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Motivation (1/2)
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Motivation (2/2)

Capabilities we want

Simulate turbulent flows using
LES or DNS

Handle complex geometries

Prediction and design

Multiphysics (e.g.,
thermoelastic)

Properties we want

(Robust) – stability

Variable order

No artificial dissipation

High FLOP performance
(> 30% peak)

High scalability

Stencil-based finite differences on structured, overset meshes is a viable
path forward but several improvements are needed
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Outline

1 Background on basic flow solver

2 Stable methods for overset grids

3 Provably definite methods for

∂

∂xi

(
a(x , t)

∂u

∂xi

)

4 Dual consistent, discrete adjoint
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Flow Solver MPSolve

Developed at UIUC from 2006 with support from DOE, AFOSR,
AFRL, ONR, NSF, OAI, NASA

Solves the compressible Navier-Stokes equations

∂ρ

∂t
+
∂ρuj
∂xj

= Sρ (1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) = Sρui (2)

∂ρE

∂t
+

∂

∂xj
([ρE + p]uj − uiτij + qj) = SρE (3)

in conservative form

∂

∂t

(
Q

J

)
+
∂(F̂i − F̂v )

∂ξ
+
∂(Ĝi − Ĝv )

∂η
+
∂(Ĥi − Ĥv )

∂ζ
=

Z

J
(4)

with additive Runge-Kutta methods.
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Flow Solver MPSolve — Discretization

Summation-by-parts operators (Strand, 1994)

We approximate
∂u

∂x

∣∣∣∣
i=1,...,n

by D~u = P−1Q~u

where P = PT > 0 and Q + QT = diag(−1, 0, . . . , 0, 1).

Simultaneous-approximation-term boundary conditions

We enforce all BCs through a penalization framework

∂~q

∂t
= F(~q)︸ ︷︷ ︸

original

+σI1P−1E1A
+(~q − ~g I1)︸ ︷︷ ︸

inviscid BC

+
σI2

Re
P−1E1I (~q − ~g I2)

︸ ︷︷ ︸
viscous BC

where σI1 and σI2 are semi-bounded parameters.

SBP + SAT yields provable stability for (linearized) CNS =⇒ robust(er)
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Flow Solver MPSolve — Overset & Interpolation

Overset (chimera)—overlapping meshes to describe a geometry

individual meshes are logically structured

meshes are assembled in a globally unstructured (PEGASUS, Ogen)

Lagrange interpolation between meshes

7-mesh solution of a Mach 1.3 nozzle 4-mesh solution of a LPT
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Flow Solver MPSolve — Details & Performance

400 K

1600 K

Wall:  300K

Air at Mach 0.3

2H   at 1000 K

(a) H2 combustion (b) Turbulent boundary layer with
wall jet

(c) Transient wall jet

Figure 3: Example recent simulations with PlasComCM , similar to proposed simulations.
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Figure 4: Speedup relative to 1024 cores
for a 10243 mesh point flow solutions on
Jaguar at ORNL.

The PlasComCM spatial derivative operators use the explicit
diagonal summation-by-parts finite (SBP) di↵erence opera-
tors, which are high-resolution, allowing high fidelity on rel-
atively small meshes.27 Time advancement is by additive
Runge–Kutta methods, or a preconditioned dual-time implicit
method. The current implicit implementation uses HYPRE,28

but new methods that leverage the particular mesh structure
of PlasComCM will be necessary to facilitate greater scala-
bility (§1.4.1). The boundary conditions primarily use the
simultaneous-approximation-term method (SAT)29 that com-
bines the SBP operators mentioned above with an enforcement
of the boundary conditions through a penalty term. The SBP-
SAT implementation yields accurate and robust discretizations
for complex-geometry problems30 and is our preferred method.
This approach is ready for the year-1 simulations.

This algorithm was selected for its accuracy and conservation
properties, and because it is compatible with a uniformity of code structure that in turn facilitates
a unified approach for harnessing forthcoming hardware resources. The use of operators on multiple
grids yields a framework that is a key part of our proposed progress toward exascale and is discussed
in §1.5.1 as part of our Integration Plan. For large problems, the current flow solution scales
well to large numbers of processors on present-day homogeneous parallel machines (4), but new
tools will be essential for running ‘right-size’ simulations on lower-relative-bandwidth heterogeneous
architectures.

1.2.5 Electrode surface properties and aging (Johnson, Freund). The pin electrodes
that we10,11 and others13 use degrade over minutes to hours of standard use. This aging is due
to changes in their surface characteristics, accelerated through interactions with the plasmas they
generate. Most importantly, it a↵ects the character of the plasma. Generally, fresh electrodes are
used in experiments to avoid this, but a versatile predictive model must account for it.

In the proposed work, we will employ an atomic-to-continuum approach our team-members have
developed (Johnson, Freund, and co-workers31) to study ion-impact-induced surface modification.
The plasma-material interactions that result in electrode aging are due, in part, to the mechanical
e↵ects of the ions incident on the surface. The resulting chemical and morphological changes a↵ect
both the macroscopic and quantum-mechanical electronic properties of the material. The proposed
electrode aging modeling framework, illustrated in figure 5, consists of (1) molecular dynamics ion
bombardment modeling of electrode surfaces, (2) electrostatic solvers to treat the plasma–electrode

8

Strong scaling on DOE’s Jaguar

FLOP performance of MPSolve on NSF TACC Stampede
(Intel Sandybridge, 21.6 GFLOP/s Peak)

TAU-based performance
measurement

Written in Fortran 90/C/C++

Fully parallelized with MPI, including I/O

Some core routines available on GPUs/accelerators

ANSI-compliant with good portability
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Overset

Why overset grid methods?

Handles complex geometries
Allows selective local grid refinement

Multiblock Grid Overset Grid

Source: duns.sourceforge.net Source: http://celeritassimtech.com

Sharan, Pantano & Bodony (UIUC) Overset grid methods June 19, 2014 5 / 31
“Lots” of results for multiblock grids with matching nodes

“Limited” results for multiblock grids without matching nodes

Almost no results for overset grids that do not require dissipation
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Existing stability for overset grids

Pärt-Enander & Sjögreen (1994) – Euler equations with FV methods
and artifical dissipation

Scheme for electrodynamics by Henshaw (2006)—Godunov-Ryabenkii
stable interface conditions for matching interfaces

Godunov-Ryabenkii stable method for heat transfer in fluid structure
systems by Henshaw & Chand (2009)

G-K-S stable method by Appelö et al. (2012) for linear elasticity

Energy stable methods for hyperbolic system using GSBP operators
by Reichert et al. (2012)
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Overset stability problem definition

Problem definition

Right moving wave

∂u
∂ t

+
∂u
∂x

= 0 for �1  x  1, t � 0,

u(x ,0) = f (x), u(�1, t) = g(t) = 0.

Overlapping domain, as shown below, has m+1 points on left domain
and n+1 points on right

Sharan, Pantano & Bodony (UIUC) Overset grid methods June 19, 2014 13 / 31Consider the hyperbolic system

∂u

∂t
+
∂u

∂x
= 0, for − 1 ≤ x ≤ 1, t > 0

subject to the conditions that

u(x , 0) = f (x), u(−1, t) = g(t) = 0.
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Overset schemeNumerical scheme from previous work1(Scheme-I)

Discretization for the left and right domain
du
dt

= �P�1
L QLu� t0EL

0 (u0�g)+ ghLRLu,

dv
dt

= �P�1
R QRv� tRER

0 (v0� IT
L u),

EL,R
0 = H�1

L,R [1, 0 , .... , 0]T .

RL denotes second derivative approximation at selected points
(determined from stability analysis)

RL =
1
h2
L

2
66664

0 .. .. .. .. 0
. .. .. .. .. .
0 .. .. .. .. 0
0 .. .. 1 �2 1
0 .. .. .. .. 0

3
77775

________________________
1Sharan, N. and Bodony, D. J., “High-order provably stable overset grid methods for block-structured adaptive
mesh refinement,” AIAA Paper 2013-2872, Presented at the 21st AIAA Computational Fluid Dynamics Conference,
San Diego, CA, 24-27 June, 2013.

Sharan, Pantano & Bodony (UIUC) Overset grid methods June 19, 2014 14 / 31
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Overset scheme—stability and proof

The proof outline is as follows:

1 Want to show that

d

dt
||~w ||2H ≤ 0, ~wT = [~uT ~vT ]T

for some H.

2 Set H = diag(HL,HR) = diag(CLPL, βRPR) where CL is diagonal
matrix and βR is a constant

3 Use SBP property of {PL,QL} and {PR ,QR} to show that

d

dt
||~w ||2H = ~zTK~z

where K is a small square matrix (size depends on order)

4 Ensure K ≤ 0 by determinant test
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Overset scheme—stability and proof

Figure 3: Shaded region shows the admissible values of x and y for det(K2⇥2) � 0.

where x, y and q are non-negative numbers, and cL
m�1 > 0 implies x < 1. Inserting (21) in (19) yields

K =

2
64

�2x x + y � 1
2 �R( 1

2 + q)↵L

x + y � 1
2 �2y �R( 1

2 + q)(1 � ↵L)

�R( 1
2 + q)↵L �R( 1

2 + q)(1 � ↵L) �2�Rq

3
75 . (22)

The second-order principal minors give the following three conditions:

(x � y)2 � (x + y) +
1

4
 0, (23)

4xq � �R(
1

2
+ q)2↵2

L � 0, (24)

4yq � �R(
1

2
+ q)2(1 � ↵L)2 � 0, (25)

If we assume x = ✓+⌘
2 and y = ✓�⌘

2 , (23) gives ✓ � ⌘2 + 1
4 , or

✓ = ✏ + ⌘2 +
1

4
, for ✏ � 0. (26)

Therefore, ✓ = ⌘2 + 1
4 or, x =

⌘2+⌘+ 1
4

2 and y =
⌘2�⌘+ 1

4

2 represent the boundary (in the x-y plane) of the solution
required for numerical stability. The shaded region in Figure 3 shows the admissible values of x and y.

Two cases exist for the conditions from other two second-order principal minors, Eqns. (24) and (25),

Case 1: q = 0

Eq. (24) and (25) yield �R

4 ↵2
L  0 and �R

4 (1 � ↵L)2  0 respectively, which implies q 6= 0 since �R > 0 and the

5

A range of parameters are possible to ensure stability (x and y are
linear functions of the SAT paramters)

Requiring conservation across the interface sets the values to be
τR = 1 and γ = α2

L/[2(2− α2
L)] where 0 ≤ αL ≤ 1 is the percentage

of overlap.
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Overset scheme—results for 2nd order system

Inviscid Burgers’ equation

We solve the inviscid Burgers’ equation with a Gaussian initial pulse,

@u

@t
+ u

@u

@x
= 0, �1  x  1, t � 0, (1)

u(x, 0) = e�3x2

.

The exact solution to the Cauchy problem

u(x, t) = e�3(x�ut)2 ,

solved using Newton’s method, provides the boundary condition. Figures 1 and 2 show the solution and convergence,
respectively with second order accurate operators.
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Figure 1: Solution to problem (1).
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Figure 2: Convergence plot for problem (1) with 1�
2 � 1 SBP scheme at t = 0.5 and aR = �hL/2 .
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Overset scheme—next steps

Currently extending to systems of hyperbolic systems (easy)

Incorporating diffusion (difficult, but we have preliminary results)
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Outline

1 Background on basic flow solver
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Variable coefficient 2nd derivatives

The CNS equations contain several terms of the form

∂

∂xi

(
a(x , t)

∂u

∂xi

)

that arise from

Viscous dissipation
Heat transfer
Coordinate mappings

When using LES, then a(x , t) could be a model coefficient

When using wall modeled LES, then a(x , t) also arises with a
Neumann boundary condition (wall stress) on u

Need methods that ensure these terms are stable!
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Variable coefficient 2nd derivatives—Dirichlet

We want to solve the variable-coefficient diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)

on the domain x ∈ [0, 2π] with u(0, t) = f1(t) and u(2π, t) = fN(t). The
semi-discrete formulation is

d~u

dt
= P−1M(a)~u − τ

h
P−1A~e1(u1 − f1)− τ

h
P−1AeN(uN − fN)

where

P = h diag(1/2, 1, . . . , 1, 1/2), A = diag(a1, a2, . . . , aN)

and τ > 1/2 for stability. The magic is in M.
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Variable coefficient 2nd derivatives—Dirichlet

The matrix M(a) has the following properties:
1

M(a)~u ≈ P

(
~a. ∗ d2~u

dx2
+

d~a

dx
. ∗ d~u

dx

)

2 The boundary closures telecope:

(M(a)~u)j = Fj+1/2 − Fj−1/2

where

Fj+1/2 = a
d~u

dx

∣∣∣∣
j+1/2

+O(hp)

3 M(a) is definite to ensure

d

dt
||~u||2P < 0

4 M(a) preserves the SBP property

d

dt

∫
u2 dx = −

[
2au

∂u

∂x

]xr

x=x`

− 2

∫
a

(
∂u

∂x

)2

dx .
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Variable coefficient 2nd derivatives—Dirichlet

Applying conditions 1–4 yields the matrix

M(a) =
1

h




1
2
(a1 − a2)

1
2
(a2 − a1) 0

1
2
(a1 + a2) − 1

2
(a1 + 2a2 + a3)

1
2
(a2 + a3)

0 . . . 0
0 . . . 0

0 . . . 0
0 . . . 0

. . .
1
2
(aN + aN−1) − 1

2
(aN + 2aN−1 + aN−2)

1
2
(aN−1 + aN−2)

0 1
2
(aN−1 − aN ) 1

2
(aN − aN−1)




When a ≡ constant then M(a) reverts to the narrow stencil second
derivative operator, with zeroes on the first and last rows.
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Variable coefficient 2nd derivatives—Dirichlet

Exact solution to

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
+ F (x , t), a(x) = 1 + ε sin x , ε = 0.9

with F (x , t) = ε exp{−t} sin 2x is u(x , t) = exp{−t} cos x .

h

||e
||

10-2 10-1 100
10-6

10-5

10-4

10-3

10-2

10-1 O(h2)
||e||P 

Dirichlet BCs, a(x) = 1 + 0.9 sin(x)

x

|u
ex

-u
n|

0 1 2 3 4 5 6
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Nx = 11
Nx = 21
Nx = 41
Nx = 81
Nx = 161
Nx = 321
Nx = 641

Dirichlet BCs

Figure 1: Convergence(left) and Error-Behavior at t = 1 (right)with Dirichlet BCs

Neumann Boundary conditions.

From the similar procedure of section §1, with ∂u
∂x (x = 0, t) = g1(t) = e−t and ∂u

∂x (x = 2π, t) = gN(t) = e−t, then

du
dt

= P−1M(a)u − τP−1Ae1((Su)1 − f1) + τP−1AeN ((Su)N − gN ) + F(x, t), (3)

where
(Su)1 = −1

3
u1 +

1

3
u4, (Su)N = −1

3
uN−3 +

1

3
uN ,

F(x, t) = −ϵe−tcos(2x), and uex = e−tsin(x).

Energy stability results in τ ≥ − 3
2 . Convergence with τ = −2 is shown in figure 2. Especially, there is a sharp

jump at the boundaries. This implies that weaker stability is acheived than that of the Dirichlet case. This is
expected since the strict stability from the Laplace transform method cannot be ensured for the Neumann case.
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Figure 2: Convergence(left) and Error-Behavior at t = 1 (right) with Neumann BCs

2

D. J. Bodony (UIUC) Advances in SBP-SAT Methods July 10, 2014 24 / 38



Variable coefficient 2nd derivatives—Neumann

For Neumann boundary conditions, the method-of-lines discretization is

d~u

dt
= P−1M(a)~u − τP−1A~e1((Su)1 − f1) + τP−1AeN((Su)N − fN)

with

(Su)1 = −1

3
u1 +

1

3
u2, and (Su)N = −1

3
uN−3 +

1

3
uN

and τ ≥ 3/2 for stability. The matrix M(a) is the same.
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Adjoint Introduction—Optimization

To
min
f
J (Q, f ), subject to N (Q) = f ,

you can either brute force compute the variation

δJ =

(
∂J
∂Q

)
δQ +

(
∂J
∂f

)
δf

or you can use a calculus of variation result that the variation

δJ =

[(
∂J
∂f

)
− Q†

(
∂M
∂f

)]
δf

where
M(Q, f ) = N (Q)− f ≡ 0

and where Q† is the adjoint. Note that δQ is not needed in the second
form. Q† satisfies a CNS-like PDE with (x , t) dependent coefficients.
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Why A Discrete Adjoint?

The efficiency of the optimization depends on the accuracy of δJ , which
depends on Q†.

There are main paths to computing Q†:

continuous adjoint: PDE → Adjoint PDE → discretize
discrete adjoint: PDE → discretize → transpose
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Figure 3: Comparison of gradient accuracy from the discrete- and continuous-adjoint formulations for the flow configuration of
figure 1.

3. Adjoint Formulations

3.1. Continuous-adjoint formulation
For subsequent comparisons and to provide context, we start with the continuous-adjoint formulation.

Our discrete-adjoint formulation will employ a corresponding notation. We first define an inner product,

h f1, f2i =
Z t1

t0

Z

D
f1 (x, t)T f2 (x, t) d3x dt, (13)

and a corresponding norm k f1k2 = h f1, f1i, where f1 and f2 are su�ciently smooth vector-valued square-
integrable functions of x and t, with x 2 D ⇢ R3 and t0  t  t1. The (weak) derivatives of the cost
functional with respect to Q (x, t) and f (x, t) are

@J
@Q

⇥
Q, f

⇤
(x, t) = W2

⌦ (x, t) � g⌦ (x, t) and
@J
@ f

⇥
Q, f

⇤
(x, t) = 0, (14)

where g⌦ (x, t) is the target forcing to be developed from (9). The gradient G of the cost functional is defined
using

�J ⇥
Q, f ; �Q, � f

⇤
= hG, � f i . (15)

It is well understood that this definition of the gradient is useful since it relates the total variation of the cost
functional to a variation in the control forcing f (x, t) and does not involve the variation in the state variable
Q (x, t). Thus, if this gradient were known, an iterative minimization algorithm has to update only f (x, t)
in order to accelerate convergence to a local minimum. To find this gradient, we formulate the control
problem using a Lagrange multiplier to enforce adherence to the governing equations (8) as a constraint.
The Lagrangian is

L
h
Q,Q†, f

i
= J ⇥

Q, f
⇤ �

D
Q†,M ⇥

Q, f
⇤E
, (16)

with �L
h
Q,Q†, f ; �Q, � f

i
= �J ⇥

Q, f ; �Q, � f
⇤

since �M ⇥
Q, f ; �Q, � f

⇤
(x, t) = 0, and its variation is

�L
h
Q,Q†, f ; �Q, � f

i
= �JQ

⇥
Q, f ; �Q

⇤ �
D
Q†, �MQ

⇥
Q, f ; �Q

⇤E

10

E =

∣∣∣∣
J [Q, f + δf ]− J [Q, f ]

α
+ ||G[Q†]||2

∣∣∣∣
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Errors in Gradient Can Find Different Minima

The direction between Q†disc and Q†cont is different:

ϕ(t) = cos−1

(
〈Q†disc,Q

†
cont〉

||Q†disc|| ||Q
†
cont||

)

(a) (b)

(c) (d)

Figure 10: Visualization of Q†5 (x, t) from the discrete-adjoint method for x3/�
0
m = 0 at times (t � t0) a1/�0

m =: (a) 1800, (b) 1200,
(c) 600 and (d) 0. The straight lines outline the boundary of finite W⌦.
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Figure 11: Time-dependent gradient direction error (31).
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Discrete Adjoint for SBP-SAT

We have developed a discrete adjoint for the fully discretized CNS using
SBP-SAT and RK4, focusing on the efficiency of the implementation. For
example, the forward and adjoint RK4 work out to be

N†5
h
Q,Q†

i
=
@Q†5
@t
+ (� � 1)

@Q†i+1

@xi
+ �ui

@Q†5
@xi
+
�

RePr
1
⇢

@2Q†5
@xi@xi

. (21c)

Note, in deriving (21), we have used a causality condition in time and neglected boundary terms. The latter
are strictly zero only when D = R3 in (13), which is modeled using a radiation condition (6). A similar
condition is used for the adjoint, taking care of the time-reversal with a negative damping strength, as has
been described before [17]. The boundary terms are problem specific, and can be included as necessary in
general. These equations are identical to those reported by Kleinman [33], which includes non-reflecting
adjoint boundary conditions that are compatible with the radiation condition for the adjoint.

Although the formulation does not require this, to numerically solve (21), we discretize the derivatives
using the same schemes as for the flow equations discussed in section 2.3 including the same fourth-order
Runge–Kutta scheme for time-integration. The boundary conditions for Q† are implemented using an SAT
similar to (7).

3.2. Discrete-adjoint formulation
The discrete-adjoint formulation is specific to the discretization, and it is clearest if we consider the time

discretization at the outset. While our approach for formulating the discrete-adjoint remains generic to the
broad class of popular high-order explicit multi-stage methods, we will demonstrate our approach using the
standard fourth-order Runge–Kutta (RK4) scheme. First, we write the semi-discrete approximation to the
governing equations (8)

~M
h
~Q, ~f

i
(t) ⌘ d ~Q

dt
� ~R

h
~Q
i

(t) � ~F� (t) = 0, (22)

where ~F� (t) = ~W 2
�

(t) � ~f (t) is the semi-discrete form of the control forcing term, and ~R
h
~Q
i

(t) represents
the discretized right-hand side of the compressible flow equations including SATs that enforce boundary
conditions. For (22), we take initial condition ~Q (t0) = ~Q 0. For convenience of presentation, we assume a
uniform time step such that tn = t0 + �t (n � 1), where �t = (t1 � t0) /M with n = 1, 2, . . . ,M + 1 for M + 1
time steps. Integrating (22) using the most common RK4 scheme leads to

~M n,1 =
2 ~Q n,1 � 2 ~Q n�1,4

�t
� ~R n�1,4 � ~F n,1

�
(23a)

~M n,2 =
2 ~Q n,2 � 2 ~Q n�1,4

�t
� ~R n,1 � ~F n,2

�
(23b)

~M n,3 =
~Q n,3 � ~Q n�1,4

�t
� ~R n,2 � ~F n,3

�
(23c)

~M n,4 =
6 ~Q n,4 + 2 ~Q n�1,4 � 2 ~Q n,1 � 4 ~Q n,2 � 2 ~Q n,3

�t
� ~R n,3 � ~F n,4

�
, (23d)

each stage of which has a single unknown ~Q, which can be simply solved for in the usual way for explicit
RK schemes given the ~M

h
~Q, ~f

i
= 0 condition of (22). This particular form of expression is useful for our

objectives. In (23), ~Q 0,4 is the known initial state ~Q 0 with ~R0,4 = ~R
h
~Q 0

i
(t0). For n > 1, ~Q n�1,4 is the

numerical approximation to ~Q (tn) and the sub-step values are ~Q n,s for n = 1, . . . ,M and s = 1, 2, 3. ~R n,s

denotes ~R
h
~Q n,s

i
(tn + cs�t), where c1 = c2 = 1/2 and c3 = c4 = 1.

To derive the discrete analog of (19), we define an inner product

D
f

1
, f

2

E
P
=

MX

n=1

4X

s=1

�n,s�t
⇣

f n,s
1

⌘T
P f n,s

2
, (24)

12

Forward

and the corresponding norm
���� f

1

����
2

P
=

D
f

1
, f

1

E
P
, where f

1
denotes a discrete vector with components

~f 1,1
1 , . . . ,

~f M,4
1 . In total, f

1
consists of 20MN1N2N3 elements. In (24), P = I5 ⌦ P1 ⌦ P2 ⌦ P3, where

each Pi is a diagonal matrix representing a quadrature rule for the xi-direction. In the mixing layer simula-
tions, the stream-wise and span-wise directions are periodic with uniform mesh spacings �x1 and �x3, so
P1 = �x1diag

�
N1

�
and P3 = �x3diag

�
N3

�
are natural choices, where n denotes a vector with elements

all equal to unity. In the cross-stream direction, a numerical quadrature scheme is used. A natural choice for
P2 is based on the diagonal norm used for constructing the SBP operator D1x2 [34], which is a symmetric
and positive-definite matrix, and defines a sixth-order accurate quadrature rule [39]. This leads to

P2 = diag
⇣h

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200 1 · · · 13649

43200

i
�
h

g0(0)
N2�1 · · · g0(1)

N2�1

i⌘
,

and accounts for mesh stretching per (3).
The counterparts to (8), (18), (19) and (20) from the continuous-adjoint formulation can now be devel-

oped. To start with, we write (23) compactly as

M
h
Q, f

i
⌘ N

h
Q
i
�W2

�
� f = 0.

The corresponding discrete-adjoint equations are

M†
h
Q,Q†, g

⌦

i
⌘ N†

h
Q,Q†

i
�W2

⌦
� g
⌦
= 0,

and are obtained using D
Q†, �N

h
Q, �Q

iE
P
=

D
N†

h
Q,Q†

i
, �Q

E
P
. (25)

The gradient of the cost functional is
G

h
Q†

i
= W2

�
� Q†. (26)

Using (23) and (24), we get

~M †n,4 =
6�n,4 ~Q †n,4 + 2�n+1,4 ~Q †n+1,4 � �n+1,3 ~Q †n+1,3 � 2�n+1,2 ~Q †n+1,2 � 2�n+1,1 ~Q †n+1,1

�n,4�t

� �
n+1,1

�n,4 P�1Tn,4P ~Q †n+1,1 � ~G †n,4
⌦

(27a)

~M †n,3 =
�n,3 ~Q †n,3 � 2�n,4 ~Q †n,4

�n,3�t
� �

n,4

�n,3 P�1Tn,3P ~Q †n,4 � ~G †n,3
⌦

(27b)

~M †n,2 =
2�n,2 ~Q †n,2 � 4�n,4 ~Q †n,4

�n,2�t
� �

n,3

�n,2 P�1Tn,2P ~Q †n,3 � ~G †n,2
⌦

(27c)

~M †n,1 =
2�n,1 ~Q †n,1 � 2�n,4 ~Q †n,4

�n,1�t
� �

n,2

�n,1 P�1Tn,1P ~Q †n,2 � ~G †n,1
⌦

(27d)

for n = 1, . . . ,M � 1, where ~G n,s
⌦
= ~W 2

⌦
(tn + cs�t) � ~g n,s

⌦
and Tn,s is a matrix operator defined implicitly

using
�~R n,s =

⇣
T

h
~Q n,s

i⌘T
� ~Q n,s. (28)

For n = M, (27) holds except ~Q †M,4 = (�t/6) ~G M,4
⌦

. T
h
~Q n,s

i
is the adjoint coe�cient matrix and can

be determined by linearizing (5). Appendix A includes a synopsis of this procedure and the result. The
superscripts on the adjoint coe�cient matrix in (27) indicate that it is evaluated at the physical time at

13

Adjoint

Note: a semi-discrete adjoint which uses RK4 for backward time
advancement has (x , t) coefficients that are evaluated at different times
than the fully discrete, and different initial conditions.
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Discrete Adjoint for SBP-SAT
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Figure 6: Contours of Q†5 (x, t0) for a two-dimensional spatially developing mixing layer using the (a) continuous-, and (b) discrete-
adjoint formulations.

Figure 7: Gradient accuracy for the two-dimensional spatially developing mixing layer shown in figure 5.
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Implications
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Figure 12: (a) One-dimensional stream-wise energy spectra of Q†5 at x2/�
0
m = 0 at t = t0, and (b) di↵erence in the magnitude of the

same quantity averaged between the wavenumbers shown by the dashed lines in (a) as a function of time.

large-eddy simulation will necessarily be so easily expressed such that its discrete adjoint is e�cient or even
tractable. Thus, we evaluate the accuracy of the continuous-adjoint against the discrete-adjoint to anticipate
challenges when the discrete-adjoint is unavailable. The discussion in section 5 will also revisit past e↵orts
that used the continuous-adjoint formulation.

To quantify the scale-dependence of the adjoint solution errors, the energy spectra of the continuous-
and discrete-adjoint Q†5 are shown in figure 12 (a). The magnitude of this di↵erence averaged between
wavelengths 40�0m and 2000�0m increases exponentially in reverse-time (figure 12 (b)). It is clear that despite
the initiation of errors at small scales, over the course of this simulation forcing of even the largest turbulence
scales would be a↵ected by continuous-adjoint errors (note that based on figure 3, the error in the discrete-
adjoint should be significantly smaller than any discretization errors). By separating turbulent fluctuations
in flow quantities in (21) from their mean values, it can be shown that adjoint variables are transported like
a passive scalar by the turbulent mean flow. This suggests the existence of an energy cascade mechanism
for the energy norm for Q†5, which is transported by the mean flow velocity. Since the adjoint equations
are integrated in reverse-time, we should expect the cascade to transport energy from small to large spatial
scales as the adjoint simulation proceeds. This is evident from figure 12 (a), which shows that the energy
norm for the discrete-adjoint Q†5 is consistently higher than the continuous-adjoint, and the di↵erence is
significant even at the largest spatial scales, against the nominal expectation that the exact sensitivity of the
largest spatial scales are accurately captured by the continuous-adjoint method. Thus, even if the sound
generation and its control is expected to be relatively large-scale, the accumulation of discretization errors
will potentially hinder e�cacy. For longer simulation times, we can anticipate that the finite numerical
precision errors will also similarly propagate to all scales, though this would require longer simulation
times than this particular flow is set up for.

4.4. Controlled mixing layer

Though the continuous-adjoint is clearly less accurate, its full e↵ect cannot be completely anticipated
because of the complexity of the turbulence. We therefore also analyze the beginning of a control opti-

22

The unsteady coefficients in the adjoint PDE cause scattering of the
errors to low frequency components =⇒ conclusions based on
continuous adjoint may differ from those based on discrete adjoint.

The error grows exponentially in time for chaotic systems (e.g.,
turbulent)
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Discrete Dual-Consistent Adjoint for SBP-SAT

The discrete adjoint is exact but it is unsatisfactory (inconsistent) because,
in general, it is a low-order approximate discretization of the continuous
adjoint PDE.

Why?

A primary cause for the inconsistency is:

(D~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq) 6=⇒ (DT ~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq),

which occurs at the boundaries for explicit finite difference schemes.

D. J. Bodony (UIUC) Advances in SBP-SAT Methods July 10, 2014 33 / 38



Discrete Dual-Consistent Adjoint for SBP-SAT

The discrete adjoint is exact but it is unsatisfactory (inconsistent) because,
in general, it is a low-order approximate discretization of the continuous
adjoint PDE.

Why?

A primary cause for the inconsistency is:

(D~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq) 6=⇒ (DT ~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq),

which occurs at the boundaries for explicit finite difference schemes.

D. J. Bodony (UIUC) Advances in SBP-SAT Methods July 10, 2014 33 / 38



Discrete Dual-Consistent Adjoint for SBP-SAT

The discrete adjoint is exact but it is unsatisfactory (inconsistent) because,
in general, it is a low-order approximate discretization of the continuous
adjoint PDE.

Why?

A primary cause for the inconsistency is:

(D~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq) 6=⇒ (DT ~u)j =
∂u

∂x

∣∣∣∣
j

+O(hq),

which occurs at the boundaries for explicit finite difference schemes.

D. J. Bodony (UIUC) Advances in SBP-SAT Methods July 10, 2014 33 / 38



Discrete Dual-Consistent Adjoint for SBP-SAT

Hicken & Zingg (2013) worked out a dual-consistent adjoint for the Euler
equations. We have extended this to the CNS equations with
temperature-dependent viscosities. The key ingredients are:

1 Discretize all spatial derivatives using standard SBP operators
(D2x ≈ D2

x )

2 Form the bilinear concomitant

〈L[Q]δQ,Q†〉 = 〈δQ,L†[Q]Q†〉+ b(Q, δQ,Q†)

where b contains all of the boundary terms from DT 6= D and SAT

3 Require b ≡ 0 by defining the splitting b into forward and adjoint
SAT BCs

4 Check well-posedness of resulting BCs (can show that if SAT BCs are
used for the forward equations, then resulting BCs for adjoint are
well-posed)
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Discrete Dual-Consistent Adjoint for SBP-SAT

Start with the governing equation:

3. Continuous-adjoint formulation

We define the operator

N [Q] =
@Q
@t
+ J

@Fi

@⇠i
,

which allows us to write (1) as N [Q] = 0. The adjoint of N [Q] is obtained using
D
Q†, �N

E
=

D
N†, �Q

E
,

where the inner product is defined as

h f , gi =
ˆ t1

t0

ˆ

D⇠

f Tg
1
J

d3⇠dt,

for vector-valued functions f (x, t) and g (x, t), where D⇠ denotes the computational domain.

4. Discretization and dual-consistency

Derivatives are approximated using

D1 = I5 ⌦ D1 ⌦ IN2 ⌦ IN3

D2 = I5 ⌦ IN1 ⌦ D2 ⌦ IN3

D3 = I5 ⌦ IN1 ⌦ IN2 ⌦ D3,

where Di approximates @
@⇠i

and satisfies a summation-by-parts (SBP) rule Di = P�1
i Qi (no summation implied on i),

with Qi + QT
i = E1

i � E0
i , where E1

i = diag
h

0 0 . . . 0 1
i
, E0

i = diag
h

0 0 . . . 0 1
i
, Pi is a positive-

definite diagonal matrix that approximates an integral in the ⇠i-direction. Thus, P = I5 ⌦ P1 ⌦ P2 ⌦ P3 approximates a
volume integral in the computational domain, and J�1P approximates a volume integral in the physical domain. The
inner product of semi-discrete vectors ~f and ~g is defined as

D
~f , ~g

E
P
= ~f TJ�1P~g,

and the corresponding norm
���� ~f

����
2

P
=

D
~f , ~f

E
P
. Using the SBP rule, we can write P�1DT

i P = �i � Di, where

�1 = I5 ⌦ P�1
1

⇣
E1

1 � E0
1

⌘
⌦ IN2 ⌦ IN3

�2 = I5 ⌦ IN1 ⌦ P�1
2

⇣
E1

2 � E0
2

⌘
⌦ IN3

�3 = I5 ⌦ IN1 ⌦ IN2 ⌦ P�1
3

⇣
E1

3 � E0
3

⌘
.

The semi-discrete approximation of (1) is

d ~Q
dt
+ JDi ~Fi + ~NSAT

h
~Q
i
+ ~Ns

h
~Q
i
= ��dJP�1D(m)T

i D(m)
i
~Q, (6)

where ~Q (t) is a semi-discrete vector which contains the approximations of Q (x, t) at the grid points, and J =
diag

⇣
5 ⌦ ~J

⌘
where ⌦ denotes a Kronecker product. This notation assumes that the elements of ~Q are arranged

in column-major order. ~NSAT

h
~Q
i

is a simultaneous approximation term (SAT) that enforces boundary conditions. The

right-hand side of (6) acts as artificial dissipation, where �d � 0, D(m)
i is an approximation of @m

@⇠m
i

and m is an odd

number. ~Ns

h
~Q
i

are additional source terms, which may include damping in absorbing bu↵er zones, inflow excitation,
etc. We define

~N
h
~Q
i
=

d ~Q
dt
+ JDi ~Fi + ~NSAT

h
~Q
i
+ ~Ns

h
~Q
i
+ �dJP�1D(m)T

i D(m)
i
~Q,

4

Linearize:
which allows us to write (6) in a compact form ~N

h
~Q
i
= 0.

Linearizing (6) leads to

d
dt

⇣
� ~Q

⌘
+ JDi

n
Ai

h
~Q
i
� ~Q � Bi j

h
~Q
i

D j

⇣
C

h
~Q
i
� ~Q

⌘o
+ TSAT

h
~Q
i
� ~Q + �~Ns

h
~Q, � ~Q

i
= ��dJP�1D(m)T

i D(m)
i � ~Q,

where �~NSAT

h
~Q
i
= JP�1TSAT

h
~Q
i
� ~Q, and Ai

h
~Q
i
, Bi j

h
~Q
i

and C
h
~Q
i

are semi-discrete representations of Ai [Q],
Bi j [Q] and C [Q], respectively. The adjoint of (6) is obtained using the relation

ˆ t1

t0

D
~Q†, �~N

E
P

dt =
ˆ t1

t0

D
~N†, � ~Q

E
P

dt,

which leads to

~N†
h
~Q, ~Q†

i
= �d ~Q†

dt
� J

⇣
AT

i

h
~Q
i
+ CT
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D jBT
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~Q†, (7)

where
~N†SAT

h
~Q, ~Q†

i
= JP�1T†SAT

h
~Q
i
~Q† (8)

and
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+ �iPAi

h
~Q
i
� �iPBi j
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D jC
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=

⇣
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� � jPCT
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BT
i j

h
~Q
i

Di

⌘T
. (9)

If ~N†SAT

h
~Q, ~Q†

i
enforces a well-posed boundary condition for (7) and the relations (8) and (9) are satisfied, then the

discretization (6) is dual-consistent.

5
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Identify adjoint
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enforces a well-posed boundary condition for (7) and the relations (8) and (9) are satisfied, then the

discretization (6) is dual-consistent.

5

The last equation defines the adjoint SAT in terms of the forward SAT
required for dual consistency.
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Discrete Dual-Consistent Adjoint for SBP-SAT

We have yet to:

1 Demonstrate expected accuracy of dual consistent adjoint

2 Demonstrate super-convergence of functionals
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Summary

We have discussed the following three developments:

1 Stable methods for overset grids

2 Provably definite methods for

∂

∂xi

(
a(x , t)

∂u

∂xi

)

3 Dual consistent, discrete adjoint

We are currently assembling all three into a single, provably stable, overset
grid flow solver capable of prediction and control of turbulent flows with
discrete, dual consistent adjoint-based gradients.
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Thank you for your kind attention!
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