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National Aeronautics and Space Administration

e Definition Aeroacoustics

e Aeroacoustics for Airplanes
o Mostly for community noise reduction

o very few vibro-acoustics concerns (such as failures of nozzle cowlings)
e Aeroacoustics for space vehicles
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National Aeronautics and Space Administration

Typical levels (dB) of surface pressure
fluctuations on launch vehicles
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National Aeronautics and Space Administration Introduction

The end goal of acoustic analysis is to predict structural >
responses due to acoustic loads

3.1 Acoustic-Load Parameters NASA SP-8072

To the extent required for design, the predicted acoustic loads shall be given as a
function of position and time in terms of:

o  Owerall sound-pressure level
e Frequency spectrum

&  Spatial correlation

2.2 Vehicle Loading

The minimum description of the loading on the vehicle, needed to estimate the
structural response, is given in terms of the detailed distribution on the structure of the
sound-pressure spectrum. A more detailed description also requires the spatial
correlation pattern of the sound-pressure field to enable more exact vibration
prediction. Such analyses are required for examining certain types of failures, such as
the sonic fatigue of lightweight external panels.

4/7/2014
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National Aeronautics and Space Administration Introduction

Aeroacoustics : part of Fluids — Structure Interactions

NASA CR-1596: Himelblau, Fuller, Scharton, “Assessment of space vehicle aeroacoustic-
vibration prediction & testing”

the displacement spectral demsity for location x at each frequency f due to a
spatially=distributed applied loading is

req response including damping
MonhAape

Acoustic a to—spectrumm 2
. T S 8, G4 (OBSEE ()17 ()
x,f) = A'G__(f) (2)
PT 4.2_2

St ctura‘f =1 -1 (27w) fikoiMk
response arca
where the cross-joint acceptance function is given by Modal mass

2 2 -1 [[

Jik(f) = [A Gpr(f)] . GP/(,E’EI ,f)¢i(§_)¢k(§'}d_£_d_§' (2a)

Acoustic cross-spectrum

e Modelling via splitting the problem into aero-acoustics and vibro-acoustics
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National Aeronautics and Space Administration Introduction

Separation of fluid dynamics and structural dynamics
- Aero-acoustics as a part of combined load

e Forcing function - Distribution of Auto and Cross-spectra of acoustic pressure fluctuations

Diffused Acoustic Field Progressive Wave Field
G ,=Ga(r)slkd) G,, =G, (f)e " [cos(k d)—isin(kd)]
0

G4 = DAF autospectrum
G, = PWF autospectrum

k, = o/U, = trace wavenumber
k, = w/c, = acoustic wavenumber

d = separation distance
cy = correlation decay coefficient

e Prediction of Structural response - forcing functions input to structural dynamics analyses -
FEM, BEM, SEA models of the components, systems and subsystems of the vehicle.
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National Aeronautics and Space Administration ‘ Introduction ‘
Vibro-Acoustics tests for flight certification @

!

One of the 25Hz
horns in the test
chamber

|

ReVerberant Acoustic Test Facility AP 3 . . o, AN
NASA Plum Brook Station Mechanical Vibration Facility
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National Aeronautics and Space Administration Introduction

Roadmap:

e Launch Acoustics
o Description of launch pad
o Prediction, CAA
o Static fire test
o Flight test
o Identification of acoustic sources During Antares launch
by a microphone phased array
P not discussed — Ignition over pressure (I0OP)

® Ascent Acoustics
e Abort Acoustics

Other minor sources (not discussed)
O vent noise
o pressure fluctuations during reentry, etc.

Jay Panda (NASA ARC) e 8
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Why study launch acoustics? [\
e Very high acoustic level during launch o1 148
creates high vibro-acoustics environment 7+ 180

» All payloads, many parts of L "{Y?;z
the vehicle, and ground op systems need FRacToE

to be designed, tested and L ] e
qualified for this environment 4~ ‘l 184

» The fluctuation levels EHJ\H‘ < 15
influence the weight and the cost of the 1 AN 1%:
vehicle — 'i:i i} "" 163

MOBILE LAUNGH PLATFORM

e The acoustic suppression systems needs 1.[
to perform optimally to provide relief
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Fig. 2 Engine noise levels during Shuttle lift-aff,
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Launch pad design and acoustic suppression system

cs and Space Administration
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Launch Acoustics
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Prediction — NASA SP-8072, “Rocket Vehicle Liftoff Acoustics and Skin Vibration®®
Acoustic Loads Generated by the Propulsion System” 1971
eThere exists no prediction methodology from the fundamental equations

eTotal acoustic power W, is related to the mechanical power W, generated by the rocket,
n = efficiency factor 0.2% to 0.8%

W,=nW,=n > 0.5(Thrus))U,,,

All nozzles
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OASPL (dB)

National Aeronautics and Space Administration Launch Acoustics
Prediction - based on flight data from prior vehicles
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National Aeronautics and Space Administration PrediCtion - CAA Launch Acoustics

|
I.-" \
(N .
3 Low

SLA Launch simulation, NASA Ames
LAVA code, Kiris et al, AIAA 2014-0070.

Challenges —
—=Complex geometry, high Re, multi-phase
flow, multiple y, multiple species

Paths for CAA simulation:
eRANS + acoustic analogy
o LES

e Need of experimental data for validation

LES simulation: Fukuda et al, 2009
Effect of water injection: Fukuda et al, 2011

Jay Panda (ARC-AOX) 650-604-1553 13



National Aeronautics and Space Administration Launch Acoustics
::. . ||

Model scale static fire tests - ASMAT

Static fire tests are the best

means to determine
dirt e Elded oo @ launch environment

e water schedule

e pad modification

® 5% scale model of ARES 1

Jay Panda (NASA ARC) 4712014
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Validation/adjustment from Flight sensors
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What are the true sources of noise during liftoff?

Launch Acoustics

- Use of microphone phased array

e Phased array — Acoustic camera, a tuned ear.

e Ubiquitous in Aeronautics, new in Space applications
e Need for a large size array for a full-scale vehicle application
— Angular resolution of array ~ (acoustic wavelength) / (army aperture)

® Design of a brand new array

» 10°X10’ size, use 70 microphones

» lighter weight
» weather protection
» debris protection

» vibration isolation for camera

Microphone pattern for new 10’ array
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National Aeronautics and Space Administration Launch Acoustics

Evolution of phased array project

e Array validation in Ames hybrid motor test
» revealed the need for solid state electronics
» vibration 1solation

» nced for rain protection

e Software
» Conventional beamform

116
-20 . 1

» Spectral Element Technique (SEM) provided
most promise

208 >
(c)

o so Eg 100
J N 5 “ N0 2 0 20
_ . . 2 x $. 107 5
E (a]' f ) — 2 Gonm/ z Wim@j W; o/ :
m,m/ =1 j=1 %':;,
%ﬁ 20
9

e All hardware shipped to NASA Wallops

7B | freq:
40 el

0 -20 0 20 40 40 -20 0 20 40
Look angle in x (deg) Look angle in x (deg)

Noise map during hybrid motor burn
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Phased array set-up at Wallops pad 0A

_ IR camera visible camera
2 ‘window window

18 | Guy "is‘lires ) for /’
~ stabiljty;increase /f

27 4 : (front view) Mylar cover for each microphone
| / ‘ | NS T4 Instrumentations:
N2 supply for | el . e 70 condenser microphones
Purgmajm ; Z o ' e | visible band camera
o - e 1 long wave Infra-red camera
e | x-y accelerometer

P lem s

The phased array was mounted on a scissor lift at south side of pad 0A, ~ 400’ from
the Antares Engine, & 40’ above ground

18 Jay Panda (NASA ARC) annots



National Aeronautics and Space Administration Launch Acoustics :

Phased array in Antares A-one launch: April 21, 2013

Phased arraj‘
p )

19 Jay Panda (NASA ARC) amois



<«4Water injection
inside launch mount
(on the top of the
B|flame trench).

+539:20.0/8

On-deck water injection
using 4 Rain-bird heads»

e Water started to flow from 3 short ,
and 1 long rainbirds Tall

Rainbird |

20 Jay Panda (NASA ARC)
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Initial Trajectory
e Slow moving vehicle

Launch Acoustics

e TEL avoidance maneuver to avoid contact with the service tower

Time dependent beam-

forming:

e Microphone time signals :

were segmented into 0.2s

wide segments

Vehicle hmght

Propagation delay:

1000 Pa
—-—

from pad to
I |phased array

-

Sound Pressure, Pa
3 :

Propagation time

e Microphones received the
launch events at a delayed
time. ~ 0.4s for sounds to
propagate from the launch
pad to the phased array.

Vehicle Pitch angle
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National Aeronautics and Space Administration Launch Acoustics

Noise source map at t+0.6s,

conventional beam-form at 2kHz
Source strength at 2kHz in 80Hz wide band - Auto-scaled

freq: 2000.0 seq:10

&1

-&0

-79

7B
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75

75

74

PSSR

1§ v s sm— e o

g S
L

| .0
N e

e Engine Ignition created noise source at launch mount
e Phased array, mounted 40’ above ground, saw both the primary source and its image on ground
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Noise source map at t+2.9s

freq: 2000.0 seq:21

e

——

2: 5 oW ‘
| m————, o

e The duct (trench) exhaust became the primary noise source as the hot plume started to
come out (see movie).
e Effective cooling by duct water minimized the extent of the noise source
—the OASPL was somewhat reasonable.
e Launch mount remained as a strong noise source.

23 Jay Panda (NASA ARC)



National Aeronautics and Space Administration
Noise source map at t+5.7s

freq: 2000.0 seq:35

Large spread
of hot plume

- -
ol 5 T

e Vehicle drifted even more towards east, caused heavy spreading of the hot plume over the

pad, - Extended the size of the noise source.
e Start of flow from short 3 Rainbirds (not much water). No flow from 1 tall rainbird. Duct

water in full force.

4/7/2014
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Noise source map at t+8.7s

freq: 2000.0 seq:50

D4ABPL: 149 6dB =

e The long, exposed plume was the primary noise source.

e Still some impingement on the pad, yet the rainbird system had come to full force, and
quenched the hot plume and the deck.

e From this time on, as the vehicle gained altitude and speed, the acoustic level on the vehicle
was expected lower; however, ground service equipment did not see any decrease for another

few seconds

e cround reflection

25 Jay Panda (NASA ARC)




National Aeronautics and Space Administration Launch Acoustics

Optimization of Antares Water injection schedule

Hi Jay,
Yes the activation timng of the water deluge rainbirds was moved up from T+5s to T+3.8s.

Subject: Re: Antares Test Launch

Understood, thanks. Yes from a ground system standpoint, we also noted less ablative wear on
the launch mount this time around, which is most likely attributable to faster water deluge

activation. The phased array effort was ndeed beneficial.

Jay Panda (NASA ARC) o 26
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Ascent Acoustics

o Vehicle trajectory and dynamic pressure

o Buffet and acoustics

o Prediction — empiricism and existing
database, CFD

o Wind tunnel tests

o shape modification

o Flight tests

Jay Panda (NASA ARC)

Ascent Acoustics
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National Aeronautics and Space Administration Ascent Acoustics
Prediction - Aerodynamics of Launch Vehicle
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Prediction - steady state CFD to determine input
parameters for empirical relations
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National Aeronautics and Space Administration

y from solid wall, in

USM3D calculated flow-field over ARES IX at flight M = 1.6 (Source: Steve Bauer LaRC)

Ascent Acoustics

Prediction - steady state CFD to determine input parameters
for empirical relations
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Prediction - based on flight data from prior vehicles

(a) Apollo, M=0.9 Att

Exp

Normal Shock

Separated Flow k

Ascent Acoustics

Predicted Level for CEV
™ =0.82

BEH!ND PROTUBERANCES, FLIGHT TEST
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= .
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Ascent Acoustics

Wind tunnel tests and scaling Laws

Table 17. Rigid buffet model scaling laws.

Quantity to be Scaled | Full-scale to Model-scale Relation
- “”““'” S - Pressure Py = Qﬁ
(, (_‘ S— . . & ""‘-’"'.’,'.' ,7/" - Q
Force { J
Dg 7
Time I,=T, —
D, Vs
=
Frequency S5 =T g’m st
Space Launch System (SLS) test at ro
NASA Ames Unitary Pressure PSD 4P 4 0P\ D,V
(psi‘/Hz) £ ms Q,Ef:) D, st
What to do 1f measured fluctuations [0 (D,

] . Force PSD (IbfHz) [ ¢! = 9" =7 ms
are very high? — cost and weight | Ons’ ) \Dns ) Vs
penalty
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Real Engineering — What if the acoustic levels are too high?
MPCYV Shape Optimization to Reduce Aero-acoustic environment

Jay Panda (NASA ARC) 472014
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National Aeronautics and Space Administration Ascent Acoustics

MPCYV Shape Optimization to Reduce Acoustic environment
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National Aeronautics and Space Administration Ascent Acoustics

MPCYV Shape Optimization to Reduce Acoustic environment
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National Aeronautics and Space Administration Ascent Acoustics

Comparison with Data from Flight Test —- ARES-IX
Reed et al. ATAA 2011-174

ADaZ1P

DE22P

Fig. 6 Transdocers (QADSIYP, OADYI0P, OADSZIP, and OADS2ZIP
T atinms.

| =8—Transonic (Pradiction)

=B Supersonic (Prediction

== DADB19P Transonic
—8—0ADB19P Supersonic

=8 ADE20P Transonic

=@ QADB20P Supersonic -

I(-m dB—)!

Fig. 9 Transducer OADS2TP location

== Transonic (Pradiction)
=8-0ADB27P Transonic
—E-0ADB27P Supersonic

Fluctuating Pressure Level (dB)
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Fluctuating Pressure Level (dB) |‘_1Q dB-)l

10 100 1000 10000

One-Third Octave Mid-Band Frequency (Hz)

® In general reasonable comparison

e Discrepancies near changes in outer mold line geometries.

® zones near protuberances show poor comparison

e Data from supersonic part of the flight show poor comparison
e Flaws in the scaling laws?? Reynolds number effect?
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National Aeronautics and Space Administration

Ascent Acoustics @/
Buffet — fluctuations in aerodynamic forces:

e Fluctuations in force = integration of pressure fluctuations
e Force fluctuations in 1-20Hz may cause coupling with global
bending and/or torsional modes of the vehicle.
e May lead to catastrophic failures
e Typically occurs at transonic speed: 0.8<M < 1.1
e Primary cause: shock oscillation coupled with large separated flow.
e Mitigation - Restriction/Minimization of separated zones.
- fixing oscillating shocks.

NASA Atlas w/Shortened Booster DES, Trimmed Mesh, Fine, 22.8M cells, M 0.81, alpha 0

Solution Time 0.03815 (s)

Pressure Coefficient
-1.0000 -0.60000 -0.20000 0.20000 0.60000 1.0000
LI
=

Matt Knapp, TLG Aerospace
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National Aeronautics and Space Administration Abort ACO“StiCS

Abort Acoustics

o Problem definition

o Wind tunnel simulation, CFD
o Flight test

Apollo Abort test
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Project Orion: Crew Exploration Vehicle (CEV)

:
ORION/MPCYV and the Launch Abort System
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@ Abort Acoustics E

Prediction —
e [nitial prediction Based on SP-8072 — Not dependable

e No prior experience from Mercury or Saturn programs
e All microphones burnt out in one flight test
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Abort Acoustics

Measurement of plume-generated noise in the static test of
MPCYV launch abort motor ST1

Pole for
mounting
far-field
mics

High-speed

imaging &

BOS

' E P g il
Aero-thermo plate (PIATF =

Project Orion: Crew Exploration Vehicle (CEV)
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Project Orion:

Results from ST1

Abort Acoustics

e No prior aerospace structure was subjected to this high level of dynamic load

psi

SPL dB

£

miclD:1-0 | | miclD:2-0
$ 10dB /_/\ _
-oaspl: 1659 +6dB: 1
o 10’ 10" 10° 10° 10’
freq: Hz freq: Hz
| I I |
{2 psi . 2-0 i , i
1 I14 |"- ) I. A 'i'. II' . I'. | A i = I‘:
b JIN | L '-I | v\ | L | \ f i.. 3 I.__-
A | '»._ f \ ._‘_ -'-I | | J I'_ : ; v
1 1 1 1 1 1 1 1 l.
5 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.509 1.51
time (35)
Very high level
High freq dominated

Non-linear, shock dominated
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How to create acoustic environment for Abort?

e Single flight tests are unsuitable to create a design environment

e we needed to know levels over 0<M<4 and 10°<a, B <-10°

e Requires transonic supersonic wind tunnel to simulate forward flight
e Hot Helium to simulate plumes from rocket motors
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@ Why hot-Helium? Abort Acoustics

e Hot He reproduces acoustically relevant parameters:

speed of sound, velocity, density.
Pressure fluctuations at a point X on LAV (Ffowcs-Williams,1965):

1 [ 8°Tg r\dZ
X)==—| —2(z7:--)=
p(X,7) an agiaz,{( )y @

Ty = puju,+ 8 (p—cip) (2)

e Validation from prior small-scale tests:
SRM vs. He: Morgan & Young (1963)
Jet engine noise: Doty & McLaughlin (2001), Kinzie & McLaughlin (1999)
Papamoschou (2007), Greska & Krothapalli (2009)
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e Practicality of operation:
- Suitable in a wind tunnel .
- Use of high fidelity model with all 4 nozzles.
- Survivability of the kulite sensors

e Cost effective means of creating 80 abort conditions.

Project Orion:

e Primary differences between He and rocket plume:
- Lack of afterburning;
- Absence of Al,O, particles;
- Different y
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Matching between wind tunnel Abort Acoustics
and flight conditions
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@/ Abort Acoustics ﬁ
Abort initiated at M 1.6 : Influence of forward flight

@ Helium in Wind tunnel__s () Abort Flight

Distribution of turbulence
intensity
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Abort Acoustics
Abort initiated at M 1.2 : Influence of forward flight

80AS Run 210, M = 1.2, Re=5¢6
NASA Ames 11°
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e \Wind tunnel pressure ﬂUctuatlo need to be scaled to flight condition
- problem of two different ratios of dynamic pressures:

p'(model) ; Dynamicpresstunnel DynamicpressHelium plume

p'(flight) Dynamicpressflight ~ DynamicpressRocket plume

Project Orion:

» Each abort condition was simulated by two Helium + Wind tunnel setup:
- Nozzle exit match
- g-ratio match
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@, Run Matrix — Test Conditions | Abort Acoustics ﬁ

« Test conducted in the NASA Ames 11-Ft Unitary Plan wind tunnel

Mach Range 0.3-1.2

« Reynolds Number: 2x10° - 5.0x106/foot,

* He pressure at Model Plenum: 300psi to 600psi
 He temperature at Model Plenum: 660F to 700F

* Internal piping for 11 different model attitudes:
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Project Orion: Crew Exploration Vehicle (CEV)
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Abort Acoustics

11 ft test section
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Project Orion:
Hot He supply
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Model and Instrumentation Abort Acoustics

06% scaled of LAV 606 F.1

e Continuous active cooling of the model core
e Subjected to very large temperature cycle —
periodic heating and cooling.

e 237 Kulite sensors

see oerall E—

Crew Exploration Vehicle (CEV)

K181

K153

—HK139

K125
#085 Kiil
-K047

K075

Project Orion:

KULITE LOCATIONS
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‘ Abort Acoustics
Sample Result: Run 184: M = 0.3, Re = 3e6, a=0, =0

Lost sensor

Normalized PSD: (p"?/q?)/(Af D/U)
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Effect of Forward Flight

Lost sensor

Crew Exploration Vehicle (CEV)

Project Orion

High

Abort Acoustics
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National Aeronautics and Space Administration Abort Acoustics

July 2010

Pad Abort-1 is a NASA
flight test of a system that
could be used to rescue a
crew and its spacecraft in
case of emergencies at

the launch pad.

Www.nasa.gov
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Abort Acoustics

&y Comparison with Pad Abort 1 flight data
Pad Abort test flight PA1:

o Happened on July 2010 from White Sands

o Full scale unmanned flight vehicle, old Mold Line,

o accelerated from M 0 to ~ 0.7 over the burn duration.
o 57 sensors distributed over lower tower and Party-hat;

e Not exactly apple-to-apple comparison

o Older, slimmer profile

o Flight: transient data, wind tunnel: steady state
o Wind tunnel: No Attitude Control Motor
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PHI1B0"
Jay Panda (ARC-AOX) 650-604-1553 57




Comparison with PA1 flight data Abort Acoustics
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Project Orion:

e 80AS show wider crest-trough variation than PA1 '
- PA1 flew with non-zero a, B SRR
- PA1 had ACM induced turbulence
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Abort Acoustics

Comparlson with PA1 flight data — g scalmg
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National Aeronautics and Space Administration AbOl't Acoustics

Existing uncertainties:

e Scaling laws for abort initiated at transonic/supersonic flight

e Increment 1n environment due to scattering of plume by vehicle
induced shock waves

Expecting further validation from another flight test
e Ascent Abort 2 (AA2) — Abort initiated at M ~ 1.1
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National Aeronautics and Space Administration Summary.
Basics

e For launch vehicles aeroacoustics is a part of fluid-structure interaction problem
e Separation into Aeroacoustics and Vibro-acoustics
e Aeroacoustics = surface pressure fluctuations
e Forcing functions for vibro-acoustic calculations
- overall level — extremely high
- auto-spectra
- cross-spectra
e Need for direct solution of fluid-structure interaction.

Launch Acoustics
e Complexity of launch pad — acoustic suppression systems
- deflector and trench design
- vehicle trajectory and drift
- amount of water injection and timing schedule
e Prediction via NASA SP-80672 & limitations
- ignores plume impingement, water injection, vehicle drift
e Prediction via flight data from prior launch vehicles
- very large spread, different for a new vehicle
e Limited ability of CAA
e Use of a microphone phased array for direct identification of noise sources
- Very different description of noise sources that SP-8072
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National Aeronautics and Space Administration Summary.
0 [}
Ascent Acoustics

e Source- turbulent flow over vehicle surface, local flow separation, unsteady shocks
- dynamic pressure and vehicle trajectory
e Prediction — identification of local flow separation and transonic/supersonic shock wave.
- Improvement of empiricism via input from CFD
- Future need for less empiricism - CFD ?
- Data from prior flight experiences
e Wind tunnel test - validation/verification
e Change of vehicle OML to reduce ascent acoustics— MPCV experience
e Limitations observed from flight data

Abort Acoustics
e Lack of prior experience and database
e Creation of database from Static Fire test — spectral trends, shock amplitude
e Challenge of simulating hundreds of abort scenario within a reasonable budget
o Hot helium to simulate rocket plume
- similarity parameters
- scaling problems
o Increasing Flight Mach shows a reduction in overall levels, but increases low freq content.
o Plume impingement generally reduces level of pressure fluctuations
e Comparison with flight data from Pad Abort 1:
o Not an apple-to-apple comparison: different shape, transient flight vs steady simulation
o Nonetheless, comparable overall level and the spectral shape
e Unique, one-of-a-kind test provides aeroacoustics environment for the design and qualification testing
of ORION/MPCYV Launch Abort Vehicle.
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BACKUP
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National Aeronautics and Space Administration
Summary:
® Unobstructed plume: noise sources are distributed along the plume

® |n a launch configuration: locations where plume impinges on solid
surfaces are the primary sources
» Current Lift-off models (SP8072) does not account for impingement
- Need investments in changing/updating these models
» Minimization of plume impingement will attenuate liftoff environment
o By reduce vehicle drift in early part of liftoff
o Possibly by increasing the MLP hole size

e Open/Uncovered part of the trench are noise sources
o Closing the trench as much as possible will reduce liftoff environment

e \Water injection in the hole & trench is effective in reducing trench generated noise
e On-Deck water (Rainbird) is partially effective in noise source mitigation

e Microphone phased-array is an ideal tool to study all launch acoustic environments
- Results from the current study are expected to help SLS pad design

Future work:
Looking for opportunities to use phased-array in full-scale launch
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National Aeronautics and Space Administration
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National Aeronautics and Space Administration Ascent ACO“StiCS
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Figure 1,3-2. ST5 Aero/Acoustic Volse Level Time History - Crew Cabin -

Flight Deck
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Phased array in Antares Engine Test: Feb 22, 2013
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Summary of results from Engine Test:
e The primary noise source was the duct exit
e Plume out of the duct exit was NOT a primary source - very large amount of water pumped at the duct
inlet quenched the flame

e Noise generated during impingement on the deflector, and general mixing inside the duct, emerged out of
the duct exit.

e First time application of phased array in full-scale engine test
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