
Charm++ Applications

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

Applied Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center, July 14, 2014

Exascale	
 Challenges	

•  Main	
 challenge:	
 variability	

–  Sta6c/dynamic	

–  Heterogeneity:	
 processor	
 types,	
 process	
 varia6on,	
 ..	

–  Power/Temperature/Energy	

–  Component	
 failure	

•  Exacerbated	
 by	
 strong	
 scaling	
 needs	
 from	
 apps	

– Why?	

•  To	
 deal	
 with	
 these,	
 we	
 must	
 seek	

–  Not	
 full	
 automa6on	
 	

–  Not	
 full	
 burden	
 on	
 app-­‐developers	

–  But:	
 a	
 good	
 division	
 of	
 labor	
 between	
 the	
 system	
 and	
 app	

developers	

2	

I	
 call	
 it	
 a	
 mantra	
 because	
 I	
 will	
 repeat	
 it	
 a	
 lot	
 in	
 this	
 talk.	

And	
 its	
 going	
 to	
 be	
 my	
 message	
 to	
 App	
 Developers	
 on	

how	
 to	
 get	
 ready	
 for	
 Adap6ve	
 Run6mes	

3	

My	
 Mantra	

O	

M

My	
 Mantra	
 a	

O	

M

O	

My	
 Mantra	

M a	

Oh….Maybe	
 the	
 order	

doesn’t	
 maSer	

5	

O	

My	
 Mantra	

Ma	

verdecomposition	

synchrony	

igratability	

6	

Overdecomposi6on	

•  Decompose	
 the	
 work	
 units	
 &	
 data	
 units	
 into	

many	
 more	
 pieces	
 than	
 execu6on	
 units	

– Cores/Nodes/..	

•  Not	
 so	
 hard:	
 we	
 do	
 decomposi6on	
 anyway	

7	

Migratability	

•  Allow	
 these	
 work	
 and	
 data	
 units	
 to	
 be	
 migratable	

at	
 run6me	

–  i.e.	
 the	
 programmer	
 or	
 run6me,	
 can	
 move	
 them	

•  Consequences	
 for	
 the	
 app-­‐developer	

–  Communica6on	
 must	
 now	
 be	
 addressed	
 to	
 logical	

units	
 with	
 global	
 names,	
 not	
 to	
 physical	
 processors	

–  But	
 this	
 is	
 a	
 good	
 thing	

•  Consequences	
 for	
 RTS	

– Must	
 keep	
 track	
 of	
 where	
 each	
 unit	
 is	

– Naming	
 and	
 loca6on	
 management	

8	

Asynchrony:	
 	

Message-­‐Driven	
 Execu6on	
 •  Now:	

–  You	
 have	
 mul6ple	
 units	
 on	
 each	
 processor	

–  They	
 address	
 each	
 other	
 via	
 logical	
 names	

•  Need	
 for	
 scheduling:	

– What	
 sequence	
 should	
 the	
 work	
 units	
 execute	
 in?	

– One	
 answer:	
 let	
 the	
 programmer	
 sequence	
 them	

•  Seen	
 in	
 current	
 codes,	
 e.g.	
 some	
 AMR	
 frameworks	

– Message-­‐driven	
 execu6on:	
 	

•  Let	
 the	
 work-­‐unit	
 that	
 happens	
 to	
 have	
 data	
 (“message”)	

available	
 for	
 it	
 execute	
 next	

•  Let	
 the	
 RTS	
 select	
 among	
 ready	
 work	
 units	

•  Programmer	
 should	
 not	
 specify	
 what	
 executes	
 next,	
 but	
 can	

influence	
 it	
 via	
 priori6es	

9	

Realiza6on	
 of	
 this	
 model	
 in	
 Charm++	

•  Overdecomposed	
 en66es:	
 chares	

–  Chares	
 are	
 C++	
 objects	
 	

– With	
 methods	
 designated	
 as	
 “entry”	
 methods	

•  Which	
 can	
 be	
 invoked	
 asynchronously	
 by	
 remote	
 chares	

–  Chares	
 are	
 organized	
 into	
 indexed	
 collec6ons	

•  Each	
 collec6on	
 may	
 have	
 its	
 own	
 indexing	
 scheme	

–  1D,	
 ..7D,	
 	

–  Sparse	

–  Bitvector	
 or	
 string	
 as	
 an	
 index	

–  Chares	
 communicate	
 via	
 asynchronous	
 method	

invoca6ons	

•  A[i].foo(….);	
 	
 A	
 is	
 the	
 name	
 of	
 a	
 collec6on,	
 i	
 is	
 the	
 index	
 of	
 the	

par6cular	
 chare.	

	

Charm++: Object-based overdecomposition

7/16/14 SICM2 11

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors : A[i].foo(…)

Message-driven Execution

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

12

Message-­‐driven	
 Execu6on	

Processor	
 1	

Scheduler	

Message	
 Queue	

Processor	
 0	

Scheduler	

Message	
 Queue	

A[..].foo(…)	

Processor	
 2	

Scheduler	

Message	
 Queue	

Processor	
 1	

Scheduler	

Message	
 Queue	

Processor	
 0	

Scheduler	

Message	
 Queue	

Processor	
 3	

Scheduler	

Message	
 Queue	

Processor	
 2	

Scheduler	

Message	
 Queue	

Processor	
 1	

Scheduler	

Message	
 Queue	

Processor	
 0	

Scheduler	

Message	
 Queue	

Processor	
 3	

Scheduler	

Message	
 Queue	

Processor	
 2	

Scheduler	

Message	
 Queue	

Processor	
 1	

Scheduler	

Message	
 Queue	

Processor	
 0	

Scheduler	

Message	
 Queue	

Processor	
 3	

Scheduler	

Message	
 Queue	

Empowering	
 the	
 RTS	

•  The	
 Adap6ve	
 RTS	
 can:	

–  Dynamically	
 balance	
 loads	

–  Op6mize	
 communica6on:	

•  Spread	
 over	
 6me,	
 async	
 collec6ves	

–  Automa6c	
 latency	
 tolerance	

–  Prefetch	
 data	
 with	
 almost	
 perfect	
 predictability	

Asynchrony	
 Overdecomposi6on	
 Migratability	

Adap6ve	

Run6me	
 System	

Introspec6on	
 Adap6vity	

17	

Adap6ve	
 Run6me	
 Systems	

•  Decomposing	
 program	
 into	
 a	
 large	
 number	
 of	

Objects	
 empowers	
 the	
 RTS,	
 which	
 can:	

– Migrate	
 Objects	
 at	
 will	

–  Schedule	
 tasks	
 (Dependent	
 Execu6on	
 Blocks)	
 at	
 will	

–  Instrument	
 computa6on	
 and	
 communica6on	
 at	
 the	

level	
 of	
 these	
 logical	
 units	

•  Object	
 A	
 communicates	
 y	
 bytes	
 to	
 B	
 every	
 itera6on	

•  Sequen6al	
 Block	
 S	
 has	
 a	
 high	
 cache	
 miss	
 ra6o	

– Maintain	
 historical	
 data	
 to	
 track	
 changes	
 in	
 applica6on	

behavior	

•  Historical	
 =>	
 previous	
 itera6ons	

•  E.g.,	
 to	
 trigger	
 load	
 balancing	

7/16/14	
 Charm++:	
 HPC	
 Council	
 Stanford	
 18	

message-­‐driven	
 execu6on	

Migratability	

Introspec6ve	
 and	
 adap6ve	

run6me	
 system	

Scalable	
 Tools	

Automa6c	
 overlap	
 of	
 Communica6on	

and	
 Computa6on	
 	

Emula6on	
 for	

Performance	

Predic6on	

Fault	
 Tolerance	

Dynamic	
 load	
 balancing	
 (topology-­‐aware,	

scalable)	

Temperature/Power/Energy	

Op6miza6ons	

Benefits	
 in	
 Charm++	

Perfect	
 prefetch	

composi6onality	

Over-­‐decomposi6on	

19	

U6lity	
 for	
 Mul6-­‐cores,	
 Many-­‐cores,	

Accelerators:	

•  Objects	
 connote	
 and	
 promote	
 locality	

•  Message-­‐driven	
 execu6on	

–  A	
 strong	
 principle	
 of	
 predic6on	
 for	
 data	
 and	
 code	
 use	

– Much	
 stronger	
 than	
 principle	
 of	
 locality	

•  Can	
 use	
 to	
 scale	
 memory	
 wall:	

•  Prefetching	
 of	
 needed	
 data:	
 	

–  into	
 scratch	
 pad	
 memories,	
 for	
 example	

7/16/14	
 Charm++:	
 HPC	
 Council	
 Stanford	
 20	

Processor	
 1	

Scheduler	

Message	
 Queue	

Impact	
 on	
 communica6on	

•  Current	
 use	
 of	
 communica6on	
 network:	

–  Compute-­‐communicate	
 cycles	
 in	
 typical	
 MPI	
 apps	

–  So,	
 the	
 network	
 is	
 used	
 for	
 a	
 frac6on	
 of	
 6me,	
 	

–  and	
 is	
 on	
 the	
 cri6cal	
 path	

•  So,	
 current	
 communica(on	
 networks	
 are	
 over-­‐
engineered	
 for	
 by	
 necessity	

7/16/14	
 Charm++:	
 HPC	
 Council	
 Stanford	
 21	

P1	

P2	

BSP	
 based	
 applica6on	

Impact	
 on	
 communica6on	

•  With	
 overdecomposi6on	

– Communica6on	
 is	
 spread	
 over	
 an	
 itera6on	

– Also,	
 adap6ve	
 overlap	
 of	
 communica6on	
 and	

computa6on	

7/16/14	
 Charm++:	
 HPC	
 Council	
 Stanford	
 22	

P1	

P2	

Overdecomposi6on	
 enables	
 overlap	

Empowering the RTS

•  The Adaptive RTS can:
–  Dynamically balance loads
–  Optimize communication:

•  Spread over time, async collectives
–  Automatic latency tolerance
–  Prefetch data with almost perfect predictability

Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity

23

Charm++ RTS

24

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

7/16/14 SIAM PP14 25

With Charm++: Use Oct-Tree, and
let Charm++ map subtrees to
processors

Evolution of Universe and
Galaxy Formation

ChaNGa: Cosmology Simulation

•  Tree: Represents
particle
distribution

•  TreePiece: object/
chares containing
particles

Collaboration with
Tom Quinn UW

•  Asynchronous, highly overlapped, phases
•  Requests for remote data overlapped with

local computations

ChaNGa: Optimized Performance

ChaNGa : a recent result

 0

 7500

 15000

 22500

 30000

 37500

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

•  Highly clustered
•  Maximum request per

processor: > 30K

ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeo↵ between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s e↵ectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across di↵erent
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-

Clustered Dataset - Dwarf

•  Idle time due to
message delays

•  Also, load imbalances:
solved by Hierarchical
balancers

Local$ Ewald$ Remote$Idle$0me$

29

Solution: Replication

•  Replicate tree nodes to distribute requests
•  Requester randomly selects a replica

PE 1 PE 2 PE 3 PE 4

30

Replication Impact

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

Local$ Ewald$Remote$

•  Replication distributes
requests

•  Maximum request
reduced from 30K to
4.5K

•  Gravity time reduced
from 2.4 s to 1.7 s, on 8k

 0.5

 1

 2

 4

 8

 16

 32

 1024 2048 4096 8192 16384

G
ra

vi
ty

 T
im

e
(s

)

Number of Cores

With Replication
Without Replication

31

Multiple time-stepping!
•  Our scientist collaborators suggest an

algorithmic optimization:
–  Don’t move slow-moving particles every step

•  i.e. don’t calculate forces on them either
–  In fact, make many (say 5) categories (rungs) of

particles based on their velocities
–  Rung sequence (with 5 rungs)

•  4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0
•  Rung 0: all particles, Rung 4: fastest-moving particles

–  Each tree-piece object now presents a different
load when different “rungs” are being calculated

Multiple time-stepping!
•  Load (for the same object) changes across rungs

–  Yet, there is persistence within the same rung!
–  So, specialized phase-aware balancers were developed

Multi-stepping tradeoff
•  Parallel efficiency is lower, but performance

is improved significantly

Single Stepping Multi Stepping

NAMD: Biomolecular Simulations

•  Collaboration with K.
Schulten

•  With over 50,000
registered users

•  Scaled to most top US
supercomputers

•  In production use on
supercomputers and
clusters and desktops

•  Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

35

Time Profile of ApoA1 on Power7 PERCS

2ms total

92,000 atom system, on 500+ nodes (16k cores)

36

A snapshot of optimization in progress.. Not the final result

Overlapped steps, as a result of asynchrony

Timeline of ApoA1 on Power7 PERCS
230us

37

NAMD: Strong Scaling

•  HIV Capsid was a 64
million atom
simulation, including
explicit water atoms

•  Most biophysics
systems of interests
are 10M atoms or
less… maybe 100M

•  Strong scaling
desired to billions of
steps

38

Enhancing Asynchrony in NAMD
•  Charm++ reductions are non-blocking

–  So, you can do other work while reduction is
progressing through the system

•  Synchronization:
–  NAMD, when used with a barostat (NPT ensemble),

needs pressure from the current step to rescale volume
–  So, no other work was performed during reduction

•  Enhancing asynchrony:
–  For strong scaling, the algebra was reworked to use

the results of the reduction one step later
–  Overlapped reduction with an entire force computation

step
–  10% performance improvement on 16k nodes on Titan

39

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Pe
rfo

rm
an

ce
 (n

s
pe

r d
ay

)

Number of Nodes

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

224M atoms

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q

Structured AMR

41

Structured AMR miniApp

P0 P1 P2 P3 P4 P5

Typical MPI Approach Charm++ Approach

00

Process based
Contiguous blocks

assigned to a process

Object based
•  Each block is an independent object

•  is the basic execution unit
•  can be mapped to any physical

process
•  is uniquely addressable
•  is migratable

00 01 10 11

0000 0001 0010 0011 1100 1101 1110
1111

100100 100101 100110 100111

1000 1010 1011

d

Structured AMR

42

P0 P1 P2 P3 P4 P5

Typical MPI Approach Charm++ Approach

00

Mesh Restructuring

00 01 10 11

0000 0001 0010 0011 1100 1101 1110 1111

100100 100101 100110 100111

1000 1010 1011

d

Structured AMR

43

P0 P1 P2 P3 P4 P5

Typical MPI Approach Charm++ Approach

00

Mesh Restructuring

00 01 10 11

0000 0001 0010 0011 1100 1101 1110 1111

100100 100101 100110 100111

1000 1010 1011

d

Structured AMR

44

P0 P1 P2 P3 P4 P5

Typical MPI Approach Charm++ Approach

00 00 01 10 11

0000 0001 0010 0011 1100 1101 1110 1111

100100 100101 100110 100111

1000 1010 1011

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P)

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P)

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P)

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P)

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

3

(a) (b) (c) (d) (e)

Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ ??). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative
to existing implementations (§ ??) and it takes only O(N/P)

memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the
appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ ??) only to determine when all blocks have
reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure ?? illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to

Mesh Restructuring

•  Ripple Propagation Algorithm
•  Level-by-level
•  O(d) global reductions ≈

O(d*logP)

•  Tree-replication on each process
•  O(#blocks) memory per process

Synchronization overhead

Memory overhead

Mesh Restructuring

•  Exchange messages with neighboring blocks
•  Update state using a state machine
•  Quiescence to detect global consensus

•  Blocks save current level of neighbors
•  O(#blocks/P) memory per process

O(log P) time

O(#blocks/P) space

d

Structured AMR

45

4

Stay Refine

d d + 1

Coarsen

d - 1

Coarsen
d - 1 d

Stay

d + 1

Sibling d

d + 2

d - 1 d d + 1

Refined + 2

Initial state

Received message

d

dRequired depth

Decision

Local error condition

Termination detection

*

Refine

Coarsen,
Stay

*

Fig. 3: The finite state machine describing each block’s decision process during the mesh restructuring algorithm. A block’s
decision can change as a result of receiving messages from neighbors or siblings and as a result of evaluating its local error
condition. When termination is detected all decisions are finalized.

increase its refinement depth, and they must adjust accordingly
to keep the invariant of at most one level of difference between
neighbors. Parts (b) and (c) depict how this decision’s effect
ripple out to nearby blocks, with affected blocks downstream
(those whose resolution changes) shaded, and the path of
affected blocks shown by dashed lines and arrows.

The overall algorithm that each block executes can be
described by the finite state machine illustrated in Figure ??.
Each d state represents a possible refinement depth for the
block relative to its current depth. All of the blocks move
from a d state to a decision state when termination detection
indicates that they have reached consensus. The primary tran-
sitions from one state to another are driven by the receipt of
messages from neighbors and siblings indicating their intended
depth. Each time a block moves from one d state to another,
it sends messages to each of its communication partners
indicating the state that it has entered, possibly causing them
to transition and communicate as well. Although blocks will
try to coarsen themselves by default, any stimulus (message or
local error condition) indicating a need for higher resolution
will take precedence. This can be seen in the state machine’s
monotonic flow from coarser states toward more refined states.

Each block’s machine is initialized to a state that would
have it coarsen (indicated by the large triangle) as soon as
its execution passes the previous cycle of remeshing decision-
making. Because the blocks do not execute in lock step with
one another, a block may receive messages that advance its
state machine to d+1 and thereby constrain its decision even
before it has finished timestepping to the remeshing point.
This allows for a small optimization in which a block need
not evaluate its local error condition if its neighbors’ decisions
dictate that it must refine. If a block does finish timestepping
while in a state other than d + 1, it evaluates its local error
condition and follows the appropriate transition as indicated
by the dotted arrows.

Note that there are no transitions that move into the d� 1

state from another state. As a result, no block will ever send a
message indicating its own intention to coarsen, and no block

will receive a message indicating that a less-refined neighbor
wishes to change to level d � 2. Thus, there are no d � 2

transitions in the state machine.
After all the decisions are finalized, blocks are created or

destroyed as a result. A block that has decided to coarsen (in
concert with its siblings) sends its downsampled data to its
parent block and then destroys itself. A block that has decided
to refine constructs four new child blocks and send a quarter
of its data to each of them.

C. Termination Detection

Because refinement decisions are determined and further
propagated based on distributed mesh data, detecting the
global property of consensus requires termination detection.
Termination is the state when no messages are in flight and all
processes are idle. Many different varieties of algorithms for
detecting termination are well-established in the literature [?].

For this application, we use a wave-based four-counter
termination detection algorithm that propagates waves of total
send and receive message counts up and down a spanning tree
that includes all the processors. When the send and receive
message counts for two consecutive waves are identical, ter-
mination is detected [?]. Because waves are only propagated
when a processor is otherwise idle, two identical consecutive
counts indicate that no messages are in flight that could
spawn more work. Only propagating waves when a processor
is otherwise idle heavily reduces the number of waves that
are ever started, because any busy processor will block the
progression up the spanning tree. For AMR, the delay time
between the last block reaching its decision and termination
detection is low (empirical results are in § ??).

D. Block-to-processor Mapping and Load Balancing

In AMR, the collection of objects expands and contracts
unpredictably over time, causing dynamic load imbalances
to arise. Synchronized redistribution of blocks is expensive
because of the high frequency of growth and shrinkage. Hence,

Structured AMR: State Machine

46

 

Number of Cores

Testbed: IBM BG/Q Mira  
Cray XK/6 Titan

Advection Benchmark
First order method in

3d-space

Structured AMR: Performance

47

Episimdemics
•  Simulation of spread of contagion

–  Code by Madhav Marathe, Keith Bisset, .. Vtech
–  Original was in MPI

•  Converted to Charm++
–  Benefits: asynchronous reductions improved

performance considerably

48

49

Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by
interaction

S

I

Local transition

P1

P2

P3

P4

P = 1-exp(t·log(1-I·S))
- t: duration of

 co-presence

- I: infectivity

- S: susceptivity

infectious

uninfected

S

I

t

Location Social
contact
network L1

L2

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3 / 26

Load distribution (Vulcan)

RR GP
Z RR ZC GP

splitLoc splitLoc splitLoc splitLoc
(1.755 s) (1.583 s) (1.222 s) (0.438 s) (0.369 s) (0.368 s)

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

Blue: person computation

Red: receiver’s msg handling
Orange: location computation

X-axis: Time Y-axis: Processor

Timeline of an iteration from sampled subset of 332
cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24 / 2650

52

Strong scaling performance with the largest data set

����

��

���

����

��� ��� �� �� 	�
� ��� ��� �	����
�������

�

�
��
��

�
��
�
�

��
��

���
��

���
�

���������� ���!�������

�����"�� ��
�"��#���$������%�&'��

����

((!���
�)� *���#��
((*������

((!���
�)� *������

����

��

���

����

�� �� �� �� �	�
�� 	�� ����

��

��
��
��
��
��

��
��

���
��
���
�

��
������������

����� ������� ��!������"�#$%&�

''(�
����
''(�)'*+

'',�����-��(�
����
'',�����-��(���#��
'',�����-��(�)'*+

����

��

���

����

��� ��� �� �� 	�
� ���

��

��
��
��
��
��

��
��

���
��
���
�

��
������������

����� ������� ��!���"�#�$�������
%%&�����'�� ������"�(%)*

+��"�(%)*
�,���-��."�
���

Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 / 26

OpenAtom
Car-Parinello Molecular Dynamics

NSF ITR 2001-2007, IBM, DOE,NSF

7/16/14 LBNL/LLNL 53

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

Recent NSF SSI-SI2 grant
With

G. Martyna (IBM)
Sohrab Ismail-Beigi

Using Charm++ virtualization, we can efficiently scale
small (32 molecule) systems to thousands of processors

Decomposition and Computation
Flow

7/16/14 LBNL/LLNL 54

Topology Aware Mapping of Objects

7/16/14 LBNL/LLNL 55

Improvements by topological aware
mapping of computation to processors

7/16/14 LBNL/LLNL 56

The simulation of the left panel, maps computational work to processors taking the network
connectivity into account while the right panel simulation does not. The “black’’ or idle time
processors spent waiting for computational work to arrive on processors is significantly
reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the
degree of freedom needed for flexible mapping

OpenAtom Performance Sampler

7/16/14 LBNL/LLNL 57

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:
K-points

Mini-App Features Machine Max cores
AMR Overdecomposition,

Custom array index,
Message priorities,

Load Balancing,
Checkpoint restart

BG/Q 131,072

LeanMD Overdecomposition,
Load Balancing,

Checkpoint restart,
Power awareness

BG/P
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition,
Message priorities,

Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-
decomposition, Load

Balancing

Hopper 8,000

PDES Overdecomposition,
Message priorities,

TRAM

Stampede 4,096

MiniApps

Mini-App Features Machine Max cores
1D FFT Interoperable with

MPI
BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular
Solver

SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps

Where are Exascale Issues?
•  I didn’t bring up exascale at all so far..

–  Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

–  And the app community has been using them
–  But:

•  On *some* of the applications, and maybe without a
common general-purpose RTS

•  The same concepts help at exascale
–  Not just help, they are necessary, and adequate
–  As long as the RTS capabilities are improved

•  We have to apply overdecomposition to all
(most) apps

60

A message of this talk

61

Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

Fault Tolerance in Charm++/AMPI
•  Four approaches available:

–  Disk-based checkpoint/restart
–  In-memory double checkpoint w auto. restart
–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Common Features:
–  Easy checkpoint: migrate-to-disk
–  Based on dynamic runtime capabilities
–  Use of object-migration
–  Can be used in concert with load-balancing

schemes
62

Demo at Tech
Marketplace

Extensions to fault recovery
•  Based on the same over-decomposition

ideas
–  Use NVRAM instead of DRAM for checkpoints

•  Non-blocking variants
•  [Cluster 2012] Xiang Ni et al.

–  Replica-based soft-and-hard-error handling
•  As a “gold-standard” to optimize against
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

63

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  So, reduce frequency if temperature is high (DVFS)

–  Independently for each chip
•  But, this creates a load imbalance!
•  No problem, we can handle that:

–  Migrate objects away from the slowed-down processors
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Implemented in experimental version
–  SC 2011 paper, IEEE TC paper

•  Several new power/energy-related strategies
–  PASA ‘12: Exploiting differential sensitivities of code segments

to frequency change

64

Demo at Tech
Marketplace

PARM:Power Aware Resource Manager

•  Charm++ RTS facilitates malleable jobs
•  PARM can improve throughput under a fixed

power budget using:
–  overprovisioning (adding more nodes than

conventional data center)
–  RAPL (capping power consumption of nodes)
–  Job malleability and moldability

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

Costs of Overdecomposition?
•  We examined the “Pro”s so far
•  Cons and remedies:
•  Scheduling overhead?

–  Not much at all
–  In fact get benefits due to blocking

•  Memory in ghost layer increases
–  Fuse local regions with compiler support
–  Fetch one ghost layer at a time
–  Hybridize (pthreads/openMP inside objects/DEBs)

•  Less control over scheduling?
–  i.e. too much asynchrony?
–  But can be controlled in various ways by an observant RTS/programmer

•  For domain-decomposition based solvers, may increase number
of iterations
–  You can lift it to node-level overdecomposition (use openMP inside)
–  Also, other ideas:

•  Too radical and new?
–  Well, its working well for the past 10-15 years in multiple applications,

via Charm++ and AMPI
66

How can
Application Developers

get ready for
Adaptive RTSs?

67

Its not that weird or new
•  First, note:

–  The techniques I advocated were needed for
dynamic irregular apps even on yesterday’s
machines
•  Just that they need to be applied to even regular apps
•  How Charm++ meets exascale challenges already,

almost
– How we got so lucky: because of these irregular

apps

The adaptivity that was created via overdecomposition,
migratability, & asynchrony, for dynamic applications, is
also useful for handling machine variability at exascale

68

Summary
•  Charm++ embodies an adaptive, introspective

runtime system
•  Many applications have been developed using it

–  NAMD, ChaNGa, Episimdemics, OpenAtom, …
–  Many miniApps, and third-party apps

•  Adaptivity developed for apps is useful for
addressing exascale challenges
–  Resilience, power/temperature optimizations, ..

69

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

Overdecomposition Asynchrony Migratability

7/16/14 SIAM PP14 70

A recently
published book
surveys seven
major applications
developed using
Charm++

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

