The NASA Advanced Supercomputing Division has been the agency’s primary resource for high performance computing, data storage, and advanced modeling and simulation tools for over 30 years. From the 1.9 gigaflop Cray-2 system installed in 1985 to the current petascale Pleiades, Electra, and Aitken superclusters, our facility at NASA’s Ames Research Center in Silicon Valley has housed over 40 production and testbed supercomputers supporting NASA missions and projects in aeronautics, human space exploration, Earth science, and astrophysics.
The NASA Advanced Supercomputing (NAS) facility’s computing environment includes the three most powerful supercomputers in the agency: the petascale Electra, Aitken, and Pleiades systems. Developed with a focus on flexible scalability, the systems at NAS have the ability to expand and upgrade hardware with minimal impact to users, allowing us the ability to continually provide the most advanced computing technologies to support NASA’s many inspiring missions and projects.

Part of this hardware diversity includes the integration of graphics processing units (GPUs), which can speed up some codes and algorithms run on NAS systems. Recently, we added the latest Intel Skylake nodes, augmented with NVIDIA Tesla V100 GPUs, to the Pleiades supercomputer, providing dozens of teraflops of computational boost to each of the enhanced nodes.

The NAS facility also houses several smaller systems to support various computational needs, including the Endeavour shared-memory system for large-memory jobs, and the hyperwall visualization system, which provides a unique environment for researchers to explore their very large, high-dimensional datasets. Additionally, we support both short-term RAID and long-term tape mass storage systems, providing more than 1,500 users running jobs on the facility’s supercomputers with over an exabyte of data storage (with standard compression).

Pleiades Architecture
- 158 SGI/HPE racks with Intel Xeon Broadwell, Haswell, Ivy Bridge, and Sandy Bridge processors
- 11,207 nodes, 241,324 cores, and 927 terabytes of memory
- 7.09 petaflops theoretical peak performance
- 5.95 petaflops sustained performance (November 2019)
- 83 GPU-enhanced nodes with 614,400 NVIDIA CUDA cores
 - 64 nodes of Intel Xeon Sandy Bridge processors enhanced with NVIDIA Tesla K40 GPUs
 - 19 nodes of Intel Xeon Skylake processors enhanced with NVIDIA Tesla V100 GPUs

Electra Architecture Overview
- 16 SGI Broadwell D-Racks; 8 HPE Skylake E-Cells
- 3,456 nodes, 124,416 cores, and 589 TB of memory
- 5.44 petaflops sustained performance (November 2019)
- 8.32 petaflops theoretical peak performance

Aitken Architecture Overview
- 4 HPE Cascade Lake E-Cells
- 1,150 nodes, 46,080 cores, and 221 TB of memory
- 2.38 petaflops sustained performance (November 2019)
- 3.69 petaflops theoretical peak performance

Merope Architecture Overview
- 56 half-populated SGI Altix racks with Intel Xeon Westmere processors
- 1,792 nodes, 21,504 cores, and 86 TB of memory
- 252 teraflops theoretical peak performance

Visualization Systems: the hyperwall
- 128-screen tiled LCD wall arranged in an 8x16 grid
- 2,560 Intel Xeon Ivy Bridge cores
- 128 NVIDIA GeForce GTX 780 Ti GPUs

For the latest information, go to www.nas.nasa.gov/hecc/environment.html