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Motivation A

Supersonic flow boundary layer instabilities
* Cross-flow dominated laminar-turbulent transition along supersonic cones and swept wings
* Turbulence and detachment in scramjet inlets, upstream shock propagation, unstart

Synthetic plasma roughness
* Control of distributed Dielectric Barrier Discharge electrodes adapted to flight conditions
*  For example subcritical forcing of stationary waves or boundary layer ernergization / thinning
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Challenges

Axial view

Physics:
 DBD atmospheric gas chemistry
* Heating, real gas effects

.
o S u rfa C e re a Ctl O n s Azimuthal Scans at Constant Height Above Surface (0.04mm), p =25 psia, m=68 Plasma Tip

— Plasma Off
~~m=45 6 kVp-p 5 kHz

* Plasma-Flow energy coupling (T, T,, ny, D,) S Vo e P

Vortex Trace Plasma On

CFD and Receptivity Analysis: 2%
e "Pulsing roughness"

* 3D Micro-filamentation A 40 <L

e Statistical characteristics, relation to surface properties
* Length (~*um cathode sheath) and time scales (ps...s) = model reduction
 HPC, automated refinement around discharges

* Experimental validation of gas models (flow on/off)



This Work

System

e 2D Flat plate

e 3-species Helium gas

 Eigenmode growth (Tollmien-Schlichting)

Research
e Study of compressibility effects
— on DBD discharge features
— on linear receptivity to DBD perturbation
 New coupled AMR Plasma Navier-Stokes solver (1-3D)

* Adjoint based formulation of the compressible boundary layer
receptivity problem



This Work

Design Aspects ° Direct & Adjoint operators
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Integrated Source Term Solver Structure
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* Linear Stability Analysis Framework



Linear Stability Framework

DBD induced velocity “m/s << u_,
Quasi-parallel approximation

{M, Re} range to support TS waves
Non-dimensionalization, a.o.

£1o1
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10° | .
Horizontal velocity perturbation from SV
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where A, is the receptivity coefficient
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Adjoint Eigenproblem

q3k in A, is the adjoint mode to ¢,, obtained from the solution of the
adjoint system itself derived from the Euler-Lagrange's identity

9 ~ ).~ OT(@.9) -
¢.(Aat+L((p)]+q).f— y +V.J(0,0)

Interpretation:
— Assume point unit force f(x,y)=0(x,,Yo),

— Normalize ¢ by max|@,(y)| and ¢A)k by [(pk,(/;k] =1

JAl=6.00)

— The adjoint mode propagation velocity is opposite to the regular mode
=>» for Re(at)>0, mode amplification is upstream towards the source

The method allows testing multiple sources using the solutions of the
homogeneous regular and adjoint eigenvalue problems
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Regular and Adjoint Mode Solutions

* Chebyshev 1-QZ method used to solve the eigenproblems

* At high M_, the adjoint mode (unit-point-force sensitivity) decreases and the
depth of its maximum increases
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Comparison to incompressible case

D.C. Hill's results (J. Fluid Mech. '95) data well reproduced @ M_=0.1 (lines)
At M_=0.8 (symbols), the mode depth increases and its amplitude decreases

F= w/V(Re,)
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Adjoint modes

 Up to 3x depthincrease and 1/9x amplitude decrease over M_, range

* Receptivity benefit in matching the source and adjoint profiles
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Outline

* AMR Coupled Plasma-Navier and Stokes Solver
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System and Regimes

2D Flat plate

— 1Imm dielectric thickness, 3.5 dielectric constant

— 1.2cm electrode width

— 2.45cm distance between downstream plate edge and electrode edge...
* Flow

Y
— M_=05t02.0 T\
— Re =2x10° to 8x10°
— Self-similar profile at inflow boundary 1.2cm
— ... Momentum thickness for effective x 1mm
* Gas - —e—>
— Simplified helium chemistry (He, He+, e-) X, = Re U 1.2cm
— Constant electron temperature (1eV) Po. U,

— impact ionization and recombination rates per S. Roy, Phys. of Plasmas, Vol. 13, '06
— Reduced electric field dependent mobilities
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AMR Solver

* Governing equations

on,
continuity: a_tJ+VFj = EGM
k

drift-diffusion:  F, =nu,=sign(Z)n,u,E—D.Vn,+nV,
Poisson: eVE= ZZ.q n. E E
R — =
* Wall boundary conditions <_®"~\ @—"

_ 2,828V at the cathode, f = 5kHz O —

— adiabatic surface ®—>I ®_).

— secondary emission at the cathode (coeff.=0.26)

— thermal flux and relevant charged species drift towards the wall
— gas/dielectric interface charge from the species flux towards the wall
Dielectric displacement by stencil manipulation at the 1D embedded boundary

do
dt

N

:Equan’ (SdEd—EgEg).ll=G
J
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AMR Solver

* Univ. of Berkeley's Chombo Adaptive Mesh
Refinement C++ numerical framework for the
solution of PDEs

block structured
embedded boundary

hierarchy of rectangular lattices
communicating through ghost cells

graph representing the irregular cells

physics-based automated tagging and
refinement

* Two independent meshes for flow and
plasma, synchronized at coarse time steps

 |Implemented on Texas Advanced Computing
Center (TACC), Stampede HPC system

o X X
®
X X X

o)

O

P. Collela et al, Chombo Software
Package for AMR Applications
Design Document, March 2012

18



AMR
solver

Initialization

- Similarity boundary layer u, v, p, 9

- Ne, N(background)
- Tg, (Te, ee)

Y

Gamma Gas
Polytropic approximation
Godunov method with
van Leer splitting

o Body forces
" Gas source energy
Navier-Stokes Solver

Level operations for continuity,
momentum and energy

\

Viscous fluxes
Sutherland viscosity relation
Cell centered finite difference

l

l

Plasma Physics
Gas model
Reaction rates
Chemical source terms
(Electron source energy)
Transport coefficients
Wall boundary fluxes

Velocity, P, Tg '
Plasma Solver
Level operations for |
advection,
~ diffusion and reactions

Species concentrations
‘ (Electron Energy €e, Te)

‘ Wall charge

\/

‘ Electric field

\/

‘ Time advance

J

Advection
Godunov with
van Leer splitting

Reactive terms
5th order stiff ODE
solver

Diffusive terms
Implicit backward Euler

ODE solver '




Adaptive Mesh Refinement

« M_=0.8, Re=0.8x10°
7 refinement levels for the species

— thresholds: E>2.5x10° V/m, |F|>250N/m3, n_=1x10°mol/m?3
* 4 refinement levels for vorticity, threshold |w|/u.>200m*
* CFLin the last periods = CFL_,*(1+M_,)~0.28
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Convergence

* Periodic solution after 2-3 periods in studied M_, range

e Solution converged within 2-5% with 7 species levels
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Outline

N

* Discharge Features
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Integrated source term

Integrated source [N/m]

Monotonic integrated source term S [.f; + £ dA[N/m]

. . . A . .
reduction with decreasing Reynolds nr and increasing M_,
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Peak velocity

* Non-monotonic Reynolds effect with increasing M.,
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Velocity Profile
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Force profile

* 5countoursatS, ={1x1035x10%1 x 1045 x 1041 x 10°} N/m3

* Profile flattening/elongation with increasing M_,
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Outline

* Receptivity Analysis and Design Implications

27



Force FFT Decomposition

A

Model decomposition with FFTW
200 samples per actuation period

steep amplitude decrease with f
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Lengthscales

* Note decrease of L* and x4 with M_, and decreasing Re,
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FFT Frequency spectrum

More modes participate with
increasing M_, (see symbols)

Including larger multiples of
Wpgp (i-€., with smaller
integrated source)
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Modal Kinetic Energy

Kinetic energy independent of
mode k normalization

KE, =|A[" [ 09/, ()dy

Symbols show the most
amplified mode max(Im(-a))

Non-monotoneous response to
Re,. Decreased effect at M_=1.6

M=0.6
Re =2x10°
2
10 _ _ _Re =4x10° |
_ _ Re =8x10°
‘S 10
™ \’ N
< NN .
~— ’\ ~ //
% '\‘ N e
0
= 10 \\’
A
107"}
0.02 0.04 0.06
w
M=1.2
Re =2x10°
2
004 __ _Re =4x10° |
_ _ Re =8x10°
‘S 10
=
b
x
Ll
X 40 \
\\
TN
VN /»’ ’
\ \ . /
10~ \ \p‘
»
0.02 0.04 0.06
w

M=0.8
Re =2x10°
2
10 __ _Re =4x10° |
_ _ Re =8x10°
‘S 10
x
L
X 40
107}
0.02 0.04 0.06
w
M=1.6
Re =2x10°
2
10 ___Re =4x10° |
_ _ Re =8x10°
‘S 10
<
L
X 400
\
N\
Vo
~ /7
0.02 0.04 0.06
w




Effect of Force

* Using the force FFT components at M_=0.8 for M_=1.2, 1.6

* Relatively insensitive receptivity response to M-variation, as expected
from the slight force profile change observed on slide #26
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Most Amplified Mode at fyz,=5kHz

* Bands @ w,,,, 1s/Wpgp=const

* Within each band, VKE increases along 6M.,/6Re, <0
due to an increasing overlap of the adjoint mode with the force

dark blue 1/2 log(KE) = -14.7
dark red 1/2 log(KE) = -12.7
Linear interpolation
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Force Mode Shape Effect P

e Using 1t harmonic mode (symbols) instead of actual harmonic @ max(Im(-a))
* Suggests benefit in selecting DBD frequency at the most amplified mode
* Possible trade-off as DBD thrust diminishes with frequency
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Outline

* Summary
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Summary

* An analysis of compressible effects on flow receptivity to DBD actuation in a 2D
set up with He gas was presented.

 The dependence of the force, peak velocity and integrated source term on flow
conditions was investigated.

* The main findings in terms of receptivity can be summarized as follows

* Receptivity decreases between M_,=0.5-2, with saturating Re, effect

* Forananincrease in M, an actuator shift upstream is beneficial to increase
the overlap with the highly receptive region

* For the gas system under consideration, the flow dependence of the force
has little effect on receptivity.

 DBD frequency matching to the most amplified mode may increase
receptivity in a frequency range where the force does not degrade much

* Anew coupled plasma — Navier and Stokes solver was developed.

* The AMR feature allows for dynamic tracking of the discharge into the volume of
the flow, while the embedded boundary capability allows simulating complex 3D
geometries.
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Future Research

* Reduced air chemistry, with most relevant species/reactions may
lead to different conclusion on flow-plasma interactions

* Accelerated numerical models addressing the stiffness of fast
chemical reactions

e 3D cross-flow linear, non-linear receptivity and transition studies
with plasma roughness elements.
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