Applications Performance Under OSF/1 AD and SUNMOS

on Intel Paragon XP/S-15"

Subhash Saini and Horst D. Simon
Computer Sciences Corporation at

NASA Ames Research Center, Moffett Field, CA 94035-1000

Abstract

On Paragon, two operating systems are avail-
able: (@) OSF/1 AD, and (b) SUNMOS. The chief
drawbacks of OSF/1 AD are (a) OSF /1 AD takes
about 8 MB of memory on each node of the Para-
gon, (b) messages can be sent only at a bandwidth
of 30-35 MB per second compared to 200 MB per
second peak advertised rate, (c) latencies are on the
order of 100 microseconds using Intel NX calls
under OSF1/ AD. All these drawbacks can be min-
imized by using SUNMOS. SUNMOS takes only
250 KB of memory on each node and can send mes-
sages at bandwidth of 170 MB per second with
latencies of 70 microseconds. We have measured the
performance of applications under OSF /1 AD and
SUNMOS and found that under OSF/1 AD, per-
formance does not scale as the number of nodes
increases, whereas under SUNMOS it seems to
scale because of higher communication bandwidth.

1: Introduction

The Numerical Aerodynmical Simulation (NAS)
Systems Division received an Intel Touchstone
Sigma prototype model Paragon XP/S-15 in Feb-
ruary 1993. It was found that performance of
many applications including the assembly coded
single node BLAS 3 routine DGEMM [1] was lower
than the performance on Intel iPSC/860. This
finding was quite puzzling since the clock of the
microprocessor i860 XP used in the Paragon is
25% faster than the microprocessor (860 XR used
in the Intel iPSC/860 [2]. It was also found that
the performance of the NAS Parallel Benchmarks
(NPB) [3-5] is enhanced by about 30% if they are
run for second time in a DO loop. Furthermore, the
performance of DGEMM was identical for the first
run and the second run on a service node, but on a
compute node the performance of the second run
was about 40% better than the first run. These
anomalies in the performance on the Paragon led
us to investigate the problem in more detail. This,
in turn, led us to propose a method of dynamic

“ISSN 1063-9535. Copyright (c) 1994 IEEE. All rights reserved.

allocation of memory that increases the perfor-
mance of the applications by about 30% to 40%
[15-16].

By November 1993, it was realized that the per-
formance of the applications is very much limited
by two mains factors (a) high latency (120 micro-
seconds), and (b) low communications bandwidth
(30 - 35 MB per second). The optimal use of the
Paragon was also limited by the fact that the micro
kernel and Open Software Foundation (OSF)/1 AD
[6-7] server takes 8 MB per node, thereby leaving
only 8 MB for the user application. On the other
hand, there is another operating system available
for the Paragon, tailored to the needs of applica-
tions requiring a large volume of communication:
the Sandia University of New Mexico operating
system (SUNMOS, [8-9]). The latency under SUN-
MOS is 70 microseconds and bandwidth is 170 MB
per second. Also, SUNMOS needs only 250 KB of
memory per node, thereby making 15.8 MB of
memory available for the user application. Addi-
tionally, there is no degradation in performance
associated with using static allocation of memory.
In view of this, it was decided to port, test and
evaluate the performance of SUNMOS on the NAS
Paragon. In January 1994, memory per node was
upgraded from 16 MB to 32 MB.

In Section 2 we give a brief overview of the Par-
agon system. Section 3 gives some details on oper-
ating systems available on Paragon. Section 4
gives the description of the applications we have
studied under OSF/1 AD and SUNMOS. Section 5
describes the methodology used. Section 6 pre-
sents results and discussion. Lastly, Section 7 con-
tains the conclusions of the paper.

2. Overview of the Paragon

2.1. The i860 XP microprocessor

The Paragon system is based on the 64 bit i860

xp™ microprocessor [2] by Intel. The i860 xp™
microprocessor has 2.5 million transistors in a sin-
gle chip and runs at 50 MHz. The theoretical speed



is 100 MFLOPS in 32 bit floating point and 75
MFLOPS for 64 bit for floating point operations.

The i860 XP™ features 32 integer address regis-
ters with 32 bits each. It has 32 floating point reg-
isters with 32 bits each. The floating point
registers can also be accessed as 16 floating point
registers with 64 bits each or 8 floating point regis-
ters with 128 bits each. Each floating point regis-
ter has two read ports, a write port and two-
bidirectional ports. All these ports are 64 bits wide
and can be used simultaneously. The floating point
registers serve as input to the floating point adder
and multiplier. In vector computations, these reg-
isters are used as buffers while the data cache

serves as vector registers. The i860 XP™ micro-
processor has 16 KB of instruction cache and 16
KB of data caches. The data cache has a 32 bit
path to the integer unit and 128 bit data path to

the floating point unit. The i860 XP™ has a num-
ber of advanced features to facilitate high execu-

tion rates. The i860 XP™ microprocessor’s
floating point unit integrates single-cycle opera-
tion, 64 bit and 128 bit data paths on chip and a
128 bit data path to main memory for fast access
to data and transfer of results. Floating point add,
multiply and fetch from main memory are pipe-
lined operations, and they take advantage of a
three-stage pipeline to produce one result every
clock for 32 bit add or multiply operations and 64
bit adds. The 64 bit multiplication takes two
clocks.

2.2. NAS Intel Paragon XP/S-15

A single node of the Paragon XP/S-15 [10] con-

sists of two i860 XP™ microprocessors: one for
computation and the other for communication. The
compute processor is for computation and the com-
munication processor handles all message-protocol
processing thus freeing the computation processor
to do computations. Currently, the communication
processor is not used in the NAS Paragon. Each
compute processor has 32 MB of local memory but
at NAS only about 24 MB is available for applica-
tions, the rest being used for the micro kernel,
OSF server and system buffers.

The NAS Paragon has 256 slots for nodes. Slots
are given physical node numbers from 0 through
255. Slots are physically arranged in a rectangular
grid of size 16 by 16. There are 8 service nodes;
four of them have 16 MB of memory each and the
other four have 32 MB of memory each. Column 0
and column 74 have no physical nodes. The service
partition contains 8 nodes in the last column. One

of these service nodes is a boot node. This boot
node has 32 MB of memory and is connected to a
Redundant Array of Independent Disks-1 (RAID-
1). The compute partition has 208 nodes which
occupy columns 1 through 13. Compute processors
are given logical numbers 0 through 207. Compute
processors are arranged in a 16 by 13 rectangular
grid. The 227 nodes are arranged in a two-dimen-
sional mesh using wormhole routing network tech-
nology. The four service nodes comprise the service
partition and provide an interface to the outside
world, serving as a front end to the Paragon sys-
tem. Besides running jobs on the compute nodes,
the service nodes run interactive jobs, such as
shells and editors. They appear as one computer
running UNIX.

Theoretical peak performance for 64 bit floating
point arithmetic is 15.6 GFLOPS for the 208 com-
pute nodes. Hardware node-to-node bandwidth is
200 MB per second in full duplex.

The nodes of the NAS Paragon are organized
into groups called partitions [10]. Partitions are
organized in a hierarchical structure similar to
that of the UNIX file system. Each partition has a
pathname in which successive levels of the tree are
separated by a periods (“.”), analogous to “/” in the
UNIX file system. A subpartition contains a subset
of the nodes of the parent partition.

Currently, on the NAS Paragon there are no
subpartitions of .compute or .service. The root par-
tition (denoted by “.”) contains all 227 nodes of the
Paragon. There are two subpartitions of the root
partition: the compute partition, named .compute,
contains 208 nodes to run parallel applications.
The service partition, named .service, contains four
nodes devoted to interactive jobs. The remaining
eight nodes are not part of a subpartition and
serve as disk controllers and are connected to the
RAID for I/0. The four nodes of the service parti-
tion appear as one computer. In summary, the
NAS Paragon system has 208 compute nodes, 3
HiPPI nodes, 1 boot node, 8 disk nodes, 4 service
nodes of which 1 is a boot node and 4 nodes are not
used at this time, for a total of 227 nodes. When a
user logs onto the Paragon, the shell runs on one of
the four service nodes. In the current release of the
Paragon OS, processes do not move between ser-
vice nodes to provide load balancing. However, the
load leveler decides on which node a process
should be started. In principle, partitions and sub-
partitons may overlap. For instance, there could be
a subpartition called .compute.partl consisting of
nodes 0-31 of .compute, and another subpartition
called .compute.part2 consisting of nodes 15-63 of
.compute. However, in the current release of the



operating system on the NAS Paragon, there are
two problems which restrict the use of subparti-
tions. First, running more than one application on
a node (either two jobs in the same partition or
jobs in overlapping partitions) may cause the sys-
tem to crash. Second, the existence of overlapping
partitions sometimes causes jobs to wait when
they need not. For these two reasons, there are
currently no subpartitions of the .compute parti-
tion. All jobs run directly on the .compute parti-
tion.

3. Operating Systems on Paragon

On NAS Paragon the following two operating
systems are available.

3.1: Open Software Foundation (OSF/
1 AD)

The UNIX operating system was originally
designed for sequential computers and is not very
well suited to the performance of massively paral-
lel applications. The Paragon operating system is
based upon two operating systems: the Mach sys-
tem from Carnegie Mellon University and the Open
Software Foundation’s OSF /1 AD distributed sys-
tem for multicomputers [7,8]. The Paragon’s oper-
ating system provides all the UNIX features
including virtual memory; shell, commands and
utilities; I/ O services; and networking support for
ftp, rpc and NFS. Each Paragon node has a small
microkernel irrespective of the role of the node in
the system. The Paragon operating system pro-
vides programming flexibility through virtual
memory. In theory, virtual memory simplifies
application development and porting by enabling
code requiring large memory to run on a single
compute node before being distributed across mul-
tiple nodes. The application runs in virtual mem-
ory which means that each process can access
more memory than is physically available on each
node. At NAS, OSF/1 AD runs on 144 compute
nodes and on all service nodes.

The Paragon OS used in this study is version
R1.1. and the Fortran compiler is 4.1 [10]. The
compiler options used are the f77 -O4 -Mvect -
Knoieee abe.f -lkmath and the compilation was
done on the service node. There is a compiler
option by which one may set the size of the portion
of the cache used by the vectorizer to number
bytes. This number must be a multiple of 16, and
less than the cache size 16384 of the microproces-
sor i860 XP. In most cases the best results occur
when number is set to 4096, which is the default.
In view of this we decided to choose the default

size 4 KB and the highest optimization level of 4
was used. This level of optimization generates a
basic block for each Fortran statement and sched-
uling within the basic block is performed. It does
perform aggressive register allocation for software
pipelined loops. In addition, code for pipelined
loops is scheduled several ways, with the best way
selected for the assembly file. The option -Knoieee
was used, which produces a program that flushes
denormals to 0 on creation (which reduces under-
flow traps) and links in a math library that is not
as accurate as the standard library, but offers
greater performance. This library offers little or no
support for exceptional data types such as INF and
NaN, and will not trap on such values when
encountered. If used while compiling, it tells the
compiler to perform real and double precision
divides using an in-line divide algorithm that
offers greater performance than the standard algo-
rithm. This algorithm produces results that differ
from the results specified by the IEEE standard by
no more than three units in the last place (ulp).

3.2: SUNMOS

The chief drawbacks of OSF/1 AD are (a) OSF/1
AD takes about 8 MB of memory on each node of
the Paragon, (b) messages can be sent at a band-
width of 30-35 MB per second compared to 200 MB
per second peak advertised rate, (c) latencies are of
the order of 120 microseconds using Intel NX calls
under OSF/1 AD [6, 7]. All these drawbacks can be
minimized by using a new operating system called
Sandia University of New Mexico Operating Sys-
tem (SUNMOS) [8, 9]. SUNMOS was originally
developed and ported to nCUBE-2 in 1991. SUN-
MOS was ported to Intel Paragon in 1993. SUN-
MOS takes only 250 KB of memory on each node of
the Paragon and can send messages at bandwidth
of 170 MB per second with latencies of 70 micro-
seconds. However, SUNMOS does not provide a
complete implementation of Intel’s NX message-
passing library. It only supports hostless programs
and does not support host-node programs. In addi-
tion to these limitations, SUNMOS has very lim-
ited support for I/O and absolutely no support for
parallel I/O. NAS Paragon runs SUNMOS on 64
compute nodes and these nodes do not appear
under the compute partition. Furthermore, jobs
running under SUNMOS get a fixed amount of
heap, stack, and communication space at load
time. SUNMOS does not support virtual memory
Figure 1 shows the typical installation of SUN-
MOS on Paragon. SUNMOS runs only on the com-
pute nodes. Comparative performance of operating
systems OSF/1 AD and SUNMOS is given in Table



1. It is possible to run SUNMOS either on all the
compute nodes or on a subset of them. One may
not notice any difference when SUNMOS is run-
ning on part of compute nodes and OSF/1 AD run-
ning on the remaining compute nodes other than
the fact that there are fewer compute nodes in the
compute partition. SUNMOS never runs on the
service nodes of the service partition.

Compute partition Service partition

c ]
L] ]
O
O

]
[]

|:| SUNMOS running on each compute node
[ ] OSF/1 AD running on each service node

0000
0000
0000
0000

Figure 1: T ypical use of SUNMOS on
Paragon.

3.2.1: The utility YOD:

When SUNMOS runs on part of the compute
nodes, a program called yod also runs on the ser-
vice node/nodes allocated to compute partition
running SUNMOS. It is illustrated in Figure 2.
The utility yod [8] is used to allocate a partition of
the SUNMOS to a portion of the mesh and load the
executable. This utility runs in the service parti-
tion and handles all requests from the SUNMOS
compute nodes that it controls. Aborting a job
under control of yod by KILL -9 leaves the nodes
allocated and pr the use of these nodes in subse-
quent runs until the system is rebooted. Among
others, there are three arguments to yod which
need careful attention. These are comm, heap and
stack. The argument stack reserves the space for
stack. In many examples studied, inadequate allo-
cation of stack gave run time errors and the bench-
mark could not be run. The switch comm sets aside
space that is used for buffering messages for which
no receive has been posted. The default size for
comm is 256 KB. If the communication buffer over-
flows during execution of the application it causes
an unrecoverable error and sometimes the system
hangs and needs to be rebooted. The argument
heap reserves the space for heap. The default is to
allocate the remaining memory left on each node
after the comm, stack, program (text and data) and
OS space have been allocated. Currently, the size

of the heap cannot be more than 16 MB. When the
application needs more than 16 MB per node, spec-
ifying the heap to be 16 MB will not run the appli-
cation and gives the message that not enough
space is available for running the application and
sometimes the system hangs and needs to be

YOD
OSF/1 AD
Server
Microkernel
MACH 3.0
PUMA message module

Figure 2: T ypical service node when SUNMOS
is running on compute nodes.

rebooted. The argument heap reserves the space
for heap. The default is to allocate the remaining
memory left on each node after the comm, stack,
program (text and data) and OS space have been
allocated. Currently, the size of the heap cannot be
more than 16 MB. When the application needs
more than 16 MB per node, specifying the heap to
be 16 MB will not run the application and gives
the message that not enough space is available for
running the application. The application can be

FYOD
Server

OSF/1AD

Microkernel

MACH 3.0

PUMA message module

Figure 3: T ypical I/O node when SUNMOS is
running on compute nodes.

still run up to 25 MB per node if the heap argu-
ment is not used. Occasionally, the application
hangs or the system crashes. The application
always hangs the system or crashes it if the appli-
cation needs more than 25 MB per node. To run



Table 1: Comparative performance of operating systems OSF/1 AD and SUNMOS.

Operating System
Features
OSF/1 AD SUNMOS
Microkernel 5 MB 0.25 MB

Server

3 MB on compute node

None

Memory for application

24 MB per node

31.75 MB per node

Virtual memory

Yes

No

Latency 120 micro seconds 70 microseconds

Bandwidth 35 MB per second 170 MB per second

I/0 - READ 8 MB per second 2 MB per second

/O - WRITE 11 MB per second 3 MB per second

Support Intel Sandia Nat. Laboratories

Technology Mixture of OSF, Sandia National Labora-
LOCUS and Intel tories and Univ. of New

Mexico

Reliability 3 crashes per day Undetermined

Allocation of heap and By OSF/1 AD By the user

stack

Time sharing Yes No

Nodes on which runs

Compute & Service
nodes

Only on compute nodes

Parallel file system Yes No

Availability of debugger Yes No

Reliability of results High Intermittently wrong
results if more than 16
MB per node is used

Functionality High Low

Memory bandwidth Low High

Scalability Low High

Applications performance Low Moderate




the application successfully one has to be extra
careful in allocating heap and a stack.

3.2.2 The utility FYOD:

fyod is a utility that starts a SUNMOS file
server [8]. Typically, it runs on an I/O node with a
disk attached to it in the service partition. All
input/output for an application is routed through
yod utility. The purpose of fyod is to remove this
bottleneck and distributes the work load among
several I/0O nodes in the service partition. The use
of fyod is transparent to the user. It improves the
performance of applications that write to many
files simultaneously

SUNMOS can run under three modes:
(a) mode 0: Second processor is not used.
(b) mode 1: Second processor is used as a commu-
nication processor.
(c) mode 2: Second processor is used for computa-
tion.

4. Applications used

4.1: BLAS

BLAS 1, 2 and 3 are the basic building blocks
for many scientific and engineering applications.
For example, the dot product (BLAS 1) is a basic
kernel in Intel’s ProSolver Skyline Equation Solver
(ProSolver-SES) [11], a direct solver using skyline
storage, useful for performing Finite Element
Structural analysis in designing aerospace struc-
tures. BLAS 3 (matrix-matrix) kernels are basic
kernels in Intel’s ProSolver Dense Equation Solver
(ProSolver-DES) [12], a direct solver that may be
applied in solving computational electromagnetics
(CEM) problems using Method of Moments
(MOM). BLAS 2 and BLAS 3 are basic kernels in
LAPACK [1]. In the present paper, we have used a
BLAS 3 routine called DGEMM to compute C =
A*B, where A and B are real general matrices. The
DGEMM is a single node assembly coded routine
[17] and as such involves no interprocessor com-
munication

4.2: Fast Fourier Transforms

The FFT is a basic tool in various scientific and
engineering applications ranging from artificial
intelligence to oil exploration. At NAS, distributed
three-dimensional FFT is used to solve the Poisson
partial differential equation. We have measured
the performance of radix-2, -3 and -5 complex to
complex FFT on Paragon. We have used (a) 1-D

single node, and (b) 3-D distributed FFTs to study
the impact of data cache usage and scalability
issues under OSF and SUNMOS on Paragon. Intel
supplies only radix-2 1-D FFTs on Paragon [17].

4.3: NAS Parallel Benchmarks

The NPB [3-5] were developed to evaluate the
performance of highly parallel supercomputers.
One of the main features of these benchmarks is
their pencil and paper specification, which means
that all details are specified algorithmically,
thereby avoiding many of the difficulties associ-
ated with traditional approaches to evaluating
highly parallel supercomputers. The NPB consist
of a set of eight problems each focusing on some
important aspect of highly parallel supercomput-
ing for computational aerosciences. The eight
problems include five kernels and three simulated
computational fluid dynamics (CFD) applications.
The implementation of the kernels is relatively
simple and straightforward and gives some insight
into the general level of performance that can be
expected for a given highly parallel machine. The
other three simulated CFD applications need more
effort to implement on highly parallel computers
and are representative of the types of actual data
movement and computation needed for computa-
tional aerosciences. The NPB all involve signifi-
cant interprocessor communication with the
exception of the Embarrassingly Parallel (EP)
benchmark which involves almost no interproces-
sor communication.

4.4: NAS Kernels

This set of computational kernels comes from
applications at NASA Ames. It demonstrates the
compiler’s ability to vectorize floating point opera-
tions as well as processor speed [14].

5: Procedure for 1st Run and 2nd
Run

It was found that the performance of NPB codes
is enhanced by about 30% if they are run for a sec-
ond time in a DO loop. Furthermore, the perfor-
mance of DGEMM was identical for the first run
and second run on a service node but on a compute
node the performance of the second run was about
40% better than the first run. In our numerical
results section we will present results for a first
run and a second run of each application. The pro-
cedure to obtain first run and second run for a
given application is illustrated in Table 2. In this



table, a DO loop index i running from I to 2 is
inserted just before the section of the code we want
to time for benchmark purposes. In this table the
first run corresponds to i=1 and the second run cor-
responds to i=2 as shown in Table 2. The overhead
in calling the function DCLOCK was estimated to

be about 1.5x10%second [13, 15-16].

Table 2: Procedure for obtaining first run and

second run.
PROGRAM abc
DOi =1, 2
t0 = DCLOCK()
t1 = DCLOCK
CALL DGEM , ..., ...)
t2 = DCLOCK()
time =t2 - (tl - tO0)
ENDDO
END

6: Results and Discussion

The results were obtained under OSF/1 AD 1.1
and SUNMOS S1.1. Figure 4(a) shows the results
for the assembly coded BLAS 3 routine DGEMM
for a matrix size of 1024x1024 on one compute node
for the first and second run. The performance is 27
MFLOPS for the first run and 46 MFLOPS for the
second run.

The performance obtained by the second run is
about 40% better than the performance obtained by
the first run. This degradation in performance is
not acceptable since users will always run their
code once. The left of the Figure 4(b) shows the per-
formance of DGEMM on four compute nodes. The
MFLOPS rate has decreased from 27 MFLOPS to
about 6 MFLOPS. This problem can be eliminated
by using dynamic allocation of memory. The perfor-
mance of DGEMM using dynamic allocation of
memory is shown on the right side of Figure 4(b).
For details see reference [13, 15-16]. The perfor-
mance of DGEMM as a function of the size of the
matrix is shown in Figure 5. SUNMOS results are
about 5% better than corresponding OSF results
probably due to a better memory access mecha-
nism. However, under SUNMOS, for a matrix size
larger than 1024 the system either hangs or
crashes and, therefore, results could not be
obtained. Under OSF we could run our matrix
beyond 32 MB per node but with 40% decrease in
performance.

Figure 6(a) shows the performance of assembly
coded 1-D FFT [17]. Performance is much better
when twiddle factors are in cache. The perfor-
mance is a maximum at x=512, corresponding to a
of 4 KB data cache size. The other peaks reflect
higher harmonics at multiple of 512. Figures 7(a)
and 7(b) are similar to Figure 6 but are for Fortran
coded 1-D FFT. Notice that the performance does
not decrease after x=512 but remains constant due
to better cache management. Also Fortran coded 1-
D FFT is for radix-2, -3 and -5 whereas assembly
coded 1-D FFT supplied by the Intel and used in
Figure 3 is radix-2. Figure 8(a) shows the perfor-
mance of NPB under OSF for 128 nodes. Perfor-
mance is under 1 GFLOPS except for benchmarks
EP, FT and BT. The benchmark EP involves
almost no communication. The kernel FT uses
assembly coded 1-D FFT and BT uses an assembly
coded block tridiagonal solver for most of the com-
putations. Figure 8(b) shows the performance in
MFLOPS per node for NPB. The average perfor-
mance is about 5 MFLOPS except for EP, FT and
BT for the same reasons as discussed before. High
performance of FT (9 MFLOPS) and BT (10
MFLOPS) is due to the use of assembly coded rou-
tines.

Figure 9(a) shows the performance in MFLOPS
of 3-D FFT as a function of the number of compute
nodes for a fixed problem size of 256x256x128.
Under OSF, performance does not scale, whereas
under SUNMOS it seems to scale because of
higher communication bandwidth. Figure 9(b)
shows the performance of 3-D FFT as a function of
the size of the FFT for a fixed system size (128
nodes) for OSF and SUNMOS. Here also the scal-
ability under SUNMOS is better than OSF/1 AD.

7: Conclusions:

(1) In SUNMOS, loading of data from memory
to the processor is much faster than under OSF.
This is clearly shown by the better performance of
the first iteration of the 1-D FFT kernel.

(2) In SUNMOS, one can not use more than 24
MB of memory per node although SUNMOS needs
only 250 KB of memory per node. This means that
on a 32 MB per node Paragon about 7.5 MB mem-
ory is wasted due to the hardware problem.

(3) In SUNMOS, there is no paging effect, i.e.,
performance of the first iteration and the second
iteration are always the same. Under OSF, the
dynamic allocation of memory enhances the per-
formance of applications.

(4) In SUNMOS, there is no virtual memory.
Even in the absence of the Paragon’s hardware



50

45

40

35

MFLOPS
= N N
3 =] a

=
o

First Run Second Run

Figure 4(a): DGEMM on 1 node under OSF

50 50

45 451

40 400

35 351

MFLOPS
= n N w
o =] o S

.
o

o

0 1 2 3 0o 1 2 3
Figure 4(b):DGEMM on a 4 nodes under OSF -
static versus dynamic memory allocation.

MFLOPS

N~

\

200 400

600 800 1000 1200

Matrix Size

Figure 5: MFLOPS Vs. Size of the matrix, .

SUNMOS;, - - - - 1st iteration (dynamic allocation),

2nd iteration (dynamic allocation). Both st and 2nd iterations are under OSF

50 T T T T

40

MFLOPS
w
=]

N
=}

10

50 T T T T

45

MFLOPS
N w w I
o =] a o

N
=]

i
o

10,

5 L L L L

1 2 3 4 10°

Figure 6(a): 1-D FFT, - - - first Iteration; — second
iteration; both are assembly codes under OSF

. iteration; bot

° o’ 10* 10° 10°

%b) 1DFFT,--- flrst iteration; — second
are assembly coded under SUNMOS

10

Figure 6




=
T

MFLOPS
&
T

w
T

Length

Figure 7(a): 1-D FFT, - - - first iteration, - second
iteration; both are Fortran under OSF

10

MFLOPS
o
T

10" 10° 10° 10* 10° 10°

Length

Figure 7(b): 1-D FFT, - - - first iteration, - second
iteration; both are Fortran under OSF

1600

1400

1200

1000

MFLOPS
@
s}
s}
T

EP MG CG FT IS LU SP

Figure 8 (a): Performance of NPB under OSF
for 128 nodes.

MFLOPS Per Node

14

101

EP MG CG FT IS LU SP BT

Figure 8 (b): Performance of NPB under OSF
on one node.

1400

1200

1000

MFLOPS
@
Q
=]
T

4001

200 I I I

I I
[¢] 50 100 200 250 300

150
Number of Nodes

Figure 9(a): MFLOPS Vs. number of nodes.
denotes results under OSF
- - - - denotes results under SUNMOS.

MFLOPS

2100

2000+

19001

18001

17001

16001

1500+

14001

13001

120Q
0.5

wl

25 35

x 10

Figure 9(b): MFLOPS Vs. length of 3-D FFT
denotes results under OSF
- - - -denotes results under SUNMOS.

2
Length of 3D FFT




problem, the maximum memory per node that can
be utilized by the application will never exceed 31.5
MB. Currently, using 24 MB per node hangs or
crashes the system.

(5) In SUNMOS, to run the application success-
fully either for a fixed problem size and varying
number of nodes or for a fixed number of nodes and
varying size problem, one has to adjust some or all
of the following: (a) the size of the communication
buffer, (b) the size of the heap, (c) the size of the
stack. Choosing any one of them incorrectly either
hangs or crashes the system or causes the system
to be unusable until it is rebooted.

(6) In SUNMOS, the performance of the appli-
cations is generally (but not always) better than
that under OSF.

(7) In SUNMOS, some enhancement of the
applications’ performance is attributed to the abil-
ity of SUNMOS to allocate the user’s partition as
close to a “square” as possible.

(8) On 128 nodes of the Paragon, only two NPB
codes (FT and BT) exhibit performance of more
than 1 GFLOPS. This high performance is due to
use of optimized assembly routines for the 1-DFFT
in FT benchmark and block tridiagonal solver in
BT benchmark.

(9) For most of the NPB codes the performance
is less than 5 MFLOPS per node, except for that of
EP, FT and BT. The high performance of 12
MFLOPS for EP is due to it’s having almost no
communication. Message passing is used only to
collect the results from different nodes. The use of
optimized assembly routines (1-D FFT in bench-
mark FT and block tridiagonal solver in BT)
enhance the performance.

(10) In OSF, the 3-D FFT kernel does not scale
as the number of nodes are increased from 32 to
256.

8. Acknowledgment:

The authors wish to thank Thanh Phung of Intel
SSD for useful discussions.

* This work is supported through NASA contract
NAS 2-12961.

[1] E. Anderson et al., LAPACK Users’ Guide,
SIAM, Philadelphia, 1992.

[2]  Overview of the i860TM XP Supercomputing
Microprocessor, 1991, Intel Corporation.

[3] D. Bailey et al., eds, The NAS Parallel
Benchmarks, Technical Report RNR-91-02,
NAS Ames Research Center, Moffet Field,
California, 1991.

[4]

[5]

[6]

[7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Bailey et al., eds, The NAS Parallel
Benchmark Results 394,Technical Report
RNR-94-06, NAS Ames Research Center,
Moffet Field, California, 1994.

D. Bailey et al., The NAS Parallel Bench-
mark Results, IEEE Parallel & Distributed
Technology, 43-51, February 1993.

R. Zajcew et al. “An OSF/1 Unix for Mas-
sively Parallel Multicomputers”, in Proceed-
ings of the 1993 Winter USENIX Conference,
January 1993, pp. 37-55.

K. Loeppere, “OSF Mach: Kernel Princi-
ples”, Open Software Foundation and Carn-
egie Mellon University, February 1993.

B. Maccabe, K. S. McCurley and R. Rissen,
SUNMOS for Intel Paragon: A Brief user
Guide, November 29, 1993.

K. S. McCurley, Intel NX compatibility
under SUNMOS, Sandia National Laborato-
ries, Albuquerque, Technical Report No.
SAND 93-2618, Nov. 29, 1993.

Paragon OSF/1, User Guide, Intel Corpora-
tion, 1994.

iPSC/860 ProSolver-SES Manual,
1991, Intel Corporation.

iPSC /860 ProSolver-DES Manual, March
1992, Intel Corporation.

S. Saini and H.D. Simon, “Performance of
BLAS and NAS Parallel Benchmarks on
NAS Intel Paragon XP/S-15” in Proceedings
of Intel Supercomputing User’s Group Meet-
ing, Oct. 3-6, 1993, St. Louis, Missouri, USA.
D.H. Bailey and J. Barton, “The NAS Kernel
Benchmarks Program”, Report Number
86711, August 1985, NASA Ames Research
Center.

S. Saini and H.D. Simon, “Performance of
BLAS 1, 2 on NAS Intel Paragon XP/S-15”
in Proceedings of Scalable Parallel Libraries
Conference organized by IEEE, Oct. 6-9,
1993, Mississippi State  University,
Starkville, Mississippi, USA.

S. Saini and H.D. Simon, “Enhancing Appli-
cations Performance on Intel Paragon
through Dynamic Memory Allocation”,
Report RNR-93-017, November 1993, NAS
Systems Division, NASA Ames Research
Center, Moffett Field, California 94035,
USA.

CLASSPACK, Basic Math Library User’s
Guide, Kuck & Associates, Release 1.3,
1992.

May,



