Distributed-Memory OS for Highly Parallel Systems:
Experiences and Lessons from Paragon OSF/1 and SUNMOS

Bernard A. Traversat!

Report RND-94-015 September 1994

traver s@as. nasa. gov
NAS Systems Development Branch
NAS Systems Division
NASA Ames Research Center
Mail Stop 258-6
Moffett Field, CA 94035-1000

Abstract

This paper presents an evaluation of two distributed-memory operating systems, Paragon
OSE/1 and SUNMOS, run on the 227 node Intel Paragon XP/S-15 installed at the Numeri-
cal Aerodynamic Simulation (NAS) facility. Paragon OSF/1 is based on the Open Software
Foundation Advanced Development (OSF/1 AD) microkernel. SUNMOS is a custom
microkernel developed by Sandia National Laboratory and the University of New Mex-
ico. Paragon OSF/1’s design goals are to maintain the full OSF/1 functionality on each
node. SUNMOS’ goals are performance and scalability, trading functionality to deliver
performance. The paper compares the functionality and performance of four operating
system services essential to the efficient execution of a parallel application. These services
are: kernel inter-process communication (IPC), memory management, application mes-
sage-passing, and disk I/O throughput. The NAS Parallel Benchmarks (NPB) were also
used to compare overall performance.

Our evaluation shows that significant scalability issues and design problems remain to be
solved before microkernels will work correctly on distributed-memory systems. The Para-
gon OSE/1 core technology (Mach 3.0, NORMA IPC, XMM) was found to be very imma-
ture and unfit for large node configurations without significant redesigns. Paragon OSF/1
functionality such as virtual memory, compute node time-sharing and parallel I/O are
unusable due to the inefficiency and lack of scalability of the microkernel remote IPC ser-
vice. Paragon OSF/1’s remote IPC peak bandwidth was measured at 11 MBytes/s (5% of
the peak hardware bandwidth). Paragon OSEF/1 also occupies approximately 8 Mbytes

1. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000

1

per nodes (25% of the memory available) limiting the amount of memory available to
applications. On the other hand, SUNMOS provides higher performance and more
importantly, better scalability. SUNMOS does not support time-sharing and virtual-
memory. The kernel occupies less than 0.3 MBytes per node, and there is no server run-
ning on compute nodes. The application peak message-passing bandwidth was mea-
sured at 170 MBytes/s (close to 100% of the peak hardware bandwidth). Latency is 30%
less than of the Paragon OSF/1 latency due to a low-overhead communication protocol.
The NPB’s run between one and two times faster under SUNMOS, and show better scal-
ability as the problem size increases. However, SUNMOS functionality is limited to only
loading and running a parallel application on a subset of nodes. SUNMOS relies on Par-
agon OSF/1 services (i.e. file systems and networking) in the service partition. Both
operating systems demonstrate very limited scalable I/O performance.

1.0 Introduction

The Numerical Aerodynamic Simulation (NAS) program, located at
NASA Ames Research Center has a goal to provide to the Aerospace
community by the end of this decade, a computing system capable of
sustaining a Teraflop computing rate [Nas93]. This computing system
will be used to solve large scale Computational Fluid Dynamics (CFD)
applications that will enable the complete simulation of an aerospace
vehicle in a few hours. Highly Parallel Systems (HPS) composed of hun-
dreds to thousands of RISC processors are a candidate architecture for
achieving such a high computing rate. However, before replacing con-
ventional vector-supercomputer architectures, HPS must demonstrate
the same level of reliability and functionality while achieving higher per-
formance. The ability of HPS to support the NAS workload, composed of
a wide range of development activities, batch production runs and hun-
dreds of interactive users, is essential for their successful integration into
the NAS program. Our recent experience with the 227 node Intel Paragon
XP/S-15 installed at NAS, has shown its inability to successfully support
a multi-user workload [Tra93]. The Paragon consistently crashed once
every twelve hours with fewer than two jobs running [Tra94]. Most of the
problems encountered were traced to serious limitations and immaturity
of its operating system. Problems such as virtual memory leaks, process
management corruptions and Inter-Process Communication (IPC) fail-
ures made the system unable to support a real user’s workload. Some of
these problems were related to bad software implementations, but most
had to be accounted to the lack of soundness and scalability in the origi-
nal design of the Paragon OSF/1 operating system. Similar OS problems
have been observed to a similar or lesser degree with the other testbed
parallel systems installed at NAS, a 128 node iPSC/860 and a 128 node
CM-5 [Bars91] [Sim93].

The immaturity of operating systems on highly parallel systems is
grounded in the lack of real experience on operating system require-
ments for large parallel systems, the short life of most parallel systems (2-

4 years), and the high competitiveness of the High Performance Comput-
ing market that pushes vendors to deliver beta or even alpha level sys-
tem software. Less than thirty large configuration systems have been
installed worldwide [Sim93]. The small number of systems available has
limited fundamental research and real experience on OS scalability
issues. In addition, the different proposed architectures have lead ven-
dors to implement a custom OS or temporary ports for each architecture
supported. For example, the Thinking Machine Corporation ngMC) CM-2
(Parisl) and CM-5 (CMostl), and the Intel iPSC/860 (NX/2%) and Para-
gon (Paragon OSF/1%) use completely different operating systems. By
comparison, successful operating systems in the workstation arena such
as SunOS? or IRIX* have matured (4-8 years) on different hardware, and
took advantage of the broad base of installed systems. A portable, func-
tional and scalable OS’s is essential to the success of HPS.

This paper presents a comparison of two distributed-memory operating
systems; Paragon OSF/1 and SUNMOS, run on 227 node Paragon XP/S-15
installed at NAS. Paragon OSF/1 is the OS delivered by Intel with the
Paragon. SUNMOS is a custom OS developed by Sandia National Labo-
ratory and the University of New Mexico to address the lack of scalability
and performance of Paragon OSF/1. Both Paragon OSF/1 and SUNMOS
use a similar microkernel architecture, but they have different goals. Par-
agon OSF/1 goals are functionality and connectivity. SUNMOS goals are
performance and scalability.

The first section of the paper provides a brief background on OS architec-
tures proposed for HPS. The second section describes the Paragon XP/S-
15 configuration installed at NAS, and the Paragon OSF/1 and SUNMOS
operating systems. The following sections present comparison analysis of
four operating system services; kernel inter-process communication,
memory management, application message-passing, and disk I/O
throughput. Performance figures for the NAS Parallel Benchmarks are
also given to compare overall system performance. The paper concludes
with the lessons to be learned from both implementations.

2.0 Highly Parallel Architectures and OS’s

Three generic hardware architectures have received the most interest and
are thought to lead toward Teraflops computing. These are: the Shared-
Memory (SM) architecture, the Distributed-Memory (DM) architecture and

1. Paris and CMost are trademarks of Thinking Machines Inc.

2. NX/2 and Paragon OSF/1 are trademarks of Intel Supercomputer Systems Division.
3. SunOS is a trademark of Sun Microsystems.

4. IRIX is a trademark of Silicon Graphics Inc.

the Cluster-Memory (CM) architecture. This section gives a background of
OS designs proposed on these three architectures.

2.1 Shared-Memory Architecture

The SM architecture provides a shared memory with uniform and sym-
metric memory access from each processor. This architecture is attractive
for operating system developers as existing operating systems can be
multi-threaded to run on multiple processors with relatively little diffi-
culty, and delivers good performance. IRIX, Unicos! and Solaris® are
commercial examples of multi-threaded OS (See Figure 1). Concurrent
threads are assigned to different processors to service simultaneous
application requests and increase throughput.

Node Node Node
S i <
£ i

(O5]
Shared Memory

e '(‘@ el

1 1

Node Node Node

FIGURE 1. Multi-Threaded OS Architecture

Because of the uniform shared-memory, system programmers do not
have to be concerned about data locality. Conventional system program-
ming techniques can be used with a small set of extensions such as barri-
ers and locks to serialize access over shared data structures. However, the
exponential cost of building scalable memory cross-bar or multi-stage
switches makes this architecture difficult to scale. In addition, concurrent
access of OS’ shared-data structures can potentially be a bottleneck as the
number of processors increase.

2.2 Distributed-Memory Architecture

The DM architecture consists of hundreds to thousands of processing
nodes typically composed of a RISC processor, local memory and a net-
work interface. These processing nodes are connected via a high speed

1. UNICOS is a trademark of Cray Research Inc.
2. SOLARIS is a trademark of Sun Microsystems.

interconnection network. The Intel Paragon XP/S and Cray Research
T3D systems use RISC-based nodes connected via the vendor’s favorite
network topology (2D mesh or 3D Torus). The topology attempts to pro-
vide a scalable, cost-efficient, low-latency and high-bandwidth network
for tightly-coupling all the nodes. OS’s for DM systems present signifi-
cantly greater challenges due to the amount, and the distributed location
of system resources such as memory, processors and disks. The allocation
and decision-making protocols are much more complex to implement
due to the distributed locations of resources. In addition to provide the
appearance of a single system image, distributed OS data structures need
to be kept coherent and synchronized on each node. Complex and scal-
able protocols need to be implemented to distribute control and manage-
ment while attempting to maintain a single system image. Two main OS
architectures have been used: a Control-Process architecture [Con92]
[Int91] and a Microkernel architecture [Roz88] [Dou91] [Hil92] [Zaj93]
[Whe94].

2.2.1 Control-Process Architecture

The control-process architecture uses a set of control processes that usu-
ally run on support processors to manage all or part of the system (see
Figure 2). The CM-5 (CMost) operating system uses partition managers
that run on dedicated control processors (CP) to manage compute nodes
grouped in fixed-size partitions. The partition manager makes all system
resource allocation decisions as well as most system calls for process exe-
cution, memory management, and I/O for the nodes in the partition.
CMost requires kernel modifications to the OS running on the support
and compute processors. CMost adds a time-sharing daemon and run-
time extensions to SunOS, while deconfiguring virtual memory.

Partition #1 Partition #2

%Z] utp

g]%r‘ri ut 9‘771[1{ jutp

] Contro] Process
Extensions

<4—p Control Process

Communication

FIGURE 2. Control-Process OS Architecture

In the case of CMost, the control-process model has the advantages of
relying on a mature OS and SunOS functionality such as Unix interfaces
(POSIX, BSD) and filesystems (UFS, NFS). A similar control-process
model is used by the NX/2 operating system on the iPSC/860 [Int91], but
NX/2 was written from scratch. NX/2 uses a single control-process to
manage all the nodes. The main drawbacks of the control-process archi-
tecture are that the control-processes provide a single point of failure and
can potentially be a bottleneck. When the number of nodes in the parti-
tion increase and OS service requirements increase, control-processes
may become overloaded. The number and type of nodes composing the
partitions are also configured at boot-time, limiting flexible resource
management.

2.2.2 Microkernel Architecture

The microkernel architecture splits conventional monolithic operating
systems into a small core kernel or microkernel and a set of specialized
servers (see Figure 3). The microkernel runs on all the nodes of the sys-
tems. The microkernel provides generic low-level operating system ser-
vices such as thread management, inter-process communication and
memory management. Specialized servers implement traditional high-
level UNIX services such as process management, file services and net-
working. A small server configuration providing limited functionality
such as virtual memory and process management is typically configured
on compute intensive nodes. Larger dedicated servers run on support
nodes where the device they manage is physically located (e.g. I/O node,
Ethernet or HiPPI node).The microkernel architecture distributes conven-
tional operating system functionalities into multiple servers to avoid bot-
tlenecks and to efficiently exploit specialized nodes.

Compute Compute rvice
S Node Nodb Node
e
1 1 1 1 p B

Hkernell

” Compute Covymm I
ompute ler Nodb Node

Comp
Node ,—
P Kernel kernel

Default Server on
Compute Nodes

|:| Specialized Server on
Service Nodes

FIGURE 3. Microkernel OS Architecture

The operating system can potentially scale to support an increasing num-
ber of compute nodes or Unix service requirements by balancing the ratio
of service nodes to compute nodes. Scalability of this architecture criti-
cally depends on the kernel communication protocols for reducing com-
munication overhead between the microkernels. This architecture
provides better flexibility than the control-process architecture by allow-
ing dynamic partition configuration and reducing traffic between com-
pute nodes and service nodes. Common OS services such as memory
management and process scheduling are embedded in the local server.
However, the microkernel architecture is more complex due to the full
distribution of OS services across the entire system. In addition, very few
microkernel based systems have been developed and fully tested (OSF/1
AD [Zaj93], Chorus [Roz88]).

2.3 Cluster-Memory Architecture

The Cluster-Memory architecture consists of hundreds of workstation
nodes (memory, CPU and local disks) connected via a high-latency and
low-bandwidth network such as Ethernet or FDDI to form a cluster. OS
models for workstation clusters use a OS-replicated architecture (see
Figure 4). Each workstation in the cluster is running a full version of the
vendor supplied OS providing a loosely-coupled computing environ-
ment. The OS-replicated model is possible by having local disks on each
node for use as swapping devices and for locating system files. This fea-
ture significantly reduces network contention due to system traffic. The
architecture also benefits from using a reliable and functional worksta-
tion OS. Typically, fileserver systems are added to the cluster and
mounted from all the workstations, using NFS or other distributed file
systems, to provide a shared user-file repository. Administrative and
resource management tools have been developed on top of the local OS
to provide global resource management such as administrative services
and job scheduling [Duk93] [How93].

File
Server|

WS WS WS
Node Node Node
0s 0s 0s os

FIGURE 4. OS-Replicated Architecture

Significant efforts are in progress to improve network latency and band-
width by using ATM [Kun93] or high-performance network switches,
and to reduce OS latency overhead by using more efficient communica-
tion protocols [Gro93]. The OS-Replicated architecture also does not pro-
vide a single system image, and lacks support for parallel I/O.

2.4 Conclusions

The microkernel architecture provides potentially the best flexibility and
scalability. Multi-threaded OS do not address remote memory issues. The
OS-Replicated model used by workstation clusters is already migrating
toward adding more coupling between each node. The need for single
system image, global synchronization and scheduling mechanism for
low-latency parallel applications and support for a high performance
parallel file system will require significant redesign and modifications of
current workstation OS [Dou91] [Cor92]. For scalability and modularity
reasons, workstation OS designs are likely to merge toward a microker-
nel/server like architecture. The control-process model lacks flexibility
due to statically assigning partition sizes, and requires extra communica-
tion between the nodes and the partition-manager. By embedding com-
monly used functionality such as memory management and thread
scheduling in the local server, the microkernel model produces less com-
munication traffic than the control-process architecture. While microker-
nels present a lot of interests, there are only a small number of
implementations available, and scalability issues have been studied only
on very small configurations [Dou91] [Dea92]. For these reasons, it was
interesting to evaluate and compare two microkernels on a large system
like the Paragon.

3.0 The Paragon XP/S Architecture and OS’s

3.1 Paragon XP/S

The Paragon XP/S [Int93] is a distributed-memory multiprocessor sys-
tem using a two-dimensional mesh interconnection network. Each node
consists of two Intel i860 XP microprocessors (one used for computation
and one intended as communication co-processor) with 16-32 MBytes of
local memory. The communication co-processor was not used during the
period covered in this paper, due to an engineering delay on the hard-
ware upgrade that will enable the message co-processor. The i860 XP
runs at 50MHz with a 75 MFLOPS (double precision) peak performance.
The mesh routing hardware is capable of delivering a node-to-node peak
bandwidth of 175 MBytes/s (full duplex). The Paragon XP/S-15 configu-
ration, installed at NAS (see Figure 5), has two hundred and eight com-
pute nodes (32 MBytes of memory each), one boot node, five service

nodes (32 MBytes), two Ethernet and three HiPPI nodes. Eight additional
I/O nodes are attached to RAID disk drives for a capacity of 38 Gbytes of
usable secondary disk space. The service nodes serve as “front-ends” to
the system’s compute nodes, and provide traditional Unix interactive
facilities such as editing, compiling and program execution.

EEEH EEEE EEEE EN =
EEEH EEEE EEEE EN o
E NN EEEE EEEE EN (@)
EEE EEEE | EEEE EN o
EEE EEEE EEEE EN
E NN EEEE | EEEE EENHO®O
EEEH EEEE EEEE EN
EEE EEE N EEEE EHN
EEE EEEE EEEE EN
E NN EEE N EEEE ENR (@)
EEE EEEE EEEE EN
O NN EE NN EEEE | EHN (@)
E NN EEEE EEEE Em
EEE EEE N EEEE EN o
EEEH EEEE EEEE EN o
OEEE EEEE EEEN EN (o]
Il Computenode O onode
1 Bootnode ‘ HiPPI node
Service node © Ethernet node

FIGURE 5. Paragon XP/S-15 Configuration

3.2 Paragon OSF/1

Paragon OSF/1 was developed in joint collaboration between the Open
Software Foundation (OSF) Research Institute, Intel Supercomputer Sys-
tems Division (5SD) and Locus Systems. Paragon OSF/1 is based on the
OSF/1 Advanced Development (OSF/1 AD) [Zaj92] [Int93] [Loe93]
microkernel. OSF/1 AD is a distributed-memory operating system based
on the Mach 3.0 microkernel from Carnegie Mellon University and the
OSF/1 Unix single-server implementation [Gol90] (see Figure 6). OSF/1
AD'’s goals are to retain the full OSF/1 Unix functionality on each node
and provide adherence to open system standards (POSIX, TCP/IP, NFS).
Locus Systems provided the single system image allowing a unique nam-
ing space that spans across all the nodes of the system. Processes execut-
ing on any node have access to full OSF/1 functionality. System calls are
trapped by the emulation library, running in the application’s address
space, and converted into messages to the kernel.

User
OSF/1 Application

Server

Emulation
Library
y

LOCAL
PC

[4 A

¢ N RMA'l Mach 3.0 MK |1:EORW>
(111’(: 1PC

FIGURE 6. Paragon OSF/1 Architecture

The Mach 3.0 microkernel resident on each node, implements three core
operating system functions: memory management, thread management,
and both local and remote (NO Remote Memory Access (NORMA)) IPC.
Higher level Unix services such as file systems, process management and
networking are encapsulated into the OSF/1 server. Smaller versions of
the OSF/1 server can be configured on the compute nodes by reducing
buffer and process table size and limiting functionality. The full server
runs on the I/O, network and service nodes. Intel added the NX user
level message-passing interface, and the Parallel File System (PFS). PFS
uses a fixed stripe-unit to distribute I/O requests across the I/O nodes.

3.3 SUNMOS

The Sandia and University of New Mexico Operating System (SUNMOS)
[Rie94] [Whe94] is a custom message-passing operating system devel-
oped in joint collaboration by Sandia National Laboratory, and the Com-
puter Science Department at the University of New Mexico. The goal of
the SUNMOS project was to provide a highly portable, yet efficient, oper-
ating system for massively parallel systems. SUNMOS was originally
developed for the nCUBE and ported to the Paragon with the help of
Intel SSD. The SUNMOS microkernel implements minimal services for
executing parallel applications. SUNMOS does not support virtual mem-
ory or time sharing, but does provide space sharing. SUNMOS creates a
single address space to run users’ applications. On the Paragon, SUN-
MOS is intended to run only on compute nodes (see Figure 7). Paragon
OSF/1 runs on the support nodes (boot, service and I/O nodes). Each
SUNMOS application is loaded and controlled via a server program
(YOD) running on a OSF/1 service node.

10

Service Node

YOD OSF/1
Serve!
1
Mach 3.0 MK
Compute Node
[PO |
Application|
I/O Node
FYOD OSF/1
Serve!
| SUNMOS :
[l

| PU%IC\{{ﬁsesage |

FIGURE 7. SUNMOS Architecture

Since any service node can be used to run YOD, and YOD can use any
compute nodes, SUNMOS is not a control-process. In addition, after a
SUNMOS application is loaded, there are no further execution controls
between YOD and the compute nodes other than process terminations.
YOD and SUNMOS communicate through a low level message-passing
module (PUMA). Application I/O requests are redirected by the micro-
kernel on each node to YOD. To reduce potential I/O bottleneck on YOD,
FYOD servers are available to provide scalable I/O services. FYOD serv-
ers can be configured on each I/O node to distribute I/O requests. A
compatibility library provides most of the NX application message-pass-
ing interface. SUNMOS provides fast user-to-user space communications
by managing communication buffers directly in the user address space
(no kernel buffers), and having no control-flow during message-passing
delivery. The lack of control-flow can lead to buffer overflows, if an appli-
cation has not reserved enough buffer space. On compute nodes, all ser-
vices other than I/O services are embedded in the microkernel, there is
no server.

4.0 Evaluation and Comparison

We have concentrated our evaluation on four key OS services that we
believe, are essential to the efficient execution of a parallel application.
These services are; kernel IPC, memory management, application message-
passing and disk 1/O throughput. The metrics implemented to measure
each service only provide a limited view and a rough estimate. But, they

11

were deemed adequate for the purpose of our comparison. The NAS Par-
allel Benchmarks were also used to evaluate overall system performance.
The following sections describe our motivation for selecting each service,

and present performance comparisons between Paragon OSF/1 and
SUNMOS.

4,1 Kernel IPC Service

The performance and scalability of the kernel IPC service is critical to the
correct functionality of message-based operating systems. OS services
such as virtual memory, process management and filesystems rely on it
to communicate either locally or remotely to other nodes. Local IPC
involves communication between the microkernel and the local server,
and between an application and the microkernel. Remote IPC involves
communication between microkernels located on different nodes. We
have focused our evaluation on remote IPC as scalable and robust com-
munication among hundreds to thousands of nodes presented greater
challenges than local communications within a node. Various optimiza-
tions for local IPC have been proposed using thread migration to reduce
communication overheads, and server co-location by embedding most
commonly server services in the kernel.

Paragon OSF/1 and SUNMOS remote IPC are implemented in two
orthogonal manners. Paragon OSF/1’s goals are to maintain the Mach
local IPC functionality and semantics. SUNMOS’ goals are scalability.
Paragon OSF/1 remote IPC, or NORMA (No Remote Memory Access)
IPC [Bar91] [Bry93b], fully extends the local IPC protocol to let threads on
different nodes communicate as if they were on the same node. Due to
the complexity of the Mach IPC protocol, this results in an even more
complex protocol which suffers from serious limitations and lack of scal-
ability [Lan93]. NORMA IPC uses a “stop and wait” protocol with a win-
dow size of one page (8 KBytes per page). NORMA messages are
decomposed into packets of a page size, and an acknowledge is sent for
every packet transmitted. NORMA also uses a connection oriented proto-
col where all packets of the same message need to be sent before the next
message can be processed. More importantly, pages belonging to a mes-
sage are wired in memory to avoid possible modifications during trans-
fer. Wired pages create memory shortages (i.e. not enough memory to
run an application) when one node communicates with many other
nodes, e.g., an I/O node receiving data from compute nodes or compute
nodes paging to the boot node to load a program.

12

Paragon OSF/1 (R1.1.3) SUNMOS (S2.1.94)

40

40

node-to-node Out-Of-Line (OOL) 1 nodeto 1 node PUMA Message

3Bf] 35F
30 F 30F
25¢F
20F
15 F

10F

Bandwidth (MBytes/s)
Bandwidth (MBytes/s)

sF

00 8102 16384 24576 32768 40960 49152 57344 65536 06

: 8192 16384 24576 32768 40960 49152 57344 65536
Size (Bytes) Size (Bytes)

FIGURE 8. NORMA IPC (OOL) Bandwidth FIGURE 9. SUNMOS PUMA Bandwidth

Figure 8 shows NORMA IPC Bandwidth (R1.1.3) between two compute
nodes using the Out-Of-Line (OOL) mode. OOL mode transmits data by
passing pointers to the data instead of the data itself so large ranges of
the virtual address space can be sent. NORMA OOL bandwidth at 11
MBytes/s was measured to be only 5% of the peak hardware bandwidth.
Performance discontinuities correspond to page breaks.

SUNMOS remote IPC between the kernel and the YOD and FYOD serv-
ers is implemented using the PUMA message-passing module [Pie94].
PUMA wuses a raw protocol above the network interface hardware.
PUMA breaks messages into 1792 Byte packets. 1792 Bytes is the largest
packet possible due to a hardware limitation of the Paragon Network
Interconnect Chip (NIC). Figure 9 shows PUMA bandwidth. A small
peak at 1792 Bytes occurs, then a steady increase in performance is
observed until the maximum receiving buffer limit is reached (28
KBytes). Increasing the buffer limit will improve performance, but will
create a scalability problem by reserving too many buffers when many
nodes communicate. After 28 KBytes, an acknowledge is sent by the
receiving node to flush its buffer. Performance discontinuities occur at
page breaks. Nevertheless, PUMA provides more than twice the
NORMA IPC bandwidth.

4.2 Memory Management

Memory management performance and scalability is critical to ensure
efficient usage of the local memory available on each node, as most CFD
applications use large data sets. Memory management overhead to move
data from kernel space to user space, and to copy messages in different
user space locations can dominate performance during message-passing
transfers. The Paragon mesh can transmit data at 175 MBytes/s. Hard-

13

ware solutions such as the communication co-processor and the Line
Transfer Units (DMA devices) help to hide the copy latency. But many
applications require extra-copy operations such as scattering or gathering
of data from communication buffers (i.e. irregular grid boundary
exchanges).

Memory management differs significantly on Paragon OSF/1 and SUN-
MOS. Paragon OSF/1 supports distributed virtual-memory through the
Mach eXternal Memory Managers (XMM). Under the Mach 3.0 kernel,
memory managers are responsible for performing pagein and pageout
operations on the local memory objects they manage. XMM is a distrib-
uted-memory extension of the Mach 3.0 memory manager. XMM trans-
parently intercepts remote page fault references from the local memory
manager and issues requests to the corresponding XMM managers where
the requested pages are located. Instances of XMM running on each node
communicate (via NORMA IPC) to maintain coherent information about
a shared memory object mapped on different nodes. XMM implements a
strict multiple-reader/single-writer sharing policy. On the other hand,
Sunmos uses only real memory. All the memory not occupied by the ker-
nel is available to an application. The kernel creates a single stack address
space to execute user applications. Users can specify the amount of heap
and stack address space they need as well as the communication buffer
space.

4.2.1 Memcpy Test

This test measures the bandwidth of a memory copy operation. The
memory copy bandwidth for both Paragon OSF/1 and SUNMOS was
measured for different copy sizes using the “mencpy” library call
Figure 10 shows bandwidth performance for Paragon OSF/1 using o
versions of memcpy: the R1.13 version, and a fast version provided by
Intel SSD available under their next OS release. Two tests were used. One
test has the receiving address of the copy operation un-initialized. The
second test has the receiving address initialized to ensure they are in pri-
mary memory. Both tests have the source addess initialized and run on a
compute node. The reason for initializing or not initializing the receiving
address is to evaluate the VM hit by not having bothsource and destina-
tion addresses in physical memory. With the slow memcpy, bandwidth
increases from 4 MBytes/s to 19 MBytes/s when VM is not used. With
the fast memcpy, bandwidth increases drastically from 4.5 MBytes/s to
65 MBytes/s. The fast memcpy exacerbates the inability of the VM sys-
tem to page fast enough. Figure 11 shows the SUNMOS bandwidth per-
formance for the same two tests. Identical performance is obtained for
both tests since SUNMOS only uses real memory. The memcpy band-
width under SUNMOS is slightly higher than the fast Paragon OSF/1
version at 67 MBytes/s due to less system overhead.

14

Paragon OSF/1 (R1.1.3) SUNMOS (52.1.94)

80

75F

70F E

65 FA kb dobpcriicbiobicedd bbbk bbb Ak Ak
- 60 E
E >k e—ememcpy i8> FHimemc
g‘ 2(5) : gmgmg8¥ ‘f’;'é{‘ '?'t'él'?ét'?n . : ;% 451(5) : HmemCr[))))// with initialization
2 A—Amemcpy fast with initialization =
< 40F E < 40 F
S 35F i1 235¢
3 sof { Za}
3 25F 18 25

20 F 20F

15F E 15¢F

10F E 10F

5F 5
% 1 2 3 4 5 6 7 8 9 1011 O 1 2 3 4 5 6 7 6 9 10 11
Size (MBytes) Size (MBytes)
FIGURE 10. OSF/1 AD nencpy FIGURE 11. SUNMOS nentpy
Bandwidth Bandwidth

4.2.2 Memory Availability Test #1

The motivation for this test is to measure the amount of real memory
available to an application, and to evaluate memory management perfor-
mance (virtual memory for OSF/1, and real memory for SUNMOS). The
test program measures the amount of time it takes to allocate a chunk of
memory and iterates it through twice. The first iteration writes one byte
on each page. The second iteration reads a byte on each page starting
from the first page. The test was run for different memory allocation sizes
(16 to 32 MBytes) and on an increasing number of compute nodes (1 to
16).

Figure 12 shows the Paragon OSF/1 (R1.1.3) execution time for the first
iteration (write), the second iteration (read) and total time (write+read).
The maximum amount of real memory available to an application is
approximately 24 MBytes. When more than 24 MBytes are allocated, the
execution time increases indicating virtual memory activity. This
includes the pageout of unused pages of the server and pagein of the
requested pages. This also indicates that the remaining 8 MBytes (32
MBytes per node) are occupied by the kernel and OSF/1 server. As more
nodes page, and produce more NORMA traffic, VM performance gradu-
ally deteriorates. When a small number of nodes are paging (1-2), the
total execution time increases slightly due to the low NORMA traffic.
When 16 nodes are paging, the execution time increases so drastically
that VM is unusable. When a large number of nodes simultaneously
page, the communication burst occurring on the pager node throttles
paging performance due to NORMA IPC limitations. When a lot of mes-
sages arrive on a node and have to be wired, a low-memory condition
occurs. Low-memory conditions produce more pageout/pagein opera-
tions for freeing memory, but also generates more communication and

15

pages wired. At some point, the OS trashes itself unable to service any
more requests. For reducing this bottleneck, a paging-tree can be setup
using the eight I/O nodes as node pagers. Node pagers are used as inter-
mediate pagers between a paging node and the boot node. Each pager
node services paging requests from a finite set of compute nodes. NAS’s
configuration has a pager node for each consecutive two rows of com-
pute nodes (ratio 1/26). Although, this helps reduce NORMA message
contention, pager nodes still produce crashes.

Paragon OSF/1 (R1.1.3) SUNMOS(SZlSM
1050 T T T T T T 1050 T T T T

1000 \Write (1 node) rit 6é no§
rite de)
900 rl nodes
850 i%/f}% flteaggfﬁs odes)

950 Read (1 node)
900 HWr|te+§eadd(1 node)
rite (2 nodes,
850 B-Read 52 nodes;
800 BEHlwrite+Read (2 Nodes)
7 A—Awrite (4 nodes)
50 ead (4 nodes)

I~ d d
T 90F BB (enoven 7 700
c Read (16 Nodes) © 650
8 600 \Write+Read (16 nodes) g 600
b 550 S 550
500 & 500
© 450 ® 450
= 400 € 400

Size (MBytes) Size (MBytes)
FIGURE 12. Paragon OSF/1 Memory FIGURE 13. SUNMOS Memory
Availability #1 Availability #1

In the 4-node case, a second sharp increase in execution time occurs
when the application has paged out all unused portions of the server and
begins paging against itself. This second increase occurs around 29
MBytes.

Under SUNMOS the total execution remains constant until memory allo-
cation reaches its maximum at 31.25 MBytes (see Figure 13). The remain-
ing memory is used by the kernel and the communication buffer used to
load the test code. The kernel size is less than 0.3 MBytes. Performance is
also independent of the number of nodes since each node has its own
independent memory manager.

4.2.3 Memory Availability Test #2

The second test run is a modified version of the first memory availability
test. The second iteration was modified to start reading from the last page
allocated instead of the first one. The motivation for this change is to
reduce paging requirements.

16

Paragon OSF/1 (R1.1.3)

1000 ¥—Vwrite (4 nod
950F y-yRcad (dnoe
900 Hfuirte:ead (@ node)
850 GERead 516 nodes

800 B\Write+Read (16 Nodes)

4 26 28 30 32

Size (MBytes)

FIGURE 14. Paragon OSF/1 Memory Availability #2

In spite of the low paging requirement, an increase in execution time is
observed after 24 MBytes, when unused pages are paged (see Figure 14).
Although, this time increase is less drastic than on test #1, the perfor-
mance degradation observed on 16 nodes seriously limits the usability of
VM.

4.3 NX Application Message-Passing

Parallel applications under both Paragon OSF/1 and SUNMOS use the
NX message-passing library [Int93] for communicating. The NORMA
IPC and PUMA interfaces are only used by OS system services. Perfor-
mance of the NX message-passing layer is therefore critical to user appli-
cations. The message-passing tests we implemented, measure the
message-passing latency and bandwidth between compute nodes, and
the scalability of a collective synchronization operation. Both of these
operations are commonly found in many parallel applications.

4.3.1 Bandwidth Test

This test measures the time necessary for sending a message around a
four-node ring. The reason for using four nodes is to ensure that the
receive operation is posted before the send is made. The Paragon OSF/1
NX implementation has an extra buffer copy when the receive is not
posted before the corresponding message is sent (see Figure 15). The four
nodes are synchronized before starting. The roundtrip time was mea-
sured for various message sizes.

17

Paragon OSF/1 (R1.1.3) SUNMOS (S2.1.94)

170 170
160 e crecv before 160 [
150F kcrecv after 150 [
140[140 [
(5130 L @130 r
Q1201 g 120
gliof €110
S100f 2100
< 90 e Q0
= 80 5 80r
s 70¢ z 701
T e0f 2 60,
& s0f o 50
401 40
30 30
20 20
10 10¢
00 64 128 192 256 320 384 448 51z 0 64 128 192 256 320 384 448 512
Size (Kbytes) Size (Kbytes)

FIGURE 15. Paragon OSF/1NX FIGURE 16. SUNMOS NX Communication
Communication Bandwidth Bandwidth

Figure 15 shows the Paragon OSF/1 NX bandwidth. The peak band-
width at 35 MBytes/s is obtained for message sizes over 64 Kbytes when
the crecv is posted before the csend. The peak bandwidth measured is only
20% of the peak hardware bandwidth.

Figure 16 shows the SUNMOS NX bandwidth. SUNMOS significantly
outperforms Paragon OSF/1. SUNMOS provides almost 100% of the
peak hardware bandwidth due to a low-overhead protocol. SUNMOS
messages are managed directly in user space and there is no control flow.
The sender does not check if there is enough buffer space on the receiving
side.

4.3.2 Latency Test

This test measures the time necessary for sending a message between two
adjacent nodes. The one-way message time was measured by dividing
the time of a round trip message between the two communicating nodes
by two. The latency for zero-length message, for Paragon OSF/1 (see
Figure 17) is of the order of 96 ps. The time increase discontinuities at
every 1792 Bytes message size corresponds to the internal packet size
used by the NX message-passing driver. The latency for SUNMOS (see
Figure 18) is on the order of 64 ps. The initial peak at the beginning corre-
sponds to the LTU start-up time. SUNMOS messages are also not pack-
etized. Both tests did not use the Message Co-Processor (MCP) due to
hardware unavailability.

18

Paragon OSF/1 (R1.1.3) SUNMOS (S2.1.94)

400 T T T T T T T T T 400 T T T T T T T T T
380]
360
340
320
300
280
] gzeo [
© 240

E o
200
180
160 NN
140
120
100
L 80
600 248 896 1344 1792 2240 2688 3136 3584 4032 600 443 896 1344 1792 2240 2088 3136 3584 2032

Size (Bytes) Size (Bytes)

FIGURE 17. Paragon OSF/1 NX Latency FIGURE 18. SUNMOS NX Latency

4.3.3 Global Synchronization Test

This test measures the amount of time necessary to synchronize a goup of
nodes using the NX gsync synchronization call. Figure 19 shows SUN-
MOS significantly outperforms Paragon OSF/1. SUNMOS shows better
scalability as the number of nodes involved in the synchronization
increases.

0.010 LI B B BEL BN L B BN BUL B B B L B B B B B B

L —eparagon OSF/1 (R1.1.3 g
0.009 A—ASunmos (82.1.951))
0.008 [)

0.007

0.006

0.005

0.004

Time (Seconds)

0.003

0.002

0.001

0.00 TP RO TP NN NP TAPUNN RPN TR SO TP TAPURN RO TP HAPU R U SR P P
0000710 20 30 40 50 60 70 80 90 100110120130140150160170 180190200210

Nodes Involved

FIGURE 19. NX Synchronization Performance

19

4.4 Disk I/O Throughput

CFD applications typically manipulate large data sets of the order of many
Gigabytes. To avoid potential I/O bottlenecks, the operating system must
be capable of reading or writing large amounts of data in parallel to match
the high-bandwidth requirement of wuser applications. Mismatches
between I/O bandwidth requests and processor speed will usually result
in unacceptable performance degradation. Parallel file systems have been
used to distribute I/O requests across specialized I/O nodes on HPS: CFS
[Int92], SDA [Con92] and PFS [Int93]. By striping a data set across multiple
I/0O nodes, simultaneous accesses can be performed improving the overall
I/0 throughput. As the number of I/O nodes increases, potentially linear
speedup in I/O throughput can be obtained.

Paragon OSF/1 has two file systems: the Unix File System (UFS) and the
Parallel File System (PFS). The NAS configuration has UFS on two I/0
nodes and PFS files are striped across the six remaining I/O nodes. The
amount of data stored in each stripe or stripe-unit is 64 KBytes (configured
at boot time). Each I/O node is connected via a SCSI-1 interface to a RAID
disk composed of five 3.5in disk drives. Although SUNMOS does not have
a file system, SUNMOS applications can access the Paragon OSE/1 filesys-
tems (UFS and PFS) through the FYOD servers. We measured disk 1I/O
throughput for Read and Write I/O requests by reading and writing a 60
MByte sequential file to avoid potential I/O node caching effects. I/O
caching can improve performance, but we were interested in measuring
the effective disk I/O throughput delivered to an application.

4.4.1 Write Throughput

Figure 20 shows the Write I/O throughput for Paragon OSF/1 for different
block sizes on both UFS and PFES. UES throughput is approximately 0.5
MBytes/s. The performance obtained on UFS is independent of the block
size. Under OSF/1, UFS files are mapped into the compute node memory
for caching purposes, and use XMM to page file data in and out, rather
than explicitly calling on the file system to write or read file data. Due to
the current limitation of NORMA IPC to only handle pages one at a time,
the actual disk I/O is limited to one 8 KByte page. In contrast, PFS
bypasses the UFS caching optimization and performs I/O requests directly
to the disk. For one compute node, the performance reaches its peak after a
block size of 64 KBytes.

The maximum throughput from a single node was measured at 10 MByt-
es/s for PFS. When the number of nodes increases significantly, perfor-
mance degradation is observed for block sizes less than 64 Kbytes due to
disk bandwidth limitations (all nodes read from the same I/O node).

20

Paragon OSF/1 (R1.1.3) SUNMOS (S2.1.94)

12 T T T T T T T 12
1 11
10 0
—~ of ol
v Q)
D sf ger
2 2
o 7r 5‘ m
>3 s
= 6[~er ®—OUFS (1 node
5° 5 X—XPES (1 nodeg
=Y a . | ++PFS (2 nodes)
< sf 25
= =)
3 S
Q 4 34r
L _
F an = 1
2) rﬂ\’/‘-
1 E 1 1
0 ¥ ¥ ¥ 1 ¥ 1 1 1 ¥ 0 Lk sk Sk L H L L L
0 262144 524288 786432 1048576 1310720 1572864 1835008 2097152 0 262144 524288 786432 1048576 1310720 1572864 1835008 2097152
Block Size (Bytes) Block Size (Bytes)
FIGURE 20. Paragon OSF/1 Write FIGURE 21. SUNMOS Write
Throughput Throughput

As the block size increases and more I/O nodes are used, performance
improves but still underperforms single node performance due to NORMA
IPC limitations. The 16 node experiment hung the system. Figure 21 shows
write throughput performance for SUNMOS using one FYOD server. The
FYOD server program running in the OSF/1 partition is used to redirect
I/0 from compute nodes into the UFS and PFS filesystems. FYOD uses an
unbuffered protocol to communicate with the compute nodes. Compute
node I/0O requests are chunked in 1792 Byte packets before being trans-
ferred to the FYOD server. The maximum throughput measured is around
3 MBytes/s for UFS. This corresponds to the maximum disk throughput by
an I/0O node. Write performance on PFS is worse due to the small packet
size. 1792 Bytes Write requests on PFS produce very low performance (see
Figure 20). Significant performance improvements could be obtained by
using a more efficient protocol (i.e. larger packets and buffering), as the
PUMA module peak bandwidth was measured at around 30 MBytes/s.
Adding more FYOD servers will increase throughput but requires spliting
the output file into multiple files (one for each FYOD server).

4.4.2 Read Throughput

Figure 22 shows Read throughput performance for Paragon OSF/1. Read
throughput for UFS is better than Write throughput due to the VM file
caching optimization. However, Read throughput on PFS is slower than
Write. The NORMA IPC scaling problem is more exacerbated when read-
ing from PFS. Compute nodes have to gather data from multiple I/O nodes
and thus produce more incoming NORMA messages.

21

Paragon OSF/1 (R1.1.3) SUNMOS (S2.1.94)

®—OUFS (1 node,
X—XPES (1 node
+—+PFS {2 node}s)

Throughput (MBytes/s)
o - N w) (52 o ~ e} ©
Throughput (MBytes/s)

o kN W A @O O N © ©
T T T T T T T

* K ¥ * *
0 252'144 524'288 786'432 104;575 1310720 157;854 1835‘:008 2097152 0*’ e 262“;44 52:;88 786432 104‘;’576 1310720 1572864 1835008 2007152
Block Size (Bytes) Block Size (Bytes)
FIGURE 22. Paragon OSF/1 Read FIGURE 23. SUNMOS Read
Throughput Throughput

Since compute nodes have much less available memory than I/O nodes,
due to the application code, some NORMA messages have to be dis-
carded, forcing I/O nodes to resend data. Figure 23 shows throughput
performance for SUNMOS. Read performance is similar to Write
throughput.

4,5 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [Bai93] are a set of five kernels and
three pseudo-application benchmarks which represent computational
parts of important CFD application codes. The NPB'’s are useful metrics
to compare the overall application performance delivered by both OS’s.
The Class A size and the larger Class B size specifications were used to
compare performance and scalability. For the Class A size (see Figure 24),
SUNMOS outperforms Paragon OSF/1 on the eight benchmarks. For the
FFT and LU Benchmarks that have small messages, and a higher commu-
nication to computation ratio, SUNMOS is approximately 1.6 times faster
than Paragon OSF/1. For the Class B size (see Figure 25), SUNMOS out-
performs Paragon OSF/1 on only seven of the eight benchmarks. We
could not run the CG implementation under SUNMOS due to memory
exhaustion (>32 MBytes). The CG implementation requires each node to
initialize the entire sparse-matrix before decomposing it. This implemen-
tation is viable under Paragon OSF/1 in spite of the performance degra-
dation caused by using VM, because the initialization phase is not
counted in the execution time reported.

22

Class A (128 Nodes) Class B

Paragon OSF/1 (R1.1.3)
Paragon OSF/1 (R1.1.3)

SUNMOS (S2.1.94)
SUNMOS (S2.1.94) K

£
S

N

Speedup Ratio to C90/1
w

Speedup Ratio to C90/1
[

N
T

C90/1 cog

0 0=
EP MG CG FFT IS APPSP APPBT APPLU EP MG cG FFT IS APPSP APPBT APPLU
(NoDES) (208) (128) (128) (128) (128) (204) (204) (208)

FIGURE 24. NPB Benchmarks FIGURE 25. NPB Benchmarks
(Class A) (Class B)

Although CG runs under OSF/1, the large wall-clock execution time due
to VM paging makes this result much less significant. For the FFT and LU
Class B benchmarks, SUNMOS is approximately 1.7 times faster than
Paragon OSF/1. In addition, as the problem size increases, from Class A
to Class B, SUNMOS shows better scalability.

5.0 Summary

A functional, efficient and scalable operating system is an essential com-
ponent of the success of Highly Parallel Systems. The 227 node Paragon
XP/S-15, installed at NAS, has been unable to support a real user work-
load due to the lack of scalability and immaturity of the Paragon OSF/1
operating system. Distributed-memory systems present complex chal-
lenges to OS developers due to the distributed location of system
resources. Scalable and efficient protocols must be designed to distribute
control while attempting to maintain a single system image. The Micro-
kernel OS architecture attempts to address some of these issues by dis-
tributing conventional operating system functionality into a small kernel
providing core system services, and a set of distributed servers providing
specialized high-level OS services. However, our evaluation of the two
microkernel operating systems run on the Paragon; Paragon OSF/1 and
SUNMOS shows that significant scalability issues and design problems
remain to be solved before microkernels will function correctly.

Paragon OSF/1 services such as NORMA IPC, virtual-memory, and par-
allel I/O are unusable due to their inefficiency and lack of scalability. The

23

Paragon OSF/1 core technology (Mach 3.0 Microkernel, NORMA IPC,
XMM) is very immature, and unfit for large configurations without sig-
nificant redesigns. Numerous NORMA IPC protocol failures, and poor
performance (only 5% of the peak hardware performance) throttle the
performance of OS services (such as VM paging and parallel I/O) which
rely on it for communicating. The small ratio of I/O nodes to compute
nodes (1/26) also exacerbates the scalability problems of virtual memory.
One may question how useful virtual memory will ever be on a diskless
node system. The same could apply to time-sharing on compute nodes.
Time-sharing was never used due to the paging inefficiency. Paragon
OSEF/1’s full functionality design produces a large and complex OS. Para-
gon OSE/1 occupies 8 Mbytes per node (25% of the memory available on
each node).

On the other hand, SUNMOS provides higher performance, and more
importantly, better scalability. The NX message-passing bandwidth deliv-
ered to applications is close to 100% of the peak hardware bandwidth.
Latency is 30% less than the Paragon OSF/1 latency. On compute nodes,
SUNMOS embeds all its functionality in the microkernel. There is no
server running on compute nodes. Paragon OSF/1 suffers from requiring
a large OSEF/1 server on each compute node to provide minimal compute
functionality. This reduces the amount of memory available to user appli-
cations, and produces extra communication load to the kernel. The kernel
has to handle communication from both the application and the server. In
addition, since the OSF/1 server runs in user space, an extra context
switch is required to handle communication between the kernel and the
server. An other significant advantage of SUNMOS is the loosely-cou-
pling between microkernels. If one SUNMOS node fails, an application
can still be run on the other available nodes. The tightly-coupled single
system image implemented by Paragon OSF/1 makes the entire system
dependent on a single node failure. SUNMOS loosely-coupled model
also improves scalability by reducing the amount of kernel communica-
tions. However, SUNMOS functionality is limited to only loading and
running a parallel application on a subset of nodes. SUNMOS does not
support virtual-memory and time-sharing. The SUNMOS implementa-
tion also relies on having Paragon OSF/1 running on the service partition
for file systems and networking services. However, having control on
where the I/O and control servers run provides a flexible resource man-
agement solution. Both operating systems have very limited scalable I/O
performance. Paragon OSF/1 problems are related to the inefficiency of
NORMA IPC. SUNMOS problems are due to the inefficient protocol used
by FYOD, and the lack of a true parallel file system.

24

6.0 Acknowledgments

The author wishes to thanks Stephen Wheat, Kevin McCurley, Rolf Rie-
sen of Sandia National Laboratory, and Mack Stallcup and Thanh Phung
of Intel SSD for their assistance and numerous comments on using SUN-
MOS on the Paragon.

7.0 References

[Bai93] “The NAS Parallel Benchmarks”, D. Bailey et al., NASA Technical
Memorandum 103863, NASA Ames Research Center, July 1993.

[Bar91] “A fast Mach Network IPC Implementation”, J. Barrera, in Proc. of
the USENIX Mach Symposium, November, 1991.

[Bars91] “One Year with an iPSC/860”, E. Barszcz, NAS Report RNR-91-
001, NASA Ames Research Center, February 1991.

[Bry93a] “An introduction to Mach 3.0’'s XMM Subsystem”, B. Bryant et
al., Draft Document, OSF, June 1993.

[Bry93b] “NORMA IPC: A Task-to-Task Communication System for com-
puters Systems”, B. Bryant, OSF R.I. Draft Document, October 1993.

[Con92] Connection Machine CM-5 Technical Summary, Thinking
Machines Corporation, Cambridge, MA, November 1992.

[Cor92] “The Vesta Parallel File System”, P. Corbett et al., IBM T.]. Watson
Research Center, July 13, 1992.

{Dea91] “Data Movement in Kernelized Systems”, R. Dean and F
Armand, Proceeding of the USENIX Workshop on Micro-Kernels and Other
Architectures, April 1992.

[Dou9l] “A Comparison of Two Distributed Systems: Amoeba and
Sprite”, F. Douglis, M. Kaashoek, A. Tanenbaum and J. Ousterhout, Vrije
University Report IR-230, February 1991.

[Duk93] “Cluster Computing on High Performance Networked Worksta-
tions”, D. Duke, Proc. Workshop on Distributed Computing for Aerosciences
Applications, NASA Ames Research Center, October 1993.

[Gol90] “Unix as an Application Program”, D. Golub et al., in Proc. of the
Summer 1990 Usenix Conference.

[Gro93] “Early Experiences with the IBM SP1 and the High-Performance
Switch”, W. Gropp, Technical Report ANL/MCS-93/41, Argonne National
Laboratory, November 1993.

[Hil92] “An Architectural Overview of QNX”, Dan Hildebrand, in Proc. of
the Usenix Workshop on Micro-Kernels, Seattle, April 1992.

25

[How93] “The NASA Lewis Testbed for Cluster-Based Parallel Process-
ing”,]. Horowitz et al., Proc. Workshop on Distributed Computing for Aero-
sciences Applications, NASA Ames Research Center, October 1993.

[Int91] iPSC/2 and iPSC/860 User’s Guide, Intel Supercomputer Systems
Division, Beaverton, OR, April 1991.

[Int93] Intel Paragon XP/S User Guide, Intel Supercomputer Systems Divi-
sion, Order Number: 312489-001, Beaverton, OR, April 1993.

[Kun93] “Impact of ATM Networks on Distributed Computing”, H. T.
Kung, Harvard Technical Report, October 1993.

[Lan93] “NORMA IPC Version Two: Requirements”, A. Langerman, OSF
R.I. Draft Report, August, 1993.

[Loe92] “OSF Mach: Kernel Principles”, K. Loepere, Open Software Foun-
dation, February 1993.

[Nas93] “Numerical Aerodynamic Simulation Program Plan”, NASA
Ames Research Center, September 1993.

[Pie94] “PUMA Message Passing Module: Personal Communication”, P.
Pierce, Intel SSD, January 1994.

[Rie94] “Experience in Implementing a Parallel File System”, R. Riesen et
al., Sandia National Laboratory, Albuquerque, 1994.

[Roz88] “The Chorus Distributed Operating System”, M. Rozier et al.
Computing Systems, 1(4),1988.

[Sim93] “Six Years of Parallel Computing at NAS (1987-1993): What Have
We Learned?”, H. Simon, Presented at NAS New Technology Seminar,
NASA Ames Research Center, December 1993.

[Tra93] “Evaluation metrics for the Paragon XP/S-15”, B. Traversat et al.,
Proceedings of the 1993 Intel Supercomputer Users Group, St. Louis, October
1993.

[Tra94] “Acceptance Test for the Intel Paragon XP/S-15”, B. Traversat and
D. McNab, NAS Report RND-94-004, NASA Ames Research Center, Feb-
ruary 1994.

[Whe94] “PUMA: An Operating System for Massively Parallel Systems”,
S. Wheat et al., Proceedings of the Twenty-Seventh Annual Hawaii Interna-
tional Conference on System Sciences, Hawaii, 1994.

[Zaj93] “An OSF/1 Unix for Massively Parallel Multicomputers”, R.
Zajcew et al., 1993 Winter USENIX, January 1993.

26

RND TECHNICAL REPORT

Title: Distributed-Memory OS for Highly Parallel
Systems: Experiences and Lessons from Paragon
OSF/1 and SUNMOS

Author(s): Bernard A. Traversat

Clearance:

Form 427 has been filed with the division secretary. This
report is unclassified. Author’s initials.
Reviewers:

“I have carefully and thoroughly reviewed this technical
report. I have worked with the author(s) to ensure clarity of
presentation and technical accuracy. I take personal respon-
sibility for the quality of this document.”

Signed:

Name: Sam Fineberg

Signed:

Name: Jeff Becker

Branch Chief: Bruce Blaylock

Approved:

Date & TR Number:
RND-94-015 September 1994

27

