The NASA Advanced Supercomputing Division’s innovative modular approach to expand NASA’s high-end critical computing capabilities reflects the agency’s continued leadership in the high performance computing arena. Two modular supercomputing facilities built at NASA’s Ames Research Center in Silicon Valley house a pair of peta-scale supercomputers to help solve the agency’s most challenging problems in an environmentally conscious way that also provides flexibility, power efficiency, and cost savings.
Working with industry partners, the NASA Advanced Supercomputing (NAS) Division designed, built, and installed the first proof-of-concept Modular Supercomputing Facility, housing the Electra supercomputer, in 2016. This module uses a combination of outdoor air and fan technology to remove the heat generated by the system, taking advantage of the San Francisco Bay Area’s temperate weather. With this cooling technology, the system and the module consume less than 10% of the energy needed to cool the same amount of resources on NAS’s traditional computer floor. The facility was expanded with a second module, populated with HPE E-Cells in 2017 and 2018. This second module combines the outdoor air cooling technology with a circulating water system, which uses two adiabatic coolers on its roof to send chilled water down to the computer racks.

The Electra supercomputer, part of the unique supercomputing environment at NASA’s Ames Research Center, is a petascale proof-of-concept system for the agency’s modular computing technology, which saves significant amounts of water and power annually. Marco Librero, NASA Ames

Visualization of NASA’s side-by-side concept rotorcraft for urban air mobility, showing the complex interactions between the intermeshing rotors. Simulations were carried out on the Electra modular supercomputer at the NASA Advanced Supercomputing facility. Patricia Ventura Diaz, Tim Sandstrom, NASA Ames

Electra Module Efficiency Stats
• Power Usage Effectiveness (PUE) ratio: 1.04
• As compared to the same amount of computing resources in the main NAS building, the module housing Electra annually:
 • Consumes 12% of the energy needed for cooling, saving over $200K or 2.8 million kilowatt-hours
 • Reduces water usage for cooling by 91%, saving over three million gallons

Electra Architecture Overview
• 16 SGI Broadwell D-Racks; 8 HPE Skylake E-Cells
• 3,456 nodes, 124,416 cores, and 589 TB of memory
• 5.44 petaflops sustained performance (June 2019)
• 8.32 petaflops theoretical peak performance

Aitken Architecture Overview
• 4 HPE Cascade Lake E-Cells
• 1,150 nodes, 46,080 cores, and 221 TB of memory
• 3.69 petaflops theoretical peak performance