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Motivation (1/2)
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conj. heat transfer
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Motivation (2/2)

Capabilities we want

@ Simulate turbulent flows using
LES or DNS

@ Handle complex geometries

@ Prediction and design

e Multiphysics (e.g.,
thermoelastic)
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Motivation (2/2)

Capabilities we want Properties we want

e Simulate turbulent flows using @ (Robust) — stability
LES or DNS

@ Handle complex geometries

@ Variable order

o No artificial dissipation

@ Prediction and design @ High FLOP performance

e Multiphysics (e.g., (> 30% peak)
thermoelastic)

o High scalability

Stencil-based finite differences on structured, overset meshes is a viable
path forward but several improvements are needed
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@ Background on basic flow solver
@ Stable methods for overset grids
© Provably definite methods for

9 a(x t)@
8X,' ’ 8X,'

@ Dual consistent, discrete adjoint
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Flow Solver MPSolve

@ Developed at UIUC from 2006 with support from DOE, AFOSR,
AFRL, ONR, NSF, OAI, NASA

@ Solves the compressible Navier-Stokes equations

dp | Opuj
9t oy S, (1)
8pu,- 0
Dt t o PHIY T+ PO = Ti) = Spu )
OopE 0
ot oy (PE Pl — i+ 4) = S G)

in conservative form

d (Q\ , aF—F) 06 —G,)
8t<J>+ *

>

with additive Runge-Kutta methods.
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Flow Solver MPSolve — Discretization

Summation-by-parts operators (Strand, 1994)

We approximate
ou
Ox

where P=PT >0and Q + Q7 = diag(—1,0,...,0,1).

by Di= P lQua

i=1,...,n
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Flow Solver MPSolve — Discretization

Summation-by-parts operators (Strand, 1994)

We approximate

ou
Ox i=1,...n

where P=PT >0and Q + Q7 = diag(—1,0,...,0,1).

by Di= P lQua

Simultaneous-approximation-term boundary conditions

We enforce all BCs through a penalization framework

12
- = S o 0 5 S o
F(@+o P EAN(G-8")+ P EI(T-&")
~—— N (5]

original inviscid BC

9y
ot

v
viscous BC

where /1 and ¢'? are semi-bounded parameters.
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i=1,...,n

Simultaneous-approximation-term boundary conditions

We enforce all BCs through a penalization framework
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F(@+o P EAN(G-8")+ P EI(T-&")
~—— N (5]

original inviscid BC

9y
ot

v
viscous BC

where /1 and ¢'? are semi-bounded parameters.

SBP + SAT vyields provable stability for (linearized) CNS = robust(er)
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Flow Solver MPSolve — QOverset & Interpolation

Overset (chimera)—overlapping meshes to describe a geometry

@ individual meshes are logically structured
@ meshes are assembled in a globally unstructured (PEGASUS, Ogen)
o Lagrange interpolation between meshes

7-mesh solution of a Mach 1.3 nozzle 4-mesh solution of a LPT
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Flow Solver MPSolve — Details & Performance

FLOP performance of MPSolve on NSF TACC Stampede
(Intel Sandybridge, 21.6 GFLOP/s Peak)

V¥ _After Optimization
1 A4 Before Optimization

-
o
™
T

Speedup (wrt 1024)
o,

% of Peak 64-bit floating point Execution Rate

6 '/“f
4
o A—A—A
10°F
I ! L 0
10° 10 10°
Number of Processors % 10000 20000 30000 40000 50000 60000 70000
Number of Grid Points, N*
Strong scaling on DOE's Jaguar TAU-based performance
measurement
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Flow Solver MPSolve — Details & Performance

FLOP performance of MPSolve on NSF TACC Stampede
(Intel Sandybridge, 21.6 GFLOP/s Peak)

-
o
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V¥ _After Optimization
1 A4 Before Optimization

Speedup (wrt 1024)
o,

% of Peak 64-bit floating point Execution Rate

6 '/“f
4
of A—AAT
10°F
I ! L 0
10° 10 10°
Number of Processors % 10000 20000 30000 40000 50000 60000 70000
Number of Grid Points, N*
Strong scaling on DOE's Jaguar TAU-based performance
measurement

@ Written in Fortran 90/C/C++
e Fully parallelized with MPI, including 1/0
@ Some core routines available on GPUs/accelerators

@ ANSI-compliant with good portability
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@ Background on basic flow solver
@ Stable methods for overset grids
© Provably definite methods for

9 a(x t)@
8X,' ’ 8X,'

@ Dual consistent, discrete adjoint
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Overset

Multiblock Grid Overset Grid

Source: http://celeritassimtech.com

Source: duns.sourceforge.net
@ “Lots” of results for multiblock grids with matching nodes
@ “Limited” results for multiblock grids without matching nodes

@ Almost no results for overset grids that do not require dissipation
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Existing stability for overset grids

Part-Enander & Sjogreen (1994) — Euler equations with FV methods
and artifical dissipation

Scheme for electrodynamics by Henshaw (2006)—Godunov-Ryabenkii
stable interface conditions for matching interfaces

@ Godunov-Ryabenkii stable method for heat transfer in fluid structure
systems by Henshaw & Chand (2009)

G-K-S stable method by Appeld et al. (2012) for linear elasticity

Energy stable methods for hyperbolic system using GSBP operators
by Reichert et al. (2012)
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Overset stability problem definition

ru Imrkﬂ rM-l IM
Consider the hyperbolic system
0 0
—u—i——u:O, for —1<x<1,t>0
ot = 0Ox

subject to the conditions that

u(x,0) = f(x), u(~1,t)=g(t) =0.
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Overset scheme

@ Discretization for the left and right domain
du
dt _—P Q[_U—‘L'()EO (U()— )—l—}/hLRLU,

% = —P_IQRV— ’L'RE(;?(VO — /LTU),

By =HR[1,0,....0]T.

@ R, denotes second derivative approximation at selected points
(determined from stability analysis)

o .. . .. . 0
Lio .. .1 =21
0 .. . . . 0
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Overset scheme—stability and proof

The proof outline is as follows:
©@ Want to show that
d, . . T -
—[wl[f <0, wh=[a"vT]"
dt
for some H.

@ Set H = diag(H., Hg) = diag(C, P, BrPr) where C; is diagonal
matrix and Sgr is a constant

© Use SBP property of {P;, Q.} and {Pr, Qr} to show that

d

- 5T o >
Sl = 77Kz

where K is a small square matrix (size depends on order)
@ Ensure K < 0 by determinant test
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Overset scheme—stability and proof

i i i i i H i i i i
02 0 02 04 06 08 1 12 14 1B 18
X

@ A range of parameters are possible to ensure stability (x and y are
linear functions of the SAT paramters)

@ Requiring conservation across the interface sets the values to be
TR =1 and v = a?/[2(2 — a?)] where 0 < a; < 1 is the percentage
of overlap.
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Overset scheme—results for 2nd order system

Inviscid Burgers’ Equation

Inviscid Burgers' Equation

log, , (llell)
IS

50

—6F

-1 -08 -06 -04 -02 0 02 04 06 08 1
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Overset scheme—next steps

e Currently extending to systems of hyperbolic systems (easy)

@ Incorporating diffusion (difficult, but we have preliminary results)
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@ Background on basic flow solver
@ Stable methods for overset grids
© Provably definite methods for

0 a(x t)@
8X,‘ ’ 8X,'

© Dual consistent, discrete adjoint
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Variable coefficient 2nd derivatives

@ The CNS equations contain several terms of the form

9 a(x t)@
8X,' ’ 8X,'

that arise from

e Viscous dissipation
o Heat transfer
o Coordinate mappings

@ When using LES, then a(x, t) could be a model coefficient

@ When using wall modeled LES, then a(x, t) also arises with a
Neumann boundary condition (wall stress) on u
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Variable coefficient 2nd derivatives

@ The CNS equations contain several terms of the form

9 a(x t)@
8X,' ’ 8X,'

that arise from

e Viscous dissipation
o Heat transfer
o Coordinate mappings

@ When using LES, then a(x, t) could be a model coefficient

@ When using wall modeled LES, then a(x, t) also arises with a
Neumann boundary condition (wall stress) on u

Need methods that ensure these terms are stablel
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Variable coefficient 2nd derivatives—Dirichlet

We want to solve the variable-coefficient diffusion equation

ou_ 0 (0

ot Ox Ox
on the domain x € [0, 27] with u(0,t) = fi(t) and u(2m,t) = fn(t). The
semi-discrete formulation is

dir

_ p-1 - ey Tp-1 .
dt'_P I\/l(a)u hP Ael(ul fl) hP AeN(uN fN)

where
P = hdiag(1/2,1,...,1,1/2), A =diag(a1,a2,...,an)

and 7 > 1/2 for stability. The magic is in M.
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Variable coefficient 2nd derivatives—Dirichlet

The matrix M(a) has the following properties:
o

dx2  dx  dx
© The boundary closures telecope:
(M(Q)J)j = Fj+1/2 - Fj—1/2

where

da
Fivip=a+ + O(h?)
2T x4
© M(a) is definite to ensure
d .
Sl <o

© M(a) preserves the SBP property

d 2, ou™ ou\?
dt/u dx = — [23“8XL—XZ _2/a<8x> dx.
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Variable coefficient 2nd derivatives—Dirichlet

Applying conditions 1-4 yields the matrix

Ha — a) La —a1) 0
M(s) = 1 | Lo +a) —L(a+2m+a3) L(ar+as)
h 0 0
0 0
0 0
0 0
Ly +anv—1)  —I(an +2any_1 +an_2) %53/\/71 +ay_2)
0 s(av—1 —an) slay —an—1)

When a = constant then M(a) reverts to the narrow stencil second
derivative operator, with zeroes on the first and last rows.
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Variable coefficient 2nd derivatives—Dirichlet

Exact solution to

ou 0 ou .
7 = B <a(x)8x> + F(x,t), a(x)=1+esinx, €=0.9

with F(x,t) = eexp{—t}sin2x is u(x, t) = exp{—t} cos x.

Dirichlet BCs, a(x) =1 + 0.9 sin(x)
— o llell,

L o(h?)
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Variable coefficient 2nd derivatives—Neumann

For Neumann boundary conditions, the method-of-lines discretization is

di
5 = P IM(2)d — TP A& ((Su)y — ) + 7P Aen((Su)n — fu)
with
(Su) = —2ur + = d (Suw=—2un s+ >
u)1 = 3U1 3U2, an u)n = 3UN—3 3UN

and 7 > 3/2 for stability. The matrix M(a) is the same.
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@ Background on basic flow solver
@ Stable methods for overset grids
© Provably definite methods for

9 a(x t)@
8X,' ’ 8X,'

@ Dual consistent, discrete adjoint
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Adjoint Introduction—Optimization

To
mfin J(Q,f), subjectto N(Q) =T,

you can either brute force compute the variation

X 0T
7= (55) 00+ (57 ) o
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Adjoint Introduction—Optimization

To
mfin J(Q,f), subjectto N(Q) =T,

you can either brute force compute the variation
oJ loNg
= of
7= (50) 20+ (%)

or you can use a calculus of variation result that the variation
_|[oJ + [ OM
7= (57) -9 (%))

M(Q,F)=N(Q)-f=0

and where Q' is the adjoint. Note that §Q is not needed in the second
form. QT satisfies a CNS-like PDE with (x, t) dependent coefficients.

where
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Why A Discrete Adjoint?

The efficiency of the optimization depends on the accuracy of 6.7, which
depends on Q.
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Why A Discrete Adjoint?

The efficiency of the optimization depends on the accuracy of 6.7, which
depends on Q.

There are main paths to computing Q':
@ continuous adjoint: PDE — Adjoint PDE — discretize
@ discrete adjoint: PDE — discretize — transpose

108 4 | —e— Discrete-adjoint
—¥—- Continuous-adjoint i
107 4 =]
Voo e P VT :
106
W
10° 4
10* 4
10°
0 10 100 100 10 107 1076
a
JIQ, f +6f] = J[Q, f]
E= " = +Ig1QMNI1?
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Errors in Gradient Can Find Different Minima

The direction between jSsc and Qiont is different:

— <QdT' aQ::ront> )
go(t) = COS 1 ( IS¢
H G<]|Lisc|| HcgontH

@(n) (in®°)

0 - —rr 1+ rrrrrrorr
0 200 400 600 800 1000
(t = 19) Ao /Y,
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Discrete Adjoint for SBP-SAT

We have developed a discrete adjoint for the fully discretized CNS using
SBP-SAT and RK4, focusing on the efficiency of the implementation. For
example, the forward and adjoint RK4 work out to be

L GEAGI L 2G| gl 3 GinlS L ggisI 2Ginel2 _ggurld Ginsi

R 201 _pFn-14 .
Nl = % _Rgn-14 _Fl:(,] G = g
jn2 2 287220 ah e g gy
p ' e BTG s s
o3 Q’llﬁ_Q‘rlfl,A e o L
VI i R PRI %
] 4Af Fn-14 3 |I 3n2 3n3 LA % g po'TPg ™ - Gl
e _ 60™ +20" 14 —ogn! - 4g"? — 26" s .
= - R - B N o
At r Mt Al PG Gy
Forward Adjoint

Note: a semi-discrete adjoint which uses RK4 for backward time
advancement has (x, t) coefficients that are evaluated at different times
than the fully discrete, and different initial conditions.
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Discrete Adjoint for SBP-SAT

80 80
40 - 40 |
:E 0k & %\:T 0
= =
—40 | -40
-80

xl/dg.

()
continuous

discrete
D. J. Bodony (UIUC)
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Implications

10° 4

Ey; (ko)

k. £

—0— Continuous

—— Discrete

102 107! 0 200 400 600 800 1000 1200
ki 6 (1 = 19) dos /Y,

(a) (b)

@ The unsteady coefficients in the adjoint PDE cause scattering of the
errors to low frequency components = conclusions based on
continuous adjoint may differ from those based on discrete adjoint.

@ The error grows exponentially in time for chaotic systems (e.g.,
turbulent)
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Discrete Dual-Consistent Adjoint for SBP-SAT

The discrete adjoint is exact but it is unsatisfactory (inconsistent) because,

in general, it is a low-order approximate discretization of the continuous
adjoint PDE.
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Discrete Dual-Consistent Adjoint for SBP-SAT

The discrete adjoint is exact but it is unsatisfactory (inconsistent) because,

in general, it is a low-order approximate discretization of the continuous
adjoint PDE.

Why?

A primary cause for the inconsistency is:

FO() = (DTa); = 0| + o(h).

J

. Ou
(D”)J—&j

which occurs at the boundaries for explicit finite difference schemes.
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Discrete Dual-Consistent Adjoint for SBP-SAT

Hicken & Zingg (2013) worked out a dual-consistent adjoint for the Euler
equations. We have extended this to the CNS equations with
temperature-dependent viscosities. The key ingredients are:

@ Discretize all spatial derivatives using standard SBP operators
(D2X ~ D)%)

@ Form the bilinear concomitant
(£[Q16Q, QT) = (3Q, LT[Q]Q") + b(Q,5Q, Q")

where b contains all of the boundary terms from D7 # D and SAT

© Require b = 0 by defining the splitting b into forward and adjoint
SAT BCs

© Check well-posedness of resulting BCs (can show that if SAT BCs are
used for the forward equations, then resulting BCs for adjoint are
well-posed)
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Discrete Dual-Consistent Adjoint for SBP-SAT

Start with the governing equation:
dQ +JDﬁ +N5AT[ ]+N [Q] —oJP” D("')TD("')Q
Linearize:
< (50) + J01{A1[ 0] 50 - B[ 0]D; (C[0]60)) + Tsss [0]66 + oW, [8.50] = ~ap' D" D50,

Define adjoint inner product:

Identify adjoint

N'[G. '] = -= - J(AT[d] + C" []D,B] [3]) DiG" + N [ 8. 8] + NI [. 7] + g P~' DI DI GF,

where . . .
N;AT [Q* QT] = JP?IT;AT [Q] o
and

Tsar [] + APA: [J] - APB; [3]D,C ] = (15, [D] - A,PCT [ D] B []] I),-)T .

The last equation defines the adjoint SAT in terms of the forward SAT
required for dual consistency.
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Discrete Dual-Consistent Adjoint for SBP-SAT

We have yet to:
@ Demonstrate expected accuracy of dual consistent adjoint

@ Demonstrate super-convergence of functionals
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We have discussed the following three developments:
@ Stable methods for overset grids
@ Provably definite methods for

aX,' % aX,'

© Dual consistent, discrete adjoint
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We have discussed the following three developments:
@ Stable methods for overset grids
@ Provably definite methods for

aX,' ’ aX,'
© Dual consistent, discrete adjoint

We are currently assembling all three into a single, provably stable, overset
grid flow solver capable of prediction and control of turbulent flows with
discrete, dual consistent adjoint-based gradients.
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