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Exascale	
  Challenges	
  
•  Main	
  challenge:	
  variability	
  

–  Sta6c/dynamic	
  
–  Heterogeneity:	
  processor	
  types,	
  process	
  varia6on,	
  ..	
  
–  Power/Temperature/Energy	
  
–  Component	
  failure	
  

•  Exacerbated	
  by	
  strong	
  scaling	
  needs	
  from	
  apps	
  
– Why?	
  

•  To	
  deal	
  with	
  these,	
  we	
  must	
  seek	
  
–  Not	
  full	
  automa6on	
  	
  
–  Not	
  full	
  burden	
  on	
  app-­‐developers	
  
–  But:	
  a	
  good	
  division	
  of	
  labor	
  between	
  the	
  system	
  and	
  app	
  
developers	
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I	
  call	
  it	
  a	
  mantra	
  because	
  I	
  will	
  repeat	
  it	
  a	
  lot	
  in	
  this	
  talk.	
  
And	
  its	
  going	
  to	
  be	
  my	
  message	
  to	
  App	
  Developers	
  on	
  
how	
  to	
  get	
  ready	
  for	
  Adap6ve	
  Run6mes	
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Oh….Maybe	
  the	
  order	
  

doesn’t	
  maSer	
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Overdecomposi6on	
  

•  Decompose	
  the	
  work	
  units	
  &	
  data	
  units	
  into	
  
many	
  more	
  pieces	
  than	
  execu6on	
  units	
  
– Cores/Nodes/..	
  

•  Not	
  so	
  hard:	
  we	
  do	
  decomposi6on	
  anyway	
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Migratability	
  

•  Allow	
  these	
  work	
  and	
  data	
  units	
  to	
  be	
  migratable	
  
at	
  run6me	
  
–  i.e.	
  the	
  programmer	
  or	
  run6me,	
  can	
  move	
  them	
  

•  Consequences	
  for	
  the	
  app-­‐developer	
  
–  Communica6on	
  must	
  now	
  be	
  addressed	
  to	
  logical	
  
units	
  with	
  global	
  names,	
  not	
  to	
  physical	
  processors	
  

–  But	
  this	
  is	
  a	
  good	
  thing	
  
•  Consequences	
  for	
  RTS	
  
– Must	
  keep	
  track	
  of	
  where	
  each	
  unit	
  is	
  
– Naming	
  and	
  loca6on	
  management	
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Asynchrony:	
  	
  
Message-­‐Driven	
  Execu6on	
  •  Now:	
  

–  You	
  have	
  mul6ple	
  units	
  on	
  each	
  processor	
  
–  They	
  address	
  each	
  other	
  via	
  logical	
  names	
  

•  Need	
  for	
  scheduling:	
  
– What	
  sequence	
  should	
  the	
  work	
  units	
  execute	
  in?	
  
– One	
  answer:	
  let	
  the	
  programmer	
  sequence	
  them	
  

•  Seen	
  in	
  current	
  codes,	
  e.g.	
  some	
  AMR	
  frameworks	
  
– Message-­‐driven	
  execu6on:	
  	
  

•  Let	
  the	
  work-­‐unit	
  that	
  happens	
  to	
  have	
  data	
  (“message”)	
  
available	
  for	
  it	
  execute	
  next	
  

•  Let	
  the	
  RTS	
  select	
  among	
  ready	
  work	
  units	
  
•  Programmer	
  should	
  not	
  specify	
  what	
  executes	
  next,	
  but	
  can	
  
influence	
  it	
  via	
  priori6es	
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Realiza6on	
  of	
  this	
  model	
  in	
  Charm++	
  

•  Overdecomposed	
  en66es:	
  chares	
  
–  Chares	
  are	
  C++	
  objects	
  	
  
– With	
  methods	
  designated	
  as	
  “entry”	
  methods	
  

•  Which	
  can	
  be	
  invoked	
  asynchronously	
  by	
  remote	
  chares	
  
–  Chares	
  are	
  organized	
  into	
  indexed	
  collec6ons	
  

•  Each	
  collec6on	
  may	
  have	
  its	
  own	
  indexing	
  scheme	
  
–  1D,	
  ..7D,	
  	
  
–  Sparse	
  
–  Bitvector	
  or	
  string	
  as	
  an	
  index	
  

–  Chares	
  communicate	
  via	
  asynchronous	
  method	
  
invoca6ons	
  
•  A[i].foo(….);	
  	
  A	
  is	
  the	
  name	
  of	
  a	
  collec6on,	
  i	
  is	
  the	
  index	
  of	
  the	
  
par6cular	
  chare.	
  

	
  



Charm++: Object-based overdecomposition 
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User View 

System implementation 

•  Multiple “indexed collections” of C++ objects 
•  Indices can be multi-dimensional and/or sparse 
•  Programmer expresses communication between objects 

–  with no reference to processors : A[i].foo(…) 



Message-driven Execution 

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…) 
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Message-­‐driven	
  Execu6on	
  

Processor	
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Scheduler	
  

Message	
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Empowering	
  the	
  RTS	
  

•  The	
  Adap6ve	
  RTS	
  can:	
  
–  Dynamically	
  balance	
  loads	
  
–  Op6mize	
  communica6on:	
  

•  Spread	
  over	
  6me,	
  async	
  collec6ves	
  
–  Automa6c	
  latency	
  tolerance	
  
–  Prefetch	
  data	
  with	
  almost	
  perfect	
  predictability	
  

Asynchrony	
   Overdecomposi6on	
   Migratability	
  

Adap6ve	
  
Run6me	
  System	
  

Introspec6on	
   Adap6vity	
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Adap6ve	
  Run6me	
  Systems	
  
•  Decomposing	
  program	
  into	
  a	
  large	
  number	
  of	
  
Objects	
  empowers	
  the	
  RTS,	
  which	
  can:	
  
– Migrate	
  Objects	
  at	
  will	
  
–  Schedule	
  tasks	
  (Dependent	
  Execu6on	
  Blocks)	
  at	
  will	
  
–  Instrument	
  computa6on	
  and	
  communica6on	
  at	
  the	
  
level	
  of	
  these	
  logical	
  units	
  
•  Object	
  A	
  communicates	
  y	
  bytes	
  to	
  B	
  every	
  itera6on	
  
•  Sequen6al	
  Block	
  S	
  has	
  a	
  high	
  cache	
  miss	
  ra6o	
  

– Maintain	
  historical	
  data	
  to	
  track	
  changes	
  in	
  applica6on	
  
behavior	
  
•  Historical	
  =>	
  previous	
  itera6ons	
  
•  E.g.,	
  to	
  trigger	
  load	
  balancing	
  

7/16/14	
   Charm++:	
  HPC	
  Council	
  Stanford	
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message-­‐driven	
  execu6on	
  

Migratability	
  

Introspec6ve	
  and	
  adap6ve	
  
run6me	
  system	
  

Scalable	
  Tools	
  

Automa6c	
  overlap	
  of	
  Communica6on	
  
and	
  Computa6on	
  	
  

Emula6on	
  for	
  
Performance	
  
Predic6on	
  

Fault	
  Tolerance	
  

Dynamic	
  load	
  balancing	
  (topology-­‐aware,	
  
scalable)	
  

Temperature/Power/Energy	
  
Op6miza6ons	
  

Benefits	
  in	
  Charm++	
  

Perfect	
  prefetch	
  

composi6onality	
  

Over-­‐decomposi6on	
  

19	
  



U6lity	
  for	
  Mul6-­‐cores,	
  Many-­‐cores,	
  
Accelerators:	
  

•  Objects	
  connote	
  and	
  promote	
  locality	
  
•  Message-­‐driven	
  execu6on	
  

–  A	
  strong	
  principle	
  of	
  predic6on	
  for	
  data	
  and	
  code	
  use	
  
– Much	
  stronger	
  than	
  principle	
  of	
  locality	
  

•  Can	
  use	
  to	
  scale	
  memory	
  wall:	
  
•  Prefetching	
  of	
  needed	
  data:	
  	
  

–  into	
  scratch	
  pad	
  memories,	
  for	
  example	
  

7/16/14	
   Charm++:	
  HPC	
  Council	
  Stanford	
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Processor	
  1	
  

Scheduler	
  

Message	
  Queue	
  



Impact	
  on	
  communica6on	
  
•  Current	
  use	
  of	
  communica6on	
  network:	
  

–  Compute-­‐communicate	
  cycles	
  in	
  typical	
  MPI	
  apps	
  
–  So,	
  the	
  network	
  is	
  used	
  for	
  a	
  frac6on	
  of	
  6me,	
  	
  
–  and	
  is	
  on	
  the	
  cri6cal	
  path	
  

•  So,	
  current	
  communica(on	
  networks	
  are	
  over-­‐
engineered	
  for	
  by	
  necessity	
  

7/16/14	
   Charm++:	
  HPC	
  Council	
  Stanford	
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P1	
  

P2	
  

BSP	
  based	
  applica6on	
  



Impact	
  on	
  communica6on	
  
•  With	
  overdecomposi6on	
  
– Communica6on	
  is	
  spread	
  over	
  an	
  itera6on	
  
– Also,	
  adap6ve	
  overlap	
  of	
  communica6on	
  and	
  
computa6on	
  

7/16/14	
   Charm++:	
  HPC	
  Council	
  Stanford	
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P1	
  

P2	
  

Overdecomposi6on	
  enables	
  overlap	
  



Empowering the RTS 

•  The Adaptive RTS can: 
–  Dynamically balance loads 
–  Optimize communication: 

•  Spread over time, async collectives 
–  Automatic latency tolerance 
–  Prefetch data with almost perfect predictability 

Asynchrony Overdecomposition Migratability 

Adaptive 
Runtime System 

Introspection Adaptivity 
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Charm++ RTS 
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ChaNGa: Parallel Gravity 
•  Collaborative project 

(NSF) 
–  with Tom Quinn, Univ. of 

Washington 
•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better 

aspect ratios, so you 
“open” up fewer nodes 

–  But is not used because it 
leads to bad load balance 

–  Assumption: one-to-one 
map between sub-trees 
and PEs 

–  Binary trees are considered 
better load balanced 

7/16/14 SIAM PP14 25 

With Charm++: Use Oct-Tree, and 
let Charm++ map subtrees to 
processors 

Evolution of Universe and 
Galaxy Formation 



ChaNGa: Cosmology Simulation 

•  Tree: Represents 
particle 
distribution 

•  TreePiece: object/
chares containing 
particles 

Collaboration with 
Tom Quinn UW 



•  Asynchronous, highly overlapped, phases 
•  Requests for remote data overlapped with 

local computations 

ChaNGa: Optimized Performance 



ChaNGa : a recent result 
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•  Highly clustered 
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processor: > 30K 

ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeo↵ between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s e↵ectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across di↵erent
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-

Clustered Dataset - Dwarf 

•  Idle time due to 
message delays 

•  Also, load imbalances: 
solved by Hierarchical 
balancers 

Local$ Ewald$ Remote$Idle$0me$
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Solution: Replication 

•  Replicate tree nodes to distribute requests 
•  Requester randomly selects a replica 

PE 1 PE 2 PE 3 PE 4 
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Replication Impact 
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reduced from 30K to 
4.5K 
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Multiple time-stepping! 
•  Our scientist collaborators suggest an 

algorithmic optimization: 
–  Don’t move slow-moving particles every step 

•  i.e. don’t calculate forces on them either 
–  In fact, make many (say 5) categories (rungs) of 

particles based on their velocities 
–  Rung sequence (with 5 rungs)  

•  4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0 
•  Rung 0: all particles, Rung 4: fastest-moving particles 

–  Each tree-piece object now presents a different 
load when different “rungs” are being calculated 



Multiple time-stepping! 
•  Load (for the same object) changes across rungs 

–  Yet, there is persistence within the same rung! 
–  So, specialized phase-aware balancers were developed 



Multi-stepping tradeoff 
•  Parallel efficiency is lower, but performance 

is improved significantly 

Single Stepping Multi Stepping 



NAMD: Biomolecular Simulations 

•  Collaboration with K. 
Schulten 

•  With over 50,000 
registered users 

•  Scaled to most top US 
supercomputers 

•  In production use on 
supercomputers and 
clusters and desktops 

•  Gordon Bell award in 
2002 

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten  
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Time Profile of ApoA1 on Power7 PERCS 

2ms total 

92,000 atom system, on 500+ nodes (16k cores) 
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A snapshot of optimization in progress.. Not the final result 

Overlapped steps, as a result of asynchrony 



Timeline of ApoA1 on Power7 PERCS 
230us 
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NAMD: Strong Scaling 

•  HIV Capsid was a 64 
million atom 
simulation, including 
explicit water atoms 

•  Most biophysics 
systems of interests 
are 10M atoms or 
less… maybe 100M 

•  Strong scaling 
desired to billions of 
steps 
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Enhancing Asynchrony in NAMD 
•  Charm++ reductions are non-blocking 

–  So, you can do other work while reduction is 
progressing through the system 

•  Synchronization:  
–  NAMD, when used with a barostat (NPT ensemble), 

needs pressure from the current step to rescale volume 
–  So, no other work was performed during reduction 

•  Enhancing asynchrony:  
–  For strong scaling, the algebra was reworked to use 

the results of the reduction one step later 
–  Overlapped reduction with an entire force computation 

step 
–  10% performance improvement on 16k nodes on Titan 
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NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and 
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks 
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Structured AMR 

41 

Structured AMR miniApp 



  

P0 P1 P2 P3 P4 P5 

Typical MPI Approach Charm++ Approach 

  
00 

Process based 
Contiguous blocks  

assigned to a process 

Object based 
•  Each block is an independent object 

•  is the basic execution unit 
•  can be mapped to any physical 

process 
•  is uniquely addressable 
•  is migratable 
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Structured AMR 
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P0 P1 P2 P3 P4 P5 

Typical MPI Approach Charm++ Approach 

  
00 

Mesh Restructuring 
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P0 P1 P2 P3 P4 P5 

Typical MPI Approach Charm++ Approach 
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P0 P1 P2 P3 P4 P5 

Typical MPI Approach Charm++ Approach 
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100100 100101 100110 100111 

1000 1010 1011 

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

3
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P )

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
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•  Ripple Propagation Algorithm 
•  Level-by-level 
•  O(d) global reductions ≈ 

O(d*logP)  

•  Tree-replication on each process 
•  O(#blocks) memory per process 

Synchronization overhead 

Memory overhead 

Mesh Restructuring 
 

•  Exchange messages with neighboring blocks 
•  Update state using a state machine 
•  Quiescence to detect global consensus  
 
 

•  Blocks save current level of neighbors 
•  O(#blocks/P) memory per process 

O(log P) time 

O(#blocks/P) space 
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Fig. 3: The finite state machine describing each block’s decision process during the mesh restructuring algorithm. A block’s
decision can change as a result of receiving messages from neighbors or siblings and as a result of evaluating its local error
condition. When termination is detected all decisions are finalized.

increase its refinement depth, and they must adjust accordingly
to keep the invariant of at most one level of difference between
neighbors. Parts (b) and (c) depict how this decision’s effect
ripple out to nearby blocks, with affected blocks downstream
(those whose resolution changes) shaded, and the path of
affected blocks shown by dashed lines and arrows.

The overall algorithm that each block executes can be
described by the finite state machine illustrated in Figure ??.
Each d state represents a possible refinement depth for the
block relative to its current depth. All of the blocks move
from a d state to a decision state when termination detection
indicates that they have reached consensus. The primary tran-
sitions from one state to another are driven by the receipt of
messages from neighbors and siblings indicating their intended
depth. Each time a block moves from one d state to another,
it sends messages to each of its communication partners
indicating the state that it has entered, possibly causing them
to transition and communicate as well. Although blocks will
try to coarsen themselves by default, any stimulus (message or
local error condition) indicating a need for higher resolution
will take precedence. This can be seen in the state machine’s
monotonic flow from coarser states toward more refined states.

Each block’s machine is initialized to a state that would
have it coarsen (indicated by the large triangle) as soon as
its execution passes the previous cycle of remeshing decision-
making. Because the blocks do not execute in lock step with
one another, a block may receive messages that advance its
state machine to d+1 and thereby constrain its decision even
before it has finished timestepping to the remeshing point.
This allows for a small optimization in which a block need
not evaluate its local error condition if its neighbors’ decisions
dictate that it must refine. If a block does finish timestepping
while in a state other than d + 1, it evaluates its local error
condition and follows the appropriate transition as indicated
by the dotted arrows.

Note that there are no transitions that move into the d� 1

state from another state. As a result, no block will ever send a
message indicating its own intention to coarsen, and no block

will receive a message indicating that a less-refined neighbor
wishes to change to level d � 2. Thus, there are no d � 2

transitions in the state machine.
After all the decisions are finalized, blocks are created or

destroyed as a result. A block that has decided to coarsen (in
concert with its siblings) sends its downsampled data to its
parent block and then destroys itself. A block that has decided
to refine constructs four new child blocks and send a quarter
of its data to each of them.

C. Termination Detection

Because refinement decisions are determined and further
propagated based on distributed mesh data, detecting the
global property of consensus requires termination detection.
Termination is the state when no messages are in flight and all
processes are idle. Many different varieties of algorithms for
detecting termination are well-established in the literature [?].

For this application, we use a wave-based four-counter
termination detection algorithm that propagates waves of total
send and receive message counts up and down a spanning tree
that includes all the processors. When the send and receive
message counts for two consecutive waves are identical, ter-
mination is detected [?]. Because waves are only propagated
when a processor is otherwise idle, two identical consecutive
counts indicate that no messages are in flight that could
spawn more work. Only propagating waves when a processor
is otherwise idle heavily reduces the number of waves that
are ever started, because any busy processor will block the
progression up the spanning tree. For AMR, the delay time
between the last block reaching its decision and termination
detection is low (empirical results are in § ??).

D. Block-to-processor Mapping and Load Balancing

In AMR, the collection of objects expands and contracts
unpredictably over time, causing dynamic load imbalances
to arise. Synchronized redistribution of blocks is expensive
because of the high frequency of growth and shrinkage. Hence,

Structured AMR: State Machine 
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Number of Cores 

Testbed: IBM BG/Q Mira  
Cray XK/6 Titan 

Advection Benchmark 
First order method in 

3d-space 
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Episimdemics 
•  Simulation of spread of contagion 

–  Code by Madhav Marathe, Keith Bisset, .. Vtech 
–  Original was in MPI 

•  Converted to Charm++ 
–  Benefits: asynchronous reductions improved 

performance considerably 
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Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by 
interaction 

S 

I 

Local transition 

P1 

P2 

P3 

P4 

P = 1-exp(t·log(1-I·S)) 
- t: duration of  

      co-presence 

- I: infectivity 

- S: susceptivity 

 
infectious 

uninfected 

S 

I 

t 

Location Social 
contact 
network L1 

L2 

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.
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Load distribution (Vulcan)

RR GP
Z RR ZC GP

splitLoc splitLoc splitLoc splitLoc
(1.755 s) (1.583 s) (1.222 s) (0.438 s) (0.369 s) (0.368 s)

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

Blue: person computation

Red: receiver’s msg handling
Orange: location computation

X-axis: Time Y-axis: Processor

Timeline of an iteration from sampled subset of 332
cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24 / 2650 





52 

Strong scaling performance with the largest data set
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Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic
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OpenAtom 
Car-Parinello Molecular Dynamics 

NSF ITR 2001-2007, IBM, DOE,NSF  
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Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

Recent NSF SSI-SI2 grant 
With 

G. Martyna (IBM)  
Sohrab Ismail-Beigi 

Using Charm++ virtualization, we can efficiently scale 
small (32 molecule) systems to thousands of processors 



Decomposition and Computation 
Flow 
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Topology Aware Mapping of Objects 
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Improvements by topological aware 
mapping of computation to processors 

7/16/14 LBNL/LLNL 56 

The simulation of the left panel, maps computational work to processors taking the network 
connectivity into account while the right panel simulation does not. The “black’’ or idle time 
processors spent waiting for computational work to arrive on processors is significantly 
reduced at left. (256waters, 70R, on BG/L 4096 cores) 

Punchline: Overdecomposition into Migratable Objects created the 
degree of freedom needed for flexible mapping  



OpenAtom Performance Sampler 
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Mini-App Features Machine Max cores 
AMR Overdecomposition, 

Custom array index, 
Message priorities, 

Load Balancing, 
Checkpoint restart 

BG/Q 131,072 

LeanMD Overdecomposition, 
Load Balancing, 

Checkpoint restart, 
Power awareness 

BG/P  
BG/Q 

131,072 
32,768 

 

Barnes-Hut 
(n-body) 

Overdecomposition, 
Message priorities, 

Load Balancing 

Blue Waters 16,384 

LULESH 2.02 AMPI, Over-
decomposition, Load 

Balancing 

Hopper 8,000 

PDES Overdecomposition, 
Message priorities, 

TRAM 

Stampede 4,096 

MiniApps 



Mini-App Features Machine Max cores 
1D FFT Interoperable with 

MPI 
BG/P 
BG/Q 

65,536 
16,384 

Random Access TRAM BG/P  
BG/Q 

 

131,072 
16,384 

Dense LU SDAG XT5 8,192 

Sparse Triangular 
Solver 

SDAG BG/P 512 

GTC SDAG BG/Q 1,024 

SPH Blue Waters - 

More MiniApps 



Where are Exascale Issues? 
•  I didn’t bring up exascale at all so far.. 

–  Overdecomposition, migratability, asynchrony 
were needed on yesterday’s machines too 

–  And the app community has been using them 
–  But:  

•  On *some* of the applications, and maybe without a 
common general-purpose RTS 

•  The same concepts help at exascale 
–  Not just help, they are necessary, and adequate 
–  As long as the RTS capabilities are improved 

•  We have to apply overdecomposition to all 
(most) apps 
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A message of this talk 
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Intelligent, introspective, Adaptive 
Runtime Systems, developed for handling 
application’s dynamic variability, already 
have features that can deal with 
challenges posed by exascale hardware 



Fault Tolerance in Charm++/AMPI 
•  Four approaches available: 

–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w auto. restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint: migrate-to-disk 
–  Based on dynamic runtime capabilities 
–  Use of object-migration 
–  Can be used in concert with load-balancing 

schemes 
62 

Demo at Tech 
Marketplace 



Extensions to fault recovery 
•  Based on the same over-decomposition 

ideas 
–  Use NVRAM instead of DRAM for checkpoints 

•  Non-blocking variants 
•  [Cluster 2012] Xiang Ni et al. 

–  Replica-based soft-and-hard-error handling 
•  As a “gold-standard” to optimize against 
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al. 
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Saving Cooling Energy 
•  Easy: increase A/C setting 

–  But: some cores may get too hot 
•  So, reduce frequency if temperature is high (DVFS) 

–  Independently for each chip 
•  But, this creates a load imbalance! 
•  No problem, we can handle that: 

–  Migrate objects away from the slowed-down processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Implemented in experimental version 
–  SC 2011 paper, IEEE TC paper 

•  Several new power/energy-related strategies 
–  PASA ‘12: Exploiting differential sensitivities of  code segments 

to frequency change  
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PARM:Power Aware Resource Manager 

•  Charm++ RTS facilitates malleable jobs 
•  PARM can improve throughput under a fixed 

power budget using: 
–  overprovisioning (adding more nodes than 

conventional data center) 
–  RAPL (capping power consumption of nodes) 
–  Job malleability and moldability 
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Costs of Overdecomposition? 
•  We examined the “Pro”s so far 
•  Cons and remedies: 
•  Scheduling overhead?  

–  Not much at all 
–  In fact get benefits due to blocking  

•  Memory in ghost layer increases 
–  Fuse local regions with compiler support 
–  Fetch one ghost layer at a time  
–  Hybridize (pthreads/openMP inside objects/DEBs) 

•  Less control over scheduling? 
–  i.e. too much asynchrony? 
–  But can be controlled in various ways by an observant RTS/programmer 

•  For domain-decomposition based solvers, may increase number 
of iterations 
–  You can lift it to node-level overdecomposition (use openMP inside) 
–  Also, other ideas:  

•  Too radical and new? 
–  Well, its working well for the past 10-15 years in multiple applications, 

via Charm++ and AMPI 
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How can  
Application Developers  

get ready for  
Adaptive RTSs? 
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Its not that weird or new 
•  First, note: 

–  The techniques I advocated were needed for 
dynamic irregular apps even on yesterday’s 
machines 
•  Just that they need to be applied to even regular apps  
•  How Charm++ meets exascale challenges already, 

almost 
– How we got so lucky: because of these irregular 

apps 

The adaptivity that was created via overdecomposition, 
migratability, & asynchrony, for dynamic applications, is 
also useful for handling machine variability at exascale 
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Summary 
•  Charm++ embodies an adaptive, introspective 

runtime system 
•  Many applications have been developed using it 

–  NAMD, ChaNGa, Episimdemics, OpenAtom, … 
–  Many miniApps, and third-party apps 

•  Adaptivity developed for apps is useful for 
addressing exascale challenges 
–  Resilience, power/temperature optimizations, .. 
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More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 

Overdecomposition Asynchrony Migratability 
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A recently 
published book 
surveys seven 
major applications 
developed using 
Charm++ 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 


