators:  

point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division

8 of 37

American Institute of Aeronautics and Astronautics

by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)
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. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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Standard smoothness indicator 

where a0,k, a1,k and a2,k are found according to Eq. (3) and from the cell average values of the primitive function at the stencil
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Expansion of Eq. (12) as Taylor-series about fi gives
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The basic strategy of the weight definition Eq. (6) is that in smooth regions of the solution the smoothness indicators bk are
all small and have about the same magnitude, generating weights xk that approximate the optimal weights dk. It can be
found that a sufficient condition [7,4] for 5th-order accuracy of Eq. (5) is given by xk $ dk ¼ OðDx3Þ. On the other hand, if

Fig. 1. The computational uniform grid xi: the 5-point stencil S5 composed of three 3-points stencils S0, S1, S2 and the 6-points stencil S6 with an extra 3-
point stencil S3.
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point values of split fluxes, f±(�
i

). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�

i

) + f�(�
i

). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula
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Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
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nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as
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where n is the number of candidate stencils, �k
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is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵
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where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
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for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
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flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
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interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z
x+�x/2

x��x/2

h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(h

i+1/2

� h
i�1/2

) =
1

�x
(f̂

i+1/2

� f̂
i�1/2

) +O �
�x2n�1

�
. (17)

Therefore the numerical flux f̂
i±1/2

should approximate h
i±1/2

. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (18)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (19)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in the
denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as

�Z
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�
k

+ ✏

�
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+ ⌧
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, (22)

with ⌧
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= |�
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� �
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|. The nonlinear weights are
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵
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in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients
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Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55
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nonlinear mapping function in Equation (21) is applied, i.e., !̃
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), and finally, !̃
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is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵
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in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients
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Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55
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nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
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), and finally, !̃
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is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as

�Z

k

=
�
k

+ ✏

�
k

+ ⌧
5

+ ✏
, (22)

with ⌧
5

= |�
2

� �
0

|. The nonlinear weights are

!Z

k

=
↵Z

kP
2

i=0

↵Z

i

, ↵Z

r

=
c
k

�Z

k

= c
k

✓
1 +

⌧
5

�
k

+ ✏

◆
. (23)

The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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13 

Standard smoothness indicator 

on WENO schemes come in various forms. Both variable interpolation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on the choice of the numerical scheme the actual
stencil coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable
called �, that refers to both, the variable or the flux. When referred to only the variable or the flux,
q and f are used instead of the placeholder �. The scalar quantities q and f will later be replaced
with vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂
i+1/2

=
nX

k=1

!
k

�k

i+1/2

, (21)

where n is the number of candidate stencils, �k

i+1/2

is the interface variable/flux based on the

kth candidate stencil, and !
k

are convex weighting coe�cients. Choosing the optimal weighting
coe�cients !

k

= c
k

for all k results in a (2n� 1)th-order accurate numerical scheme, where n is the
number of candidate stencils. The WENO scheme only obtains these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵

k

is defined as

↵
k

=
c
k

(�
k

+ ✏)p
, (22)

where �
k

is the smoothness indicator of the kth stencil. The power p, here only p = 1 and 2, in
the denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid
division by zero (or values close to zero) a small number ✏ is added to the denominator (typically
✏ = 10�6).53 The smoothness indicator in Equation (22) is denoted as WENO-JS in reference to
the work of Jiang and Shu.54 To keep the weights ↵

k

in Equation (22) convex, they need to be
normalized and we arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (23)

Di↵erent variations of calcuating the nonlinear weights in Equation (22) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (22) will be
compared in Section §III.A with the following two alternative approaches. In the first alternative
approach a nonlinear mapping function55
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=
!0(c
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+ (c
k
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k

!0 + !02)

c2
k

+ (1� 2c
k

)!0 , (24)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (24) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (22).
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Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �Z , is defined as
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49

�L

0

=
13

12
(�

i�2

� 2�
i�1

+ �
i

)2 +
1

4
(�

i�2

� 4�
i�1

+ 3�
i

)2 (27a)

�L

1

=
13

12
(�

i�1

� 2�
i

+ �
i+1

)2 +
1

4
(�

i�1

� �
i+1

)2 (27b)

�L

2

=
13

12
(�

i

� 2�
i+1

+ �
i+2

)2 +
1

4
(3�

i

� 4�
i+1

+ �
i+2

)2 (27c)

The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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The optimal weights to achieve 5th-order accuracy are c
0

= 1/10, c
1

= 6/10, and c
2

= 3/10.
Note that the WENO reconstruction above is applied to f+. The coe�cients for f� are obtained
by reflecting the stencil at the face. Nichols et al.52 applied the previously discussed scheme for
primitive variable interpolation providing more flexibility with repect to the choice of the flux.

In order to achieve truly higher-order accuracy for the flux evaluation Nonomura et al.57,58

employed slightly modified weights and smoothness indicators for the variable interpolation as follows
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Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �Z , is defined as
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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The optimal weights to achieve 5th-order accuracy are c
0

= 1/10, c
1

= 6/10, and c
2

= 3/10.
Note that the WENO reconstruction above is applied to f+. The coe�cients for f� are obtained
by reflecting the stencil at the face. Nichols et al.52 applied the previously discussed scheme for
primitive variable interpolation providing more flexibility with repect to the choice of the flux.

In order to achieve truly higher-order accuracy for the flux evaluation Nonomura et al.57,58

employed slightly modified weights and smoothness indicators for the variable interpolation as follows
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where a0,k, a1,k and a2,k are found according to Eq. (3) and from the cell average values of the primitive function at the stencil
nodes. Thus, for each stencil shown, a different 3rd-order approximation of the numerical flux function results. These
approximations are evaluated at the cell face i + 1/2 and give the f̂ k;iþ1=2 of Eq. (6), i.e.

f̂ 0;iþ1=2 ¼
1
6
ð2f i$2 $ 7f i$1 þ 11f iÞ;

f̂ 1;iþ1=2 ¼
1
6
ð$fi$1 þ 5f i þ 2f iþ1Þ;

f̂ 2;iþ1=2 ¼
1
6
ð2f i þ 5f iþ1 $ fiþ2Þ:

ð8Þ

Since these linear combinations define the numerical flux at any cell face of the domain, an index-shift by $1 returns the
corresponding f̂ k;i$1=2. Taylor-series expansions of Eq. (8) result in

f̂ k;iþ1=2 ¼ hiþ1=2 þ AkDx3 þOðDx4Þ; ð9Þ

where Ak are independent of Dx. The weights xk in Eq. (6) are normalized by ak, and defined as

xk ¼
akP2
k¼0ak

; ak ¼
dk

ðbk þ !Þ
q : ð10Þ

Here, d0 ¼ 1
10 ; d1 ¼ 3

5 and d2 ¼ 3
10 are optimal weights since they generate the 5th-order upwind scheme, by which the

numerical flux is computed from a 5-point stencil S5, as shown in Fig. 1. ! > 0 prevents division by zero and q = 1 or 2 is cho-
sen to adjust the distinct weights at non-smooth parts of the solution. bk are the smoothness indicators defined by

bk ¼
X2

j¼1

Dx2j$1
Z xiþ1=2

xi$1=2

dj

dxj f̂ kðxÞ
 !2

dx; ð11Þ

which have the discrete form

b0 ¼
1
4
ðfi$2 $ 4f i$1 þ 3f iÞ

2 þ 13
12
ðfi$2 $ 2f i$1 þ fiÞ2;

b1 ¼
1
4
ðfi$1 $ fiþ1Þ2 þ

13
12
ðfi$1 $ 2f i þ fiþ1Þ2;

b2 ¼
1
4
ð3f i $ 4f iþ1 þ fiþ2Þ2 þ

13
12
ðfi $ 2f iþ1 þ fiþ2Þ2:

ð12Þ

Expansion of Eq. (12) as Taylor-series about fi gives

b0 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 $ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ;

b1 ¼ f 02i Dx2 þ 13
12

f 002i þ
1
3

f 0i f 000i

! "
Dx4 þOðDx6Þ; ð13Þ

b2 ¼ f 02i Dx2 þ 13
12

f 002i $
2
3

f 0i f 000i

! "
Dx4 þ 13

6
f 00i f 000i $

1
2

f 0i f ð4Þi

! "
Dx5 þOðDx6Þ:

The basic strategy of the weight definition Eq. (6) is that in smooth regions of the solution the smoothness indicators bk are
all small and have about the same magnitude, generating weights xk that approximate the optimal weights dk. It can be
found that a sufficient condition [7,4] for 5th-order accuracy of Eq. (5) is given by xk $ dk ¼ OðDx3Þ. On the other hand, if

Fig. 1. The computational uniform grid xi: the 5-point stencil S5 composed of three 3-points stencils S0, S1, S2 and the 6-points stencil S6 with an extra 3-
point stencil S3.
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by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as

�Z
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�
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+ ⌧
5

+ ✏
, (22)

with ⌧
5

= |�
2

� �
0

|. The nonlinear weights are

!Z
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r

=
c
k
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◆
. (23)

The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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The optimal weights to achieve 5th-order accuracy are c
0

= 1/10, c
1

= 6/10, and c
2

= 3/10.
Note that the WENO reconstruction above is applied to f+. The coe�cients for f� are obtained
by reflecting the stencil at the face. Nichols et al.52 applied the previously discussed scheme for
primitive variable interpolation providing more flexibility with repect to the choice of the flux.

In order to achieve truly higher-order accuracy for the flux evaluation Nonomura et al.57,58

employed slightly modified weights and smoothness indicators for the variable interpolation as follows
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The optimal weights to achieve 5th-order accuracy for this scheme are c
0

= 1/16, c
1

= 10/16, and
c
2

= 5/16. Then Nonomura et al.57 applies a higher-order finite-di↵erence formula for the flux
derivative at the nodes.

Finally, we summarize the variable interpolation and flux reconstruction approaches which are
used in this paper. The variable WENO interpolation scheme proceeds as follows:

1. Interpolate primitive variables at the midpoints or interface employing WENO

2. Compute fluxes at the midpoints using any numerical flux

3. Compute flux derivatives at the nodes by:

(a) applying finite-di↵erence formula,52
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����
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=
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�x

⇣
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i+1/2

� f̂
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⌘
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�
. (27)

or

(b) applying the generalized higher-order finite-di↵erence formula,57
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, (28)

where in the current implementation we simply used an explicit finite-di↵erence scheme
assuming a = c = 0, b = 1, and N = 3 as in Nonomura et al.57,58

The flux reconstruction schemes are limited to flux vector splitting schemes in the form f = f++f�,
i.e., Lax-Fiederichs, van Leer flux splitting, the AUSM fluxes,59 etc. The WENO scheme proceeds
as follows:

1. WENO reconstruction of interface fluxes, f+ and f�

2. Apply Equation (35) rule to total flux, f = f+ + f�
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The flux reconstruction schemes are limited to flux vector splitting schemes in the form f = f++f�,
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derivative at the nodes.

Finally, we summarize the variable interpolation and flux reconstruction approaches which are
used in this paper. The variable WENO interpolation scheme proceeds as follows:

1. Interpolate primitive variables at the midpoints or interface employing WENO

2. Compute fluxes at the midpoints using any numerical flux

3. Compute flux derivatives at the nodes by:
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The flux reconstruction schemes are limited to flux vector splitting schemes in the form f = f++f�,
i.e., Lax-Fiederichs, van Leer flux splitting, the AUSM fluxes,59 etc. The WENO scheme proceeds
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1. WENO reconstruction of interface fluxes, f+ and f�
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derivative at the nodes.

Finally, we summarize the variable interpolation and flux reconstruction approaches which are
used in this paper. The variable WENO interpolation scheme proceeds as follows:

1. Interpolate primitive variables at the midpoints or interface employing WENO

2. Compute fluxes at the midpoints using any numerical flux

3. Compute flux derivatives at the nodes by:

(a) applying finite-di↵erence formula,52
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where in the current implementation we simply used an explicit finite-di↵erence scheme
assuming a = c = 0, b = 1, and N = 3 as in Nonomura et al.57,58

The flux reconstruction schemes are limited to flux vector splitting schemes in the form f = f++f�,
i.e., Lax-Fiederichs, van Leer flux splitting, the AUSM fluxes,59 etc. The WENO scheme proceeds
as follows:

1. WENO reconstruction of interface fluxes, f+ and f�

2. Apply Equation (35) rule to total flux, f = f+ + f�
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14 

Can only use flux vector splitting  
schemes. 
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Numerical Methods: 

  Weighted Essentially Non-Oscillatory 

Fifth-order accurate WENO variable  
extrapolation with simple midpoint rule  

WCNS: Fifth-order accurate 
WENO variable extrapolation 
with higher-order differentiation 
(Nonomura et al.,2010)  
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Numerical Methods: 

  Improved WENO Schemes 
WENO6, Hu et al.(2010): 

q  Additional candidate stencil to obtain 6th-order centered scheme 

 

linear weights: c0=1/20, c1=9/20, c2=9/20, and c3=1/20 
 

q  Nonlinear weights                                 and                                              with C=20   

q  Smoothness indicator 

WENO5B, LAVA: 
q  basically a blend with WENO5 and WENO6   

It must be noted that the variable interpolation approach is slightly more expensive due to the
additional cost of using a higher-order finite di↵erence stencil for the flux derivative. The WENO
reconstruction or interpolation can be applied component wise or in local characteristic directions.
For third-order accuracy satisfactory results can be obtained with component wise reconstruction
or interpolation. For higher-order accuracy characteristic reconstruction or interpolation reduces
oscillations. Hence, a further variation of these schemes is obtained by transforming the interface
variables/fluxes into characteristic space,

� = L�, (29)

where � represents the variable/flux in characteristic space and L is the matrix containing the
left eigenvectors of the Jacobian matrix A = @F/@Q. This characteristic space transformation is
motivated in §IV.A.

II.D.1. Improved WENO Schemes

In the previous section the basic and commonly used WENO schemes were introduced. In the
current sub-section, an additional explicit WENO scheme by Huet al.39 referred to as WENO6 and
a fifth-order compact scheme by Ghosh and Baeder38 referred to as CWENO5 are briefly discussed.
The sixth-order accurate WENO scheme di↵erentiates itself from the standard fifth-order accurate
WENO by utilizing a centered reconstruction scheme. The amplitude error can be completely
eliminated and only the phase error remains when utilizing centered schemes with the full possible
order-of-accuracy. A third–order downwind stencil is used in addition to the three candidate stencils
in the original scheme.
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which includes the additional stencil with k = 3. The smoothness indicators �
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The expression for �
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is provided in Appendix VII. Note that the smoothness indicator �
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for
the fourth reconstruction stencil was replaced by the smoothness indicator for the optimal 6-point
interpolation stencil.

A slightly modified WENO6 can be optained by introducing an upwind parameter b which deter-
mines the amount of dissipation in the scheme. This upwind-biased WENO scheme is supposed to
introduce some numerical dissipation to remove spurious high wavenumber oscillation. The optimal
weights are c
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indicators as in Hu et al.39 The scheme is formally fifth-order accurate for all other values of �. To
recover WENO5 the smoothness indicator in Equation (19) would have to be used. This slightly
modified scheme is denoted as WENO5B with the parameter b = �60�. When conducting launch
side simulations the modified scheme helped reducing some of the “spurious” oscillations in the
solution.
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It must be noted that the variable interpolation approach is slightly more expensive due to the
additional cost of using a higher-order finite di↵erence stencil for the flux derivative. The WENO
reconstruction or interpolation can be applied component wise or in local characteristic directions.
For third-order accuracy satisfactory results can be obtained with component wise reconstruction
or interpolation. For higher-order accuracy characteristic reconstruction or interpolation reduces
oscillations. Hence, a further variation of these schemes is obtained by transforming the interface
variables/fluxes into characteristic space,
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The sixth-order accurate WENO scheme di↵erentiates itself from the standard fifth-order accurate
WENO by utilizing a centered reconstruction scheme. The amplitude error can be completely
eliminated and only the phase error remains when utilizing centered schemes with the full possible
order-of-accuracy. A third–order downwind stencil is used in addition to the three candidate stencils
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additional cost of using a higher-order finite di↵erence stencil for the flux derivative. The WENO
reconstruction or interpolation can be applied component wise or in local characteristic directions.
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or interpolation. For higher-order accuracy characteristic reconstruction or interpolation reduces
oscillations. Hence, a further variation of these schemes is obtained by transforming the interface
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where � represents the variable/flux in characteristic space and L is the matrix containing the
left eigenvectors of the Jacobian matrix A = @F/@Q. This characteristic space transformation is
motivated in §IV.A.
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current sub-section, an additional explicit WENO scheme by Huet al.39 referred to as WENO6 and
a fifth-order compact scheme by Ghosh and Baeder38 referred to as CWENO5 are briefly discussed.
The sixth-order accurate WENO scheme di↵erentiates itself from the standard fifth-order accurate
WENO by utilizing a centered reconstruction scheme. The amplitude error can be completely
eliminated and only the phase error remains when utilizing centered schemes with the full possible
order-of-accuracy. A third–order downwind stencil is used in addition to the three candidate stencils
in the original scheme.

f̂3

i+1/2

=
11

6
f
i+1

� 7

6
f
i+2

+
2

6
f
i+3

. (30)

With this extra stencil the optimal weights become c
0

= 1

20

, c
1

= 9

20

, c
2

= 9

20

, and c
3

= 1

20

. The
WENO weights by Borges et al.56 are adjusted to

!
k

=
↵
kP

3

k=0

↵
k

, and ↵
k

= c
k

✓
C +

⌧
6

�
k

+ ✏

◆
, (31)
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modified scheme is denoted as WENO5B with the parameter b = �60�. When conducting launch
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Numerical Methods: 

  Improved WENO Schemes 
CWENO5, Ghosh and Baeder (2012): 

q  Compact reconstruction stencils 

q  Tri(-block)-diagonal implicit system of equations 

 
q  Explicit block/domain boundary treatment reduces order of accuracy 

Replacing the explicit interpolation or finite di↵erences with a compact scheme (see Lele47 for
more information) is a very appealing approach for obtaining higher-spectral accuracy. For the
compact scheme by Ghosh and Baeder38 the three interpolation candidate stencils in Equations
(25a)-(25c) are recasted in compact form as
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Equations (33a)-(33c) substituted into Equation (18) lead to an implicit system of equations in the
form:
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Hence, the gain in accuracy comes with an additional cost needed to solve the implicit system in
Equation (34). The cost of solving this implicit scheme greatly increases by using the characteristic
variable transformation which turns the scalar tri-diagonal system for each variable in Equation (34)
into a block-tridiagonal system of equations. In the current study partial pivoting was su�cient to
keep the system well conditioned. The key advantage of compact schemes besides their promised
increased spectral accuracy is that the stencil width is smaller which consequently requires fewer
ghost cells in Cartesian boxes and therefore reduces the memory requirements. This advantage
is even more significant for the structured curvilinear mesh option in LAVA. A compact WENO
approach will minimize the number of fringe points. An issue with maintaining fifth-order accuracy
across bock boundaries has not been addressed in Ghosh and Baeder’s38 work is the treatment of
box/domain boundaries.

II.D.2. Domain Boundary Treatment for Compact WENO Schemes

One of the key aspects for providing high-order accuracy for block-structured schemes using do-
main decomposition is the treatment of the domain boundary. Ghosh and Baeder38 as well as other
researchers combined the interior compact scheme with explicit stencils at the domain or box bound-
aries. An improved boundary treatment that recovers the expected fifth-order accurate convergence
rate is now presented.

The explanation for the reduced convergence order with the standard boundary treatment is
found by considering the numerical flux derivative at x
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as the di↵erence of the numerical fluxes at
the opposite faces

@f

@x

����
x=x

j

=
h
j+1/2

� h
j�1/2

�x
⇡ f̂

j+1/2

� f̂
j�1/2

�x
. (35)

The truncation error of the explicit optimal numerical flux at the face x
i+1/2

is

f̂
j+1/2

= h
j+1/2

� 1

60

@5f

@x5

����
x=x

j

�x5. (36)

Assuming that the domain/box boundary is located at x
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Replacing the explicit interpolation or finite di↵erences with a compact scheme (see Lele47 for
more information) is a very appealing approach for obtaining higher-spectral accuracy. For the
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Hence, the gain in accuracy comes with an additional cost needed to solve the implicit system in
Equation (34). The cost of solving this implicit scheme greatly increases by using the characteristic
variable transformation which turns the scalar tri-diagonal system for each variable in Equation (34)
into a block-tridiagonal system of equations. In the current study partial pivoting was su�cient to
keep the system well conditioned. The key advantage of compact schemes besides their promised
increased spectral accuracy is that the stencil width is smaller which consequently requires fewer
ghost cells in Cartesian boxes and therefore reduces the memory requirements. This advantage
is even more significant for the structured curvilinear mesh option in LAVA. A compact WENO
approach will minimize the number of fringe points. An issue with maintaining fifth-order accuracy
across bock boundaries has not been addressed in Ghosh and Baeder’s38 work is the treatment of
box/domain boundaries.

II.D.2. Domain Boundary Treatment for Compact WENO Schemes

One of the key aspects for providing high-order accuracy for block-structured schemes using do-
main decomposition is the treatment of the domain boundary. Ghosh and Baeder38 as well as other
researchers combined the interior compact scheme with explicit stencils at the domain or box bound-
aries. An improved boundary treatment that recovers the expected fifth-order accurate convergence
rate is now presented.

The explanation for the reduced convergence order with the standard boundary treatment is
found by considering the numerical flux derivative at x
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Substituting Equations (36) and (37) into Equation (35) leads to
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The problem can be solved by deriving a compact boundary flux reconstruction stencil that matches
the truncation error of the interior scheme or the right face flux, f̂

j+1/2

. The stencil coe�cients
for the finite di↵erence scheme are derived by using the primitive function, h(x), leading to the
numerical face flux, f̂ , in the form
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The polynomials in Equation (39) can be determined by using the values at the nodes. The three
candidate stencils for the numerical face flux at x

i+1/2

are
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The optimal weights are determined by combining the three candidate stencils and matching the
truncation error of the interior schemes. The optimal weights for the numerical flux at the box
boundary face are c

0

= 2/5, c
1

= 21/40, and c
2

= 3/40. The same procedure can be repeated for
the box boundary face at the lower end of the box. The three candidate stencils for this case are
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and the optimal weights are c
0

= 1/40, c
1

= 9/40, and c
2

= 30/40. By considering an additional
point in the interpolation stencil the leading truncation error of @f/@x at boundary points can be
matched with the truncation error in the interior domain. This leads to an even smoother error
distribution across domain boundaries.

The e↵ect on the numerical stability of the optimal scheme including the above boundary treat-
ment is studied in 1D for a simple advection equation with a convection speed of one. The scalar
advection equation serves as a model for the hyperbolic part of the Navier-Stokes equations. In the
current study only the linear stability of the scheme is investigated because we can base the analy-
sis on the well-known Lax-Richtmyer equivalence theorem ensuring convergence by consistency and
Lax-stability of the equations in semi-discretized form. The analysis closely follows the approach in
Adams and Shari↵.60 We consider the advection equation in perturbation form by linearizing about
a mean and refer to it as the error equation. Without loss of generality this linear problem can be
assumed to be homogeneous assuming that a right-hand-side source term would be bounded on the
finite computational domain. The linear advection equation can be written in semi-discrete form as

A
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�x
Be with BC: e

0

(t) = 0 and IC: e(t) = f(x
i

). (42)
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Numerical Methods: 

  CWENO: Block Boundary Treatment 
q  Numerical flux derivative at xi: 

 

q   Truncation error of explicit optimal numerical flux at xi+1/2: 

 
q  Compact scheme at xi-1/2: 
 
 
 
q  Substituting (2) and (3) in (1) leads to: 
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Numerical Methods: 

  Block/Domain Boundary Treatment 

q  Candidate Boundary Stencil (left) 

with c0=2/5, c1=21/40, and c2=3/40 
 

q  Candidate Boundary Stencil (right) 

with c0=1/40, c1=9/40, and c2=30/40 
 

•  Tri(-block)-diagonal implicit system of equations 

 
•  Explicit block/domain boundary treatment reduces order of accuracy 

Substituting Equations (36) and (37) into Equation (35) leads to
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The problem can be solved by deriving a compact boundary flux reconstruction stencil that matches
the truncation error of the interior scheme or the right face flux, f̂
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. The stencil coe�cients
for the finite di↵erence scheme are derived by using the primitive function, h(x), leading to the
numerical face flux, f̂ , in the form
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The polynomials in Equation (39) can be determined by using the values at the nodes. The three
candidate stencils for the numerical face flux at x
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The optimal weights are determined by combining the three candidate stencils and matching the
truncation error of the interior schemes. The optimal weights for the numerical flux at the box
boundary face are c
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= 3/40. The same procedure can be repeated for
the box boundary face at the lower end of the box. The three candidate stencils for this case are
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and the optimal weights are c
0

= 1/40, c
1

= 9/40, and c
2

= 30/40. By considering an additional
point in the interpolation stencil the leading truncation error of @f/@x at boundary points can be
matched with the truncation error in the interior domain. This leads to an even smoother error
distribution across domain boundaries.

The e↵ect on the numerical stability of the optimal scheme including the above boundary treat-
ment is studied in 1D for a simple advection equation with a convection speed of one. The scalar
advection equation serves as a model for the hyperbolic part of the Navier-Stokes equations. In the
current study only the linear stability of the scheme is investigated because we can base the analy-
sis on the well-known Lax-Richtmyer equivalence theorem ensuring convergence by consistency and
Lax-stability of the equations in semi-discretized form. The analysis closely follows the approach in
Adams and Shari↵.60 We consider the advection equation in perturbation form by linearizing about
a mean and refer to it as the error equation. Without loss of generality this linear problem can be
assumed to be homogeneous assuming that a right-hand-side source term would be bounded on the
finite computational domain. The linear advection equation can be written in semi-discrete form as

A

de

dt
= � 1

�x
Be with BC: e

0

(t) = 0 and IC: e(t) = f(x
i

). (42)
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Numerical Methods: 

  Block/Domain Boundary Treatment 
q  Pseudo Spectral Analysis 

                                                        

The compact WENO scheme and the di↵erence operator where combined in discrete form and written
in term of A and B. The general solution for a linear system of ordinary di↵erential equations with
constant coe�cients in terms of the independent variable t is

e(t) = C exp (N
�x

t)C�1

e(0) where N = � 1

�x
C

�1

A

�1

BC, (43)

and N is the Jordan normal form and C is the transformation matrix. To ensure numerical stability
we require that the finite-di↵erence scheme in semi-discrete form can be bounded by a constant which
is a function of time such as

kC exp (N
�x

t)C�1k  K(t) 8t � 0, (44)

where we assume a consistent matrix norm for k ⇤ k. Due to the boundary treatment a su�cient
condition for stability cannot be easily formulated because the spatial discretization matrix becomes
non-orthogonal and the transformation matrix is not necessarily unitary. Hence, we will determine
the ✏-pseudo-eigenspectrum of the spatial discretization matrix to study the stability of the boundary
treatment. In order to ensure convergence on a finite time interval for�x ! 0 Lax-stability is needed.
Lax stability means that the term exp (N

�x

t) in Equation (44) is uniformly bounded for a fixed
number of grid points in a finite time-interval. Lax-stability is essential to ensure convergence for
�x ! 0 in a finite interval. For asymptotic stability one needs to ensure that the real part of the
eigenvalue � is less or equal to zero and the algebraic multiplicity is one.

(a) (b)

Figure 2. Pseudo-Eigenspectra for (a) N = 60, and (b) N = 120 points of the generalized eigenvalue problem
in Equation (45).

The ✏-pseudo-eigenvalue spectrum for the spatial discretization matrix can be computed by
solving the following generalized eigenvalue problem

✓
A�

✏

+
1

�x
B �AD

◆
v = 0, (45)

where the disturbance matrix D is a randomized matrix with kDk = ✏. The characteristic Equation
(45) was solved for a finite number of realizations. For practical purposes it is assumed that these
results represent the union of all eigenvalues for all possible realizations. The pseudo-eigenspectra is
shown for N = 60, and N = 120 grid points considering three realizations of D with di↵erent values
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Numerical Methods: 

  Block/Domain Boundary Treatment 
q  Pseudo Spectral Analysis 

Figure 3. |max(�

✏,r

) � max(�

✏,r

)| for di↵erent realizations.

for ✏. All eigenvalues, �
✏

, are contained within the left half plane indicating mildly dampened stable
solutions.

To ensure algebraic stability of the full discretization for locally-stable, one-step methods the
condition

�
✏,real

 s+K
0

✏ 8✏ � 0 (46)

needs to be fulfilled. In Figure 3 we display the dependence of |max(�
✏,real

)�max(�
0,real

)| on the
number of grid points and di↵erent ✏ for three realizations of D. The boundedness of the pseudo-
eigenspectra is suggested by the results in Figure 3. Each graph is bounded from above by a linear
relationship s+K

0

✏ for suitable constants s and K
0

as expressed in Equation (46). The numerical
stability for long time-integration or assymptotic stability is indicated by considering the pseudo
spectra in Figure 2a and 2b for ✏ = 0.

III. Accuracy

In the following discussion the formal and actual numerical accuracy of the di↵erent schemes is
addressed. It must be noted that the computational e�ciency of a numerical scheme clearly depends
on the accuracy but also on the operation count and its actual implementation. To not overload the
reader with too much information at once, we decided to devote the last part of this paper to the
important topic of computational e�ciency.

III.A. Method of Manufactured Solutions

The method of manufactured solutions (MMS) is applied to verify the formal order-of-accuracy
of the di↵erent schemes for the Euler equations. Moreover, the solution accuracy of the di↵erent
schemes can be compared to each another. It should be pointed out that the solution accuracy will
be discussed for a smooth solution, which, from a practical point of view, is clearly over-resolved.

When considering LES-type simulations numerical analysts are constantly pushing the resolution
limits. Hence, it is important to characterize the performance of these di↵erent schemes for minimally
resolved solutions, e.g., 5 � 8 points per wavelength. The manufactured solution for this accuracy
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q  Even higher computational cost for CWENO5 

§  Tri(-block)-diagonal implicit system of equations 

It must be noted that the variable interpolation approach is slightly more expensive due to the
additional cost of using a higher-order finite di↵erence stencil for the flux derivative. The WENO
reconstruction or interpolation can be applied component wise or in local characteristic directions.
For third-order accuracy satisfactory results can be obtained with component wise reconstruction
or interpolation. For higher-order accuracy characteristic reconstruction or interpolation reduces
oscillations. Hence, a further variation of these schemes is obtained by transforming the interface
variables/fluxes into characteristic space,

� = L�, (29)

where � represents the variable/flux in characteristic space and L is the matrix containing the
left eigenvectors of the Jacobian matrix A = @F/@Q. This characteristic space transformation is
motivated in §IV.A.

II.D.1. Improved WENO Schemes

In the previous section the basic and commonly used WENO schemes were introduced. In the
current sub-section, an additional explicit WENO scheme by Huet al.39 referred to as WENO6 and
a fifth-order compact scheme by Ghosh and Baeder38 referred to as CWENO5 are briefly discussed.
The sixth-order accurate WENO scheme di↵erentiates itself from the standard fifth-order accurate
WENO by utilizing a centered reconstruction scheme. The amplitude error can be completely
eliminated and only the phase error remains when utilizing centered schemes with the full possible
order-of-accuracy. A third–order downwind stencil is used in addition to the three candidate stencils
in the original scheme.
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which includes the additional stencil with k = 3. The smoothness indicators �
k

for k = 0, 1, 2
are given in Equation (24). The parameter C >> 1 (here C = 20) was introduced to improve
the characteristics of the smoothness indicator in smooth flow regions. The reference smoothness
indicator ⌧

6

is defined as

⌧
6

= �
6

� 1

6
(�

0

+ �
2

+ 4�
1

) . (32)

The expression for �
3

= �
6

is provided in Appendix VII. Note that the smoothness indicator �
3

for
the fourth reconstruction stencil was replaced by the smoothness indicator for the optimal 6-point
interpolation stencil.

A slightly modified WENO6 can be optained by introducing an upwind parameter b which deter-
mines the amount of dissipation in the scheme. This upwind-biased WENO scheme is supposed to
introduce some numerical dissipation to remove spurious high wavenumber oscillation. The optimal
weights are c

0

= 1/20 � 3�, c
1

= 9/20 � 9�, c
2

= 9/20 + 9�, and c
3

= 1/20 + 3� with � operated
in the range 0 � � � �1/60. WENO6 is recovered for � = 0 when applying the same smoothness
indicators as in Hu et al.39 The scheme is formally fifth-order accurate for all other values of �. To
recover WENO5 the smoothness indicator in Equation (19) would have to be used. This slightly
modified scheme is denoted as WENO5B with the parameter b = �60�. When conducting launch
side simulations the modified scheme helped reducing some of the “spurious” oscillations in the
solution.
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Replacing the explicit interpolation or finite di↵erences with a compact scheme (see Lele47 for
more information) is a very appealing approach for obtaining higher-spectral accuracy. For the
compact scheme by Ghosh and Baeder38 the three interpolation candidate stencils in Equations
(25a)-(25c) are recasted in compact form as
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Equations (33a)-(33c) substituted into Equation (18) lead to an implicit system of equations in the
form:
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Hence, the gain in accuracy comes with an additional cost needed to solve the implicit system in
Equation (34). The cost of solving this implicit scheme greatly increases by using the characteristic
variable transformation which turns the scalar tri-diagonal system for each variable in Equation (34)
into a block-tridiagonal system of equations. In the current study partial pivoting was su�cient to
keep the system well conditioned. The key advantage of compact schemes besides their promised
increased spectral accuracy is that the stencil width is smaller which consequently requires fewer
ghost cells in Cartesian boxes and therefore reduces the memory requirements. This advantage
is even more significant for the structured curvilinear mesh option in LAVA. A compact WENO
approach will minimize the number of fringe points. An issue with maintaining fifth-order accuracy
across bock boundaries has not been addressed in Ghosh and Baeder’s38 work is the treatment of
box/domain boundaries.

II.D.2. Domain Boundary Treatment for Compact WENO Schemes

One of the key aspects for providing high-order accuracy for block-structured schemes using do-
main decomposition is the treatment of the domain boundary. Ghosh and Baeder38 as well as other
researchers combined the interior compact scheme with explicit stencils at the domain or box bound-
aries. An improved boundary treatment that recovers the expected fifth-order accurate convergence
rate is now presented.

The explanation for the reduced convergence order with the standard boundary treatment is
found by considering the numerical flux derivative at x

j

as the di↵erence of the numerical fluxes at
the opposite faces
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The truncation error of the explicit optimal numerical flux at the face x
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is
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Assuming that the domain/box boundary is located at x
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the numerical face flux to the left
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can be obtained by compact interpolation that has a truncation error of
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a single block containing 16 ⇥ 16 grid points. Hence, the second mesh contains 4 blocks and a
total of 32 ⇥ 32 grid points, and so forth. This procedure was chosen in order to test the block
boundary discretization for the compact scheme. The numerical schemes in Figure 4 are ordered
by their relative performance in this accuracy study. It is expected that the sixth-order schemes
outperform the fifth-order scheme with increasing spatial resolution. It straightforward to show
that the centered sixth-order accurate (WENO6) scheme reaches the same truncation error as the
sixth-order central scheme (Central6). The LAD scheme is approximately one order-of-magnitude
more accurate than the improved WENO schemes, i.e., WENO5B, WENO6, and CWENO6. The
improved WENO schemes are approximately one order-of-magnitude more accurate than WENO5.
With the LAD and WENO schemes, no significant e↵ect on the accuracy and convergence rate was
observed for small grid spacings, i.e., well-resolved solution.

The e↵ect of the dissipation coe�cients on the discretization error for the manufactured solution
in Equation (50) is compared in Figure 5. The results for the Central6 scheme considering a fifth-
order artificial dissipation term with ✏

6

= 0.001 are shown to be fifth-order accurate in Figure 5a.
Figure 5b presents the results of a convergence study with ✏

2

= 1 and ✏
6

= 0.001, and as expected for
this parameter setup, the scheme is only third-order accurate. The prescribed solution in Equations
(50) does not contain any shocks and is analytical everywhere. Thus, once the dissipation coe�cient
✏
2

is turned on, the accuracy of the solution in smooth regions may degrade and the scheme becomes
essentially third-order.

A convergence study of the discretization error for the manufactured solution in Equation (50)
for the fifth-order accurate WENO variable interpolation scheme is shown in Figure 6. For this
convergence study the stencil coe�cients in Equations (29) and the simple finite-di↵erence formula in
Equation (30) has been used. As it was previously noted, the WENO scheme using Equation (30) was
used in Nichols et al.,52 and is formally only second-order accurate for non-linear equations. Higher-
order accuracy can be retained by applying the generalized higher-order midpoint to node finite-
di↵erence scheme in Equation (31). Applying Equation (31) across flow discontinuities may reduce
the robustness of the WENO scheme if no limiting or WENO procedure is applied to the higher-
order finite di↵erence formula. The MMS results for a truly fifth-order WENO-JS scheme which
falls into the family of WENO variable interpolation schemes is shown in Figure 6b demonstrating
that fifth-order accuracy can be recovered.

Figure 7 shows the MMS truncation error on a block-decomposed 2D domain, with and without
the boundary treatments outlined in §II.D.2. The convergence study plots in Figure 7 clearly indicate
a reduced convergence rate on the block-decomposed domain without boundary treatment. Sharp
spikes in the local error distribution can be seen at the domain interfaces (not shown here). When
applying the boundary stencil treatment we are able to recover the formal fifth-order accuracy of
the compact scheme.

MUSCL WENO5 WENO6 CWENO5 Central6 LAD

��x

2

3

f (3) ��x

5

60

f (6) ��x

6

140

f (7) ��x

5

600

f (6) ��x

6

140

f (7) ��x

6

2100

f (7)

Table 4. Truncation Error

MUSCL WENO5 WENO6 CWENO5 Central6 LAD

Re(w0) 3

2

+ 2 cos(w)� 1

2

cos(2w) 1

3

� 1

2

cos(w) + 1

5

cos(2w)� 1

30

cos(3w) 27�6 cos(w)�16 cos

2
(w)�3 cos(2w)�2⇤cos(w) cos(2w)�28 sin

2
(w)+sin(w) sin(2w)

150((3/5+2/5 cos(w))

2
+1/25 sin

2
(w)

Im(w0) 2 sin(w)� 1

2

sin(2w)

Table 5. Modified Wavenumber
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Accuracy: 

  Method of Manufactured Solution study is

p = 4 +
1

30

�
cos (2⇡x) + cos (2⇡y)

�
, and (47a)

u = v = cos (2⇡(x+ y)) , (47b)

T =
1

2
+

1

10

�
cos (4⇡x) + cos (4⇡y)

�
, (47c)

C
p

= 1005, and (47d)

� = 1.4. (47e)

Note that since the manufactured solution in Equations (47a)-(47e) does not satisfy the Navier-
Stokes equations, a right-hand-side source term is added to exactly balance the equations.

Figure 4 presents the results of the convergence study for di↵erent numerical schemes. In Section
§II.A we focussed on presenting the optimal implementations for the di↵erent numerical schemes to
obtain the best possible solution accuracy. In the current study we subsequentially subdivide an
initial domain with a single block containing 16⇥ 16. Hence, the second mesh contains 8 blocks and
a total of 32 ⇥ 32 grid points, and so forth. This procedure was chosen in order to test the block
boundary discretization for the compact scheme. The numerical schemes in Figure 4 are ordered
by their relative performance in this accuracy study. It is expected that the sixth-order schemes
outperform the fifth-order scheme with increasing spatial resolution. It straightforward to show
that the centered sixth-order accurate (WENO6) scheme reaches the same truncation error as the
sixth-order central scheme (Central6). The LAD scheme is approximately one order-of-magnitude
more accurate than the improved WENO schemes, i.e., WENO5B, WENO6, and CWENO6. The
improved WENO schemes are approximately one order-of-magnitude more accurate than WENO5.
For the LAD and WENO schemes no significant e↵ect on the accuracy and convergence rate was
noted for small grid spacings, i.e., well-resolved solution.

The e↵ect of the dissipation coe�cients on the discretization error for the manufactured solution
in Equation (47) is now compared. The results for the sixth-order accurate central di↵erence scheme
considering a fifth-order artificial dissipation term with ✏

6

= 0.001 are shown to be fifth-order
accurate in Figure 5a. Figure 5b presents the results of a convergence study with ✏

2

= 1 and
✏
6

= 0.001, and as expected for this parameter setup, the scheme is only third-order accurate. The
prescribed solution in Equations (47) does not contain any shocks and is analytical everywhere.
Thus, once the dissipation coe�cient ✏

2

is turned on, the accuracy of the solution in smooth regions
may degrade and the scheme becomes essentially third-order.

A convergence study of the discretization error for the manufactured solution in Equation (47)
for the fifth-order accurate WENO variable interpolation scheme is shown in Figure 6. For this
convergence study the stencil coe�cients in Equations (26) and the simple finite-di↵erence formula in
Equation (27) has been used. As it was previously noted the WENO scheme using Equation (27) was
used in Nichols et al.52 and is formally only second-order accurate for non-linear equations. Higher-
order accuracy can be retained by applying the generalized higher-order midpoint to node finite-
di↵erence scheme in Equation (28). Applying Equation (28) across flow discontinuities may reduce
the robustness of the WENO scheme if no limiting or WENO procedure is applied to the higher-
order finite di↵erence formula. The MMS results for a truly fifth-order WENO-JS scheme which
falls into the family of WENO variable interpolation schemes is shown in Figure 6b demonstrating
that fifth-order accuracy can be recovered.

Figure 7 shows the MMS truncation error on a block decomposed 2D domain, with and without
the boundary treatments outlined in §II.D.2. The convergence study plots in Figure 7 clearly indicate
a reduced convergence rate on the block decomposed domain without boundary treatment. Sharp
spikes in the local error distribution can be seen at the domain interfaces (not shown here). When
applying the boundary stencil treatment we are able to recover the formal fifth-order accuracy of
the compact scheme.
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a single block containing 16 ⇥ 16 grid points. Hence, the second mesh contains 4 blocks and a
total of 32 ⇥ 32 grid points, and so forth. This procedure was chosen in order to test the block
boundary discretization for the compact scheme. The numerical schemes in Figure 4 are ordered
by their relative performance in this accuracy study. It is expected that the sixth-order schemes
outperform the fifth-order scheme with increasing spatial resolution. It straightforward to show
that the centered sixth-order accurate (WENO6) scheme reaches the same truncation error as the
sixth-order central scheme (Central6). The LAD scheme is approximately one order-of-magnitude
more accurate than the improved WENO schemes, i.e., WENO5B, WENO6, and CWENO6. The
improved WENO schemes are approximately one order-of-magnitude more accurate than WENO5.
With the LAD and WENO schemes, no significant e↵ect on the accuracy and convergence rate was
observed for small grid spacings, i.e., well-resolved solution.

The e↵ect of the dissipation coe�cients on the discretization error for the manufactured solution
in Equation (50) is compared in Figure 5. The results for the Central6 scheme considering a fifth-
order artificial dissipation term with ✏

6

= 0.001 are shown to be fifth-order accurate in Figure 5a.
Figure 5b presents the results of a convergence study with ✏

2

= 1 and ✏
6

= 0.001, and as expected for
this parameter setup, the scheme is only third-order accurate. The prescribed solution in Equations
(50) does not contain any shocks and is analytical everywhere. Thus, once the dissipation coe�cient
✏
2

is turned on, the accuracy of the solution in smooth regions may degrade and the scheme becomes
essentially third-order.

A convergence study of the discretization error for the manufactured solution in Equation (50)
for the fifth-order accurate WENO variable interpolation scheme is shown in Figure 6. For this
convergence study the stencil coe�cients in Equations (29) and the simple finite-di↵erence formula in
Equation (30) has been used. As it was previously noted, the WENO scheme using Equation (30) was
used in Nichols et al.,52 and is formally only second-order accurate for non-linear equations. Higher-
order accuracy can be retained by applying the generalized higher-order midpoint to node finite-
di↵erence scheme in Equation (31). Applying Equation (31) across flow discontinuities may reduce
the robustness of the WENO scheme if no limiting or WENO procedure is applied to the higher-
order finite di↵erence formula. The MMS results for a truly fifth-order WENO-JS scheme which
falls into the family of WENO variable interpolation schemes is shown in Figure 6b demonstrating
that fifth-order accuracy can be recovered.

Figure 7 shows the MMS truncation error on a block-decomposed 2D domain, with and without
the boundary treatments outlined in §II.D.2. The convergence study plots in Figure 7 clearly indicate
a reduced convergence rate on the block-decomposed domain without boundary treatment. Sharp
spikes in the local error distribution can be seen at the domain interfaces (not shown here). When
applying the boundary stencil treatment we are able to recover the formal fifth-order accuracy of
the compact scheme.

MUSCL WENO5 WENO6 CWENO5 Central6 LAD

��x

2

3

f (3) ��x

5

60

f (6) ��x

6

140

f (7) ��x

5

600

f (6) ��x

6

140

f (7) ��x

6

2100

f (7)

Table 4. Truncation Error

MUSCL WENO5 WENO6 CWENO5 Central6 LAD

Im(w0) w + w

3

3

w � w

7

140

w � w

7

140

w � w

7

7000

w � w

7

140

w � w

7

2100

Re(w0) �w

4

4

w

6

60

- w

6

600

- -

Table 5. Modified Wavenumber
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Accuracy: 

  Spectral Resolution Accuracy 
Phase Amplitude 
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q  Modified wavenumber (expanded around w=0): 



Accuracy: 

  Spectral Resolution Accuracy 
Phase Amplitude 

WENO5 WENO6 WENO5B CWENO5 Central6D6 LAD

⇠ 0.3503 0.3503 0.3503 0.6065 0.3503 0.5023

N
min

5.7100 5.7100 5.7100 3.2974 5.7100 3.9813

Im(w0)/⇡ 6.90e-3 0.0 6.92e-4 3.90e-4 0.0 0.0

Table 4. Spectral resolution accuracy

It is important to point out that only the first derivative appearing in the di↵erentiation of the
convective fluxes was considered. Purely linear operations are involved at this point. The nonlinear
weight computation for the WENO schemes, the artificial dissipation terms for the Central6 schemes
and the di↵usion terms for the LAD schemes or any additional filtering operation were disregarded.

III.C. Smoothness Indicator

The e↵ect of the nonlinear smoothness indicator was addressed by considering a simple advection
equation. Three di↵erent options, WENO5-JS, WENO5-M, and WENO5-Z, for computing the
nonlinear weights for the WENO5 scheme are considered. Figure 9a illustrates the e↵ect of the
nonlinear calculation with respect to the location were the nonlinear weights are calculated. To
simplify the calculation of the modified wavenumber it was assumed that the nonlinear weights
for this particular position were used at each grid point in a periodic domain. This is clearly a
crude assumption but it demonstrates the e↵ect of the nonlinear weights calculation on the modified
wavenumber. For the results in Figure 9a we resolved a sinusoidal wave with eight points-per-
wavelength (PPW).
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Figure 9. Modified wavenumber versus position within single wavelength, �, for a wave with eight points-per-
wavelength. Imaginary part of modified wavenumber, w

0, considering nonlinear WENO5 coe�cients for 1D
advection equation.

For all three options and grid resolutions (in points-per-wavelength) a strong variation of the
modified wavenumber on the position �x

shift

/� within the wave is noted. A more quantitative
measure is presented in Figure 9b.

To generate this plot the modified wavenumber was computed incorporating the nonlinear weight-
ing procedure by extracting the asymptotic decay rate for a linear wave propagation with di↵erent
grid resolutions in terms of PPW. The timestep was chosen to be small so that the temporal dis-
cretization can be neglected in this analysis. As previously oberserved in Figure 9a the e↵ect of the
nonlinear weighting procedure on accuracy is greatly reduced for WENO5Z and WENO5M.
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q  Spectral resolution efficiency: 

ξ=ws/π: bandwidth-resolving efficiency parameter  (at ws relative phase error exceeds 1%) 
Nmin: points per wavelength  
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  Central: Effect of Artificial Dissipation 

Explicit Artificial Dissipation: 
 
 
 

TE for Pressure Switch: 
 
 
Scaling in smooth flow region: 
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ε2=1 
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Accuracy: 

  WENO5: Effect of Nonlinear Weights 
 Necessary and sufficient conditions for 5th-order accuracy: 

 Smoothness indicator: 

 with WENO weights, ω, optimal weights, c, and A from: 

by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55

g
k

(!) =
!(c

k

+ (c
k

)2 � 3c
k

! + !2)

c2
k

+ (1� 2c
k

)!
, (21)

with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g

k

(0) = 0, g
k

(1) = 1, g
k

(c
k

) = c
k

, g0
k

(c
k

) = 0, and
g00
k

(c
k

) = 0. The weights !
k

are obtained by first calculating !0
k

based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k

(!0
k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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Accuracy: 

  WENO5: Effect of Nonlinear Weights 
 Necessary and sufficient conditions for 5th-order accuracy: 

 Smoothness indicator: 

 with WENO weights, ω, optimal weights, c, and A from: 

by zero (or small numbers) a small number ✏ is added to the denominator (typically ✏ = 10�6).53

The smoothness indicator in Equation (19) is denoted as WENO-JS in reference to the work of Jiang
and Shu.54 To keep the weights ↵

k

in Equation (19) convex, they need to be normalized and we
arrive at the final weighting coe�cients

!
k

=
↵
kP

n

k

↵
k

. (20)

Di↵erent variations of calcuating the nonlinear weights in Equation (19) are possible to reduce the
dissipation of the numerical scheme.

The calculation of the nonlinear weights with the smoothness indicator in Equation (19) will
be compared in Section §III.A with following two alternative approaches. In the first alternative
approach a nonlinear mapping function55
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with ! 2 [0, 1] and k = 0, 1, 2 is utilized. The mapping function was designed to be monotonically
increasing and have the following properties g
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based on WENO-JS. Then the
nonlinear mapping function in Equation (21) is applied, i.e., !̃

k

= g
k
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k

), and finally, !̃
k

is normal-
ized to !

k

. The key objective is to achieve optimal order of accuracy at critical points. It will be
shown in Section §III.A that the mapped WENO scheme referred to as WENO-M eliminates the
dependence of the accuracy on the magnitude of the parameter ✏ in Equation (19).

Borges et al.56 introduced a smoothness indicator that attempts to mimic the characteristic of
the WENO-M scheme at a reduced cost of roughly 25% by eliminating the mapping procedure. This
smoothness indicator, �z, is defined as
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The smoothness indicators are used in the same form as suggested by Liu and Osher.49
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The description of the standard WENO scheme is completed by providing the details of the three
candidate stencils for the fifth-order accurate WENO scheme. The three interpolation candidate
stencils for flux reconstruction follow the description in Jiang and Shu:50
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  Smoothness Indicator 
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q  Amplitude factor: 

q  Phase Error: 
 
§  Solve linear advection equation 

to determine decay rate 
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Accuracy: 

  Smoothness Indicator 

32 32 32 

q  Amplitude factor: 

q  Phase Error: 
 
§  Solve linear advection equation 

to determine decay rate 
§  Strong effect of smoothness  

Indicator 
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      amplitude of disturbance 
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Accuracy: 

  LAD: Effect of Localized Artificial Diffusivity 

q   adding                                                      and  

q  effective at high wavenumbers: kr  

q  artificial viscosity  

q  Consistently used s=r+2 

q  Partial derivative                   was approximated with central FD of O(Δxp) 

filter 
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q   adding                                                      and  

q  effective at high wavenumbers: kr  

q  artificial viscosity  

q  Consistently used s=r+2 

q  Partial derivative                   was approximated with central FD of O(Δxp) 

filter 
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  LAD: Effect of Localized Artificial Diffusivity 

q   adding                                                      and  

q  effective at high wavenumbers: kr  

q  artificial viscosity  

q  Consistently used s=r+2 

q  Partial derivative                   was approximated with central FD of O(Δxp) 

filter 
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  LAD: Effect of Localized Artificial Diffusivity 

q   adding                                                      and  

q  effective at high wavenumbers: kr  

q  artificial viscosity  

q  Consistently used s=r+2 

q  Partial derivative                   was approximated with central FD of O(Δxp) 

filter 
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  LAD: Effect of Localized Artificial Diffusivity 

q   adding                                                      and  

q  effective at high wavenumbers: kr  

q  artificial viscosity  

q  Consistently used s=r+2 
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
Shock Problem
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Table 6. Contact discontinuity/ Shock resolution accuracy

points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =

8
<

:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p

max

/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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Table 5. Steady shock capturing capabilities

In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
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IV.A. 1D Riemann Problem
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schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
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The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
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points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
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IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =
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(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p
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/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
Shock Problem
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Table 6. Contact discontinuity/ Shock resolution accuracy

points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =

8
<

:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p

max

/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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Table 5. Steady shock capturing capabilities

In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
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200 grid points. A comparison of the pressure distribution along x between the exact solution and
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
Shock Problem
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Table 6. Contact discontinuity/ Shock resolution accuracy

points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =

8
<

:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p

max

/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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. (50)

The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =
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:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(52)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
Shock Problem
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Table 6. Contact discontinuity/ Shock resolution accuracy

points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-

25 of 37

American Institute of Aeronautics and Astronautics

MUSCL

WENO5 Z/JS
WENO6

LAD ( =1,2)
Central6 ( 2=1,2,4)

WENO5B
(b=0.1,0.5)

CWENO5 Z/JS

contact 

shock 

IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =

8
<

:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p

max

/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =
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(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(52)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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Table 7. Steady shock capturing capabilities

In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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Figure 12. Density distributions along x for di↵erent methods compared to the exact solution for the Sod
Shock Problem
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Table 6. Contact discontinuity/ Shock resolution accuracy

points. Figure 13 displays the results at t = 0.2. To allow for a better comparison of the sinusoidal
modulation of the entropy wave a close-up of this region in the domain is provided in Figure 13(b).
The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
pointed out in Section §III.B that the accuracy of the scheme may be reduced by including the non-
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The results in Figure 13 indicate that a large amplitude and phase error is introduced for the central
scheme. These schemes do not capture the sinusoidal part of the solution very well. The dissipation
coe�cient a↵ected the solution only mildly. The WENO5 scheme performs only slightly better than
the central scheme but performs poorly overall. Considering the spectral resolution analysis for the
optimal scheme one may have expected a better performance of the scheme. However, it has been
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IV. Discontinuity Capturing Capabilities

IV.A. 1D Riemann Problem

A steady 1D Riemann problem is used to examine the characteristics of the di↵erent numerical
schemes for resolving a steady shock. The left and right states of the Riemann problem are defined
as

(⇢, u, p) =

8
<

:
(5.6, 1.0, 1.0) for x < 0, and

(14.93, 0.375, 4.5) for x > 0.
(49)

The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
x

=
200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central-6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
calculating the maximum wiggle amplitude, �p

max

/�p normalized by the pressure jump across the
discontnuity, and the numerical shock thickness defined as
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The results are summarized in Table 5. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem.
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Table 5. Steady shock capturing capabilities

In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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The solution for the di↵erent numerical schemes is computed on an equidistant mesh with n
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200 grid points. A comparison of the pressure distribution along x between the exact solution and
the solutions obtained with the di↵erent numerical methods is presented in Figure 10. The Central6
scheme displays the most significant thickening of the shock. In addition, a slight overshoot and
oscillations can be observed after the shock. For the LAD schemes the solution becomes slightly
oscillatory right before the shock and displays an undershoot before the pressure rises to post shock
conditions. None of the other numerical schemes displays an undershoot nor significant oscillations
before the shock. The compact CWENO5 scheme exhibits oscillations after the shock which is
not observed for the other numerical methods. The oscillations could be reduced by switching
the numerical flux from from Lax-Friederichs to van Leer. To provide a quantitative measure of
the performance of the di↵erent numerical schemes the shock resolution accuracy was measured by
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The results are summarized in Table 7. The largest maximum wiggle amplitude is obtained for the
LAD scheme. When the artificial bulk viscosity, �, is increased the maximum wiggle amplitude
decreases. This improvement for the maximum wiggle amplitude, however, comes at the cost of an
increased numerical shock thickness. The compact CWENO5Z scheme exhibits the second largest
maximum wiggle amplitude due to the oscillations that persist in the solution after the shock. When
switching to the CWENO5JS scheme the maximum wiggle amplitude is reduced significantly due
to the more dissipative nature of the scheme. The proposed WENO5B scheme shows the best
compromise between maximum wiggle amplitude and numerical shock thickness. The scheme leads
to relatively low maximum wiggle amplitudes while preventing the increase of numerical shock
thickness significantly. Overall, the results show that the maximum wiggle amplitudes are smaller
for the more dissipative JS schemes compared to the Z schemes. The Z schemes, however, lead to
an improved shock thickness prediction, as expected. The MUSCL scheme performs very well for
the steady shock problem in terms of maximum wiggle amplitude which is small.
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Table 7. Steady shock capturing capabilities

In the second 1D Riemann problem, the so-called Sod problem, we examine the discontinuity
capturing capabilities for a moving shock and a contact wave as well as the ability to reproduce the
corrrect density profile of the rarefraction wave. The left and right states of the Riemann problem
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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k2 0.0467|0.05550 0.0254 0.0266 0.0269|0.0392 0.0244|0.0268 0.0607|0.0619|0.0632
k✏

⇢

k1 0.1701|0.19780 0.1034 0.0983 0.1036|0.1515 0.0872|0.1044 0.2022|0.2107|0.2174

Table 7. Shu-Osher Problem

V.B. Isentropic Vortex Convection

Another canonical test case which has been used by many other researchers is the isentropic vortex
convection problem.25 The initial conditions for the isolated vortex are given by
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(52)

where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0

= 5 with vortex core diameter size C
d

= 1.0 and r =p
(x� x

0

)2 + (y � y
0

)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0

= 5 with vortex core diameter size C
d

= 1.0 and r =p
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)2 + (y � y
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)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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where the vortex strength is V
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= 0.5 and the Gaussian width scale is G
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= 0.5. The vortex
core is initially set at x
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)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
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for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p
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signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p
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is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p
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over time as the quality measure for this problem, CWENO5 and WENO5B
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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(� � 1)
16G

s

�⇡2

e2Gs

(1�r

2
)

⇢ = T
1

(��1)

u = M1 � V
s

2⇡ (y � y
0

)eGs

(1�r

2
)

v = V
s

2⇡ (x� x
0

)eGs

(1�r

2
)

(52)

where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0

= 5 with vortex core diameter size C
d

= 1.0 and r =p
(x� x

0

)2 + (y � y
0

)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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50 50 50 

Final pmin Distribution 
q  Isentropic vortex 

q  small amplitude (Vs=0.5) 
q  smooth flow 
q  larger amplitudes used in  
     performance study 
q  32×32 on 10×10 domain 
q  periodic BCs 
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Propagation of Vortical Structures: 

  Vortex-Propagation 
Error convergence study for minimum pressure extracted at t/T=2: 

CFL=6.5×10-2, Vs=0.5 
51 51 
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Propagation of Vortical Structures: 

  Vortex-Propagation 
Error convergence study for minimum pressure extracted at t/T=2: 

CFL=6.5×10-2, Vs=0.5 CFL=6.5×10-2, Vs=5.0 

CFL=6.5×10-2, Vs=5.0 
52 52 
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Vortical Structures: 

  Double-Mach Reflection 

53 53 53 

q Mach 10 shock intersects bottom 
boundary at 60°* 

q  Δt=10-4, t=0.2s 
q  960×240 on 4×1 domain 
q Multi-dimensional shock capturing 
q  Shear-layer resolving capabilities 

*Woodward and Collela (JCP, 1984) 

WENO5B 
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Vortical Structures: 

  Double-Mach Reflection 

54 54 54 

[2.1,2.8] × [0.0x0.5] 

*Woodward and Collela (JCP, 1984) 

q Mach 10 shock intersects bottom 
boundary at 60°* 

q  Δt=10-4, t=0.2s 
q  960×240 on 4×1 domain 
q Multi-dimensional shock capturing 
q  Shear-layer resolving capabilities 

WENO5B 
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Vortical Structures: 

  Close-up Comparison 

MUSCL                                Central6D2                               LAD 

CWENO5                                WENO6                               WENO5B 

55 55 55 [960×240] on [4×1] domain 

Cartesian mesh. The original artificial diffusivity formulations [13] in Eqs. (11)–(14) include the cross-derivative term of o4 f
o2xo2y

,
whereas the generalized multi-dimensional formulations in Eqs. (17)–(20) do not have the cross term.

Initially, a Mach 10 shock wave is at a 60! angle with a reflecting wall and intersects the bottom boundary at x = 1/6 and
y = 0. The air ahead of the shock is stationary with a density of 1.4 and a pressure of 1. The conditions at the top boundary are
set to describe the exact motion of the Mach 10 shock. Therefore, the Mach 10 shock keeps the 60! angle and moves to the
right in the domain. The interaction with the wall creates a double Mach reflection of the shock at the wall. The conditions
from x = 0 to 1/6 at the bottom boundary are fixed as the conditions of the initial post-shock flow and reflecting wall con-
ditions are used from x = 1/6. The values at the left boundary are fixed to the initial post-shock values, and zero-gradient
conditions are employed at the right boundary. Simulations are carried out on a uniformly spaced Cartesian grid with three
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Fig. 22. Numerical simulations of the double Mach reflection of a Mach 10 shock with Dx = Dy = 1/60, 1/120 and 1/240 obtained by LADG-C6. Density, 30
equally spaced contours from 1.731 to 20.92 at t = 0.2.
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Spectral Resolution: 

  Isotropic Turbulence 
Computational setup 
•  T0=ρ0=urms,0=1, Pr=0.7, γ=1.4, Mt=0.5, Re       ∞ 
•  Eddy turn-over time, τ=LI/u’ (integral length scale / turbulent fluctuating velocity)	


•  Occurrence of shocklets (Lee et al. 1990, Samtaney et al. 2001, Thornber et al. 2007) 

56 56 56 

Iso-Vorticity Contours |w|=5 (1283) 

t/τ=0. t/τ=4.0625  
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Spectral Resolution: 

  Isotropic Turbulence 

VI. Spectral Resolution for Isotropic, Homogeneous Turbulence

In the last test problem of this paper the cabilities of the di↵erent numerical schemes to sim-
ulate decaying compressible isotropic turbulence with shocklets is investigated. This problem has
been used by many other researchers35,39 to investigate the dissipation characteristics of numerical
schemes. In the current setup we are considering isotropic turbulence in the limit of an infinite
Reynolds number for an initial turbulent Mach number of M

t

=
p
3u

rms

= 0.5. At this Mach num-
ber we expect shocklets41,62 to develop in the flow field. The flow field was initialized by randomly
oriented, isentropic, sinusoidal sound and shear waves with a prescribed velocity power spectrum
proportional to E(k) = Ak4 exp (�k2/k2

p

). The peak in the spectrum was located around k
p

= 2.
The inititial flow parameters were set to T

0

= ⇢
0

= u
rms,0

= 1 for a fluid with Pr = 0.7 and
� = 1.4. In order to reduce the initial transient we used a ratio of compressible component of
RMS to solenoidal component of RMS of 1/10. Using the Helmholtz decomposition the Fourier
transformed velocity field can be written as a sum of solenoidal and dilational velocity components:

u(k) = u

s

(k) + u

d

(k). (53)

Assuming a 3D Fourier transformed randomized velocity field the solenoidal and dilation velocity
components can be calculated by

u

s

(k) = u(k)� k · u(k)
|k|2 k, and (54a)

u

d

(k) = u(k)� u

s

(k). (54b)

Since we only account for dilatation velocity and not for density and pressure fluctuations, the initial
flow field will not be in acoustic equilibrium giving rise to strong acoustic waves. It has, however,
been found that even at a relatively high turbulent Mach number of 0.5 the compressible component
at initialisation is less than one percent.63

(a) (b)

Figure 17. Iso-vorticity contours at |!| = 5 for the initial condition and fully developed isotropic turbulence
at t = 4.0625 in a domain with 128

3 grid points.

For the current simulations we used a periodic box with a domain size of [2⇡⇥2⇡⇥2⇡] and three
di↵erent grid resolutions, i.e., 323, 643, and 1283. The eddy turn-over time is �

0

= 2/k
p

and it is
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Initial Condition 
q  Use Helmholtz decomposition to generate I.C. with RMScomp/RMSsol=1/10 
(Hu and Adams, 2011): 

 

q  Initial kinetic energy distribution: 

•  Randomly oriented, sinusoidal sound   
and shear waves, kP=2, r’=p’=0   
(Ristorcelli and Blaisdell, 1997)  

§  kP=2, ρ’=p’=0 
è no acoustic equilibrium initial transient  
 

(solenoidal) 

initial kinetic energy spectrum 

57 57 57 

(dilatational) 
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MUSCL at 1283 Central6 at 1283 WENO5Z at 1283 

CWENO5JS at 1283 WENO6 at 1283 LAD at 1283 
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Spectral Resolution: 

  Kinetic Energy Spectrum 



  Higher-Order Shock Capturing Schemes 
              Overview of different higher-order shock capturing schemes in LAVA. 

    

Outline 
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  Motivation/Introduction 
              Introduction and motivation of higher-order schemes for LAVA. 

  Test Problems 
            

  Computational Performance 
              Analysis and comparison of computational cost. 

  Summary & Future Work 
             

  Accuracy  
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Performance Comparison: 

 Cost Breakdown 
q  Break down cost for different schemes individually 
q  Use homogeneous turbulence case  
q  Identify most costly parts of the scheme 
q  Single processor performance 
q  Performance of numerical schemes strongly depends                                                     

on actual implementation of the numerical schemes,                                                 
compiler, architecture, etc. 

 

Central:  
q  Central FD with artificial dissipation 

§  Explicit differentiation of physical flux [9×N3×V×D]](ED)               [15%] 
§  Computation of artificial dissipation term (AD)                                 [85%] 

q  Comments: 
§  Very lean numerical scheme 
§  Γp not needed for ideal gas	
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15% 

85% 

ED 
AD 

Isotropic Turbulence (1283) 
Mach number contours 
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[35%] 
[41%] 
[24%] 

[90%] 
[10%] 
 

[10%] compared to RHS 
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Performance Comparison: 

  LAD: Cost Breakdown 
q  LAD 

u RHS Computations 
§  Gradient Computation  (GC)                                                               
§  Calculate viscous flux and differentiate fluxes (VF) 
§  Determine artificial diffusivities (AD) 

§  Compute Fν, Fβ, and Fκ + polyharmonic operator (CD)	


§  Apply Gaussian filter (GF) 

 
u Apply implicit filter to conservative variables [10% of rhs] 

q  Variations: 
§  Explicit vs implicit computation of gradients (for viscous terms)    

§  25% vs 35% of RHS computation  
§  [9×N3×V×D]  vs  [(6+8) ×N3×V×D]  è explicit is 40% cheaper 

§  Explicit vs implicit differentiation of fluxes  
§  34% vs 41% of RHS computation  
§  [9×N3×V×D]  vs  [(6+8) ×N3×V×D]  è explicit is 45% cheaper 

§  Explicit vs implicit filter 
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Performance Comparison: 

  LAD: Cost Breakdown 
q  LAD 

u RHS Computations 
§  Gradient Computation  (GC)                                                               
§  Calculate viscous flux and differentiate fluxes (VF) 
§  Determine artificial diffusivities (AD) 

§  Compute Fν, Fβ, and Fκ + polyharmonic operator (CD)	


§  Apply Gaussian filter (GF) 

 
u Apply filter to conservative variables [10% of rhs] 

q  Variations: 
§  Explicit vs implicit computation of gradients    

§  25% vs 35% of RHS computation  
§  [9×N3×V×D]  vs  [(6+8) ×N3×V×D]  è explicit is 40% cheaper 

§  Explicit vs implicit computation of flux  
§  34% vs 41% of RHS computation  
§  [9×N3×V×D]  vs  [(6+8) ×N3×V×D]  è explicit is 45% cheaper 

§  Explicit vs implicit filter 
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Performance Comparison: 

  WENO: Cost Breakdown 
q  WENO5 and CWENO5 

§  Flux evaluation and differentiation of face fluxes (FE) 
§  WENO reconstruction (WR) 

§  Characteristic transform (CT) 
§  Compute nonlinear weights (NW) 
§  Calculate reconstructed flux, etc. (RF) 
 

q  Variations: 
§  Characteristic transform 

§  approximate characteristic transform* è ~40% cheaper  
§  WENO-Z 

§  almost same cost as WENO5-JS 
§  WENO6 

§  slightly higher cost due to additional candidate stencil 
§  CWENO5 

§  higher cost due to compact reconstruction 

 
 

64 64 64 

323 | 643 

[15%] 
[85%] 
       [65%] 

[32%] 
[3%] 

*Su et al.(JSFM, 2011)  
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Performance Comparison: 

  Relative Cost Comparison 
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q  Parallel inviscid computation with 1283, box size 163, and 20 cores 
q  All results are based on MUSCL2 
q  LAD scheme designed for viscous flows 
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.

WENO5
Z/JS WENO6

WENO5B
b=0.1

CWENO5
Z/JS

LAD
� = 1, 2

Central6
✏2 = 1, 1.5, 2

k✏
⇢

k2 0.0467|0.05550 0.0254 0.0266 0.0269|0.0392 0.0244|0.0268 0.0607|0.0619|0.0632
k✏

⇢

k1 0.1701|0.19780 0.1034 0.0983 0.1036|0.1515 0.0872|0.1044 0.2022|0.2107|0.2174

Table 7. Shu-Osher Problem

V.B. Isentropic Vortex Convection

Another canonical test case which has been used by many other researchers is the isentropic vortex
convection problem.25 The initial conditions for the isolated vortex are given by
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where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0

= 5 with vortex core diameter size C
d

= 1.0 and r =p
(x� x

0

)2 + (y � y
0

)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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q  Isentropic vortex 

 
q  smaller amplitude (Vs=0.5) 
q  periodic BCs [10x10] 
q  after ~13 rotations 
q  Estimated cost = cost per step*N4 

Performance Comparison: 

  Cost Comparison: Isentropic Vortex 
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0

= 5 with vortex core diameter size C
d

= 1.0 and r =p
(x� x

0

)2 + (y � y
0

)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
L
2

-norm and the L1-norm of the relative error of the density variations in the sinusoidal region
(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
obtained for the central schemes with di↵erent dissipation factors, ✏

2

, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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where the vortex strength is V
s

= 0.5 and the Gaussian width scale is G
s

= 0.5. The vortex
core is initially set at x

0

= 5 and y
0
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= 1.0 and r =p
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)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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linear weight calculation. The CWENO5 scheme does not capture the first oscillation very well but
recovers quickly and retains a good approximation of the rest of the sinusoidal density oscillations.
For this problem no significant di↵erence can be observed between WENO6 and WENOB5 (with
b = 0.1). The LAD schemes performs well in resolving the oscillations. It may be worth noting
that the LAD scheme exhibits a small phase error and lags slightly behind the sinusoidal part of the
exact solution. No significant amplitude error can be seen.

As quantitative quality measure of the solution to the Shu-Osher problem we computed the
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(2.0  x  7.2) of the solution at t = 0.2. The results are listed in Table 7. The largest errors are
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, and for the WENO5 Z/JS
schemes. For an increasing dissipation factor the error in the oscillatory part of the solution increases
slightly. As for the previous test cases, the central schemes lead to the largest errors for both error
norms. The smallest relative errors are obtained with WENO5B, WENO6 and the LAD scheme.
The WENO5 scheme performs significantly better than the Central schemes but does not compare
well to the other WENO schemes tested here.
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where the vortex strength is V
s
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0
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0
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)2. Periodic boundary conditions are used on all four boundaries. A CFL
number of 0.5 was used for all simulations and 64 ⇥ 64 grid points. Note that even though this
problem was run periodic in all directions the boundary treatment for CWENO6 was still applied.

In Figure 14a the minimum pressure p
min

for the convecting vortex was tracked over time nor-
malized by the time it takes to convect through the entire domain and back to the intial position.
The unsteady p

min

signal is averaged over 20 time-steps to eliminate small oscillations in the signal
because the position where p

min

occurs does not necessarily coincide with a grid point. The strong
reduction of the vortex strength for the second-order MUSCL scheme can be seen by the large pres-
sure recovery over time. Once again a strong e↵ect of the smoothness indicator on the dissipation of
the numerical scheme can be noted. The LAD and WENO6 schemes show a low frequency oscillation
in the signal and instead of a pressure rise a decrease in p

min

is observed. Both schemes have zero
dissipation when operated optimally, i.e., no artificial viscosity and optimal weights, respectively.
When considering p

min

over time as the quality measure for this problem, CWENO5 and WENO5B
appear to produce the best result.
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              Overview of different higher-order shock capturing schemes in LAVA. 
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  Motivation/Introduction 
              Introduction and motivation of higher-order schemes for LAVA. 
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  Summary & Future Work 
            Summary of results and what tasks lie ahead.  
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Summary and Outlook: 

  Summary 
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q  Central: 
§  Current implementation did not perform well 
§  Better spectral resolution than MUSCL 
§  Attractive due to its low computational expense 

  
q  LAD: 

§  High spectral resolution accuracy 
§  Significant oscillations at discontinuities 
§  Not as robust as WENO schemes, well suited for weak shocks 
§  Time-step restriction due to high diffusivities (stretched meshes) 
 

q  WENO: 
§  Great advances to WENO5 scheme by improved nonlinear weights and 

employing optimal schemes with higher spectral resolution 
§  Presented new boundary treatment for compact WENO scheme 
§  Most robust schemes 
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Summary and Outlook: 

  Outlook 
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q  Higher-Order Shock Capturing Scheme: 
§  Working on more efficient higher-

order compact scheme 
§  Higher-order inter-level operators 

for block-structured Cartesian AMR 
(via Chombo) with limiting at shocks 

§  Implementation of schemes for 
curvilinear meshes (metric terms) 

q  Higher-order immersed boundary 
method (AIAA-2014, Atlanta, Georgia) 
§  Extension of work in Brehm et al. 

(2012,2013) 
§  Viscous wall extension 
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