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Abstract

This paper presents the results of an experiment to study the per-
formance of four SIMD machines. The objectives of this study are to
analyze the cost of regular communication on several SIMD machines and
study its impact on the performance of two kernels. The machines are: a
32k processor CM2, a 16k processor MPP, a 16k processor MasPar MP-1,
and a 4k processor DAP 610C. Regular communication is exemplified,
in this study, by the shift operation where all elements of an array are
shifted some number of positions along an array dimension. The cost of
shift operations on the four machines is measured and analyzed for sev-
eral two-dimensional arrays. Also, the ratio of compute speed to shift
speed is computed for each machine. The low performance rates for basic
operations on the CM2 are further investigated using several loops. In
addition, performance rates and the communication costs for two kernels
on the four machines are measured and analyzed. The study shows that
shift cost varies significantly from one machine to another, and depends
on several factors including network topology, communication bandwidth,
and the compilation partitioning scheme. Results also show that the com-
munication overhead is quite significant on some of these machines even
for nearest neighbor communication. Finally, results from this study are
useful for obtaining a rough estimate of the communication overhead for
many algorithms on these machines.
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1 Introduction

The performance of machines with many small processors has varied significantly be-
tween one application and another. Some of them achieve a reasonable percentage of
their peak rates on a variety of applications while others do that only for very specific
well written codes. The results of NAS Parallel Benchmark [2] show these trends even
for kernels. It is well known that the performance of these machines is dependent on
several factors including the communication network, the computational algorithm,
and the software environment, including the programming language used.

The performance of Single Instruction Multiple Data (SIMD) machines has been
investigated by several researchers. In particular, the performance of the CM2 has
attracted many researchers. Early work by Levit [9] using the fieldwise model gives a
good understanding of the communication cost on the CM2. Pozo [11] also used the
fieldwise model to develop performance models for communication and computation
on the CM2. Recently, Chang [4] developed a timing model for both the communi-
cation time and the arithmetic time using the slicewise model. On the other SIMD
machines, the work by Fatoohi and Grosch [7] is one of the few to analyze the perfor-
mance of the MPP. As far as a comparison between several SIMD machines, there has
been no real attempt to address this issue except for some performance comparison
between two machines at the application level.

This study is an attempt to understand the impact of regular communication on
the performance of four SIMD machines using high level programming languages. The
machines chosen for this study are: a 32k processor CM2 at NASA Ames Research
Center, a 16k processor MPP at NASA Goddard Flight Center, a 16k processor
MasPar MP-1 at MasPar facilities in Sunnyvale, California, and a 4k processor DAP
610C at AMT facilities in Irvine, California. Regular communication is exemplified
in this study by the shift operation where all elements of an array are shifted some
number of positions along an array dimension. First, the cost of shift operations
for several array sizes is measured. Then, performance models are developed for the
different machines. The ratio of compute speed to shift speed is also computed for
each machine using different array sizes. In addition, the computation cost for several
simple loops on the CM2 is investigated.

Two numerical algorithms are also considered in this study. The algorithms are
a four color cell relaxation scheme for the solution of the Cauchy-Riemann equations
and an ADI method for the solution of the diffusion equation. These algorithms were
first implemented on the MPP; see [7, 8] for details. Recently, they have been imple-
mented on the CM2, MP-1, and 610C for several domain sizes. Some performance
comparison and analysis are also given.

2 Architectures

Some of the main features of the four SIMD machines are listed in Table 1; for more
details see [1, 3, 10, 12]. The table lists features for the machine configurations tested.
These features show that the CM2 is different from the other machines especially in
the floating point implementation and network topology.



Table 1: Machine characteristics

Feature CM2 MPP MP-1 610C
No. of processors 32k 16k 16k 1k
Clock rate (Mhz) 7 10 12.5 10
Memory per processor (kbit) 1024 1 128 64
Peak 32-bit + rate (Mflops) 7168 430 1721 560
Peak 32-bit x rate (Mflops) 7168 216 1061 472
Floating point implementation 64-bit 1-bit 4-bit 8-bit
Connectivity Hypercube | 4-NN 8-NN 4-NN
Front end machine Sun 4/490 | Vax 780 | Vax 3520 | Sun 3/50
Programming language Fortran Pascal | Fortran | Fortran

NN: Nearest Neighbor

The CM2 at NAS has 32k 1-bit serial processors and 1024 processing elements
(PEs). Each PE is a vertex of a ten dimensional hypercube, and has a 64-bit Weitek
floating point unit (FPU) and 4 MBytes of memory. Each FPU can perform two
floating point operations, add and multiply, every cycle with a peak rate of 14.34
Gflops for 32k processors.

The MPP performs floating point operations in a single bit fashion while the
MP-1 does these operations in a four bit fashion. The DAP 610C has 8-bit coproces-
sors to do floating point operations. This means that these three machines require
many cycles to perform floating point operations, and cannot do more than one of
these operations at a given time.

The processors of the MPP and DAP 610C are connected by a two-dimensional
grid where each processor can communicate directly with its four nearest neighbors.
The processors of the MP-1 are connected by the X-Net where each processor can
communicate directly with its eight nearest neighbors. The processors at the edges
for these three machines are connected to the processors at the opposite edges. The
FPUs of the CM2 are connected in a hypercube topology in which an N-dimensional
grid is embedded using Gray encoding addresses.

The Connection Machine Fortran (CMF) compiler has two execution models:
fieldwise and slicewise. The fieldwise model uses the single bit processors along with
the FPUs to do floating point operations. The slicewise model uses only the FPUs
as the basic processing units. In this work, only the slicewise model is considered.

3 Shift cost

3.1 Measurement conditions

The cost of shift operations on the four machines is measured for several array sizes
using different machine configurations. In a shift operation all elements of an array
are shifted some number of positions along one of the array dimensions. In this work,
only square arrays with power-of-two dimensions are considered. Also, only shifts that



are a power-of-two are considered. Each shift operation is performed several hundred
times during dedicated time and the average time is reported. Also, the reported
results represent the average times of two shifts along two different directions since,
for some machines, shifting along one dimension is faster than shifting along other
dimensions.

There are two types of shift operations on these machines: circular shift, where
data shifted out of the processor array are inserted at the opposite edge, and end-off
shift, where data shifted out is lost and zeros are shifted in at the other edge. In
this study only the fastest way to shift a power-of-two two-dimensional array on each
machine is considered. Based on some experiments, the fastest functions to do shift
on the corresponding machines are: eshift (circular shift) on the CM2, shift (end-off
shift) on the MPP, eoshift (end-off shift) on the MP-1, and shap (end-off shift) on the
610C.

The following compilers are used to generate the timing results: the CMF compiler
release 1.1 operating in the slicewise model for the CM2, the MPP Pascal compiler
for the MPP, the MasPar Fortran (MPFortran) compiler release 2.0 for the MP-1,
and the DAP Fortran-Plus compiler version 2 for the 610C.

3.2 Timing results

Measurement results on the 8k and 32k processors of the CM2, 16k processors of
the MPP, 4k and 16k processors of the Maspar MP-1, and 4k processors of the DAP
610C are given in Figures 1 through 6. (The solid lines in these figures represent the
measured values while the dotted lines represent the estimated values which will be
discussed later.) The results are for several array sizes, ranging from 64 x 64 up to
512 x 512, shifted by power-of-two steps, ranging from two up to 64 steps. However,
some array sizes are not considered for all machines. For example, only one array
size is implemented on the MPP where the array size has to match the machine size.

The results show that, for a given array, the shift cost increases linearly with the
number of steps shifted on the MPP, MP-1 and 610C. However, on the CM2 this cost
increases nonlinearly up to a certain number of steps, which depends on the array
size and machine size, and then remains constant. These results will be explained
further in the next section.

Each array size is compared across machines in Figures 7 through 10. These
figures show that the cost of shift operations varies significantly from one machine to
another. In some cases, this variation is more than an order of magnitude between
two machines. The results for one array size (128 x 128) show that shift is most
efficient on the MPP. All results show that shift is overall least efficient on the 8k
processor CM2 and overall most efficient on the 16k processor MP-1. The results also
show that shift on the 610C is relatively less expensive (compared to other machines)
for small arrays than for large arrays.

3.3 Performance models

To better understand the behavior of shift operations on the four machines, perfor-
mance models will be developed. The shift cost of the CM2 behaves differently from



that of the MPP, MP-1 and 610C; as shown in Figures 1 through 6. Therefore, the
shift model of the CM2 is different from that of the other machines.

The performance models developed are for shifting a two-dimensional array of size
A (a X a) elements a distance of d steps on a P : (p; X py) processor machine so that
each processor has GG : (g1 X g2) elements of the array, where g; = a/p; and g2 = a/ps.
For simplicity, it is assumed that p; = p; = p so that g; = g2 = ¢ even though these
models can be easily generalized for a rectangular array of processors.

The first model is a simple linear model for ¢ = 1; i.e., the number of array
elements is equal to the number of processors. This model is applicable to shift
cost on the MPP, MP-1, and 610C. The shift cost on a SIMD machine with nearest

neighbor connectivity, 7,,,, is modeled by the following equation for ¢ = 1

Ton = dlogrp+ Coprpy, 9 =1, (1)

where 1,4, is the time to move a 32 bit word to a neighboring processor and Cl, sy, is
the startup time (or latency) in moving data between processors. Since this is a linear
function, the value of C,s, and t,f7, can be easily obtained from two measurements
using different distances.

If the number of the array elements is larger than the number of the processors
used (¢ > 1), then the array has to be partitioned between the processors. Parti-
tioning can be done either by the user or the compiler. Except for the MPP Pascal
compiler on the MPP, all other compilers partition arrays automatically. The par-
titioning approach that the MP-1 and 610C compilers are currently using is called
“cut-and-stack” where the array is partitioned into ¢g* (= A/P) subarrays and these
subarrays are run on the machine sequentially. This approach requires an internal
data movement between subarrays for data at the edges. The following example shows
an array of 64 elements which has been mapped onto a machine with 16 processors
using the cut-and-stack approach. The number of subarrays is therefore four.

: P1 P2 P3 P4 P16
12345678
9 10 11 12:13 14 15 16 1 2 3 4 28
1718 19 20:21 22 23 24 5 6 7 8 32
2526 27 2829 30 31 32 33 34 35 36 e 60
| 3334353637 38 39 40 37 38 39 40 64
4142 43 4445 46 47 48
4950 51 52:53 54 55 56
57585960561626364 a=8 p=4 g=2
Cut and Stack

The shift cost on a SIMD machine with nearest neighbor connectivity for ¢ > 1
is modeled by

T’rm = 92(d toffp + Coffp) + g2tonp + Conp7 g > 17 (2)



where t,,, is the time to move a 32 bit word locally (copying data) and C,,, is the
startup time (or latency) in moving data locally. The first term in Eq. (2) represents
the external data movement cost between processors for g% subarrays while the other
terms represent the internal data movement cost within processors.

The CM2 shift model is different from the previous model since the communication
network as well as the CMF partitioning scheme are different from those of the other
machines. The CM2 communication network is based on an N-dimensional grid
embedded on a hypercube using Gray encoding addresses. The CMF partitioning
approach is called “hierarchical” where arrays are partitioned into blocks of ¢* (=
A/P) elements and each block is assigned to a PE. The above example is also used
to demonstrate the hierarchical approach as follows.

123 456,78 P1 P2 P3 P4 P16
| 910111 12113 1415 16_

1718'19 20' 21 22 23 24 1 3 S ! e

2526|27 2829 30, 31 32 2 4 6 8 56
3334135 96/37 3830 40 o u 13 i B
| 4142143 44,45 46 47 48_ ol I o &

4950'51 52/53 54 55 56

5758!50 60! 61 62 63 64

L a=8p=4g=2
Hierarchical

There are several performance models for shift operations on the CM2. Among
these are the timing models by Levit [9] and Pozo [11] for the fieldwise model and
the timing model by Chang [4] for the slicewise model. The following model is based
on Chang’s model where the timing parameters are computed using a different set
of measurements. In this model P represents the number of PEs, rather than the
number of 1-bit serial processors, and each PE has ¢? elements.

The CM2 shift time depends on the relationship between the number of steps
shifted (d) and the number of PE elements in every dimension (g). For d < g,
shift time has two components: ON-PE and OFF-PE. The ON-PE shift results from
moving data within a PE while the OFF-PE shift results from moving data between
PEs. Shifting a 2-D array with distance d along the first dimension causes moving
d columns, each of size g, to the neighboring PE while g — d columns, also of size
g, move internally within the PE. Shifting along the second dimension has a similar
behavior. This means that the shift cost for the CM2, T,,, is modeled by

Ton =9 (9 = d) tonp + Conp + g d logrp + Cogp,  d <y, (3)

where 555, Coffps tonp, and C,,, are defined as in Egs. (1) and (2) except that
processors here mean PEs. The first two terms of Eq. (3) represent the ON-PE
communication while the next two terms represent the OFF-PE communication.

If the number of steps shifted along one dimension is equal to the number of PE
elements along that dimension (d = g), then all PE elements of the array (¢?) are



Table 2: Measured cost of communication parameters for a 32-bit word (in usec).

Parameter CM2 | MPP | MP-1 | 610C
External communication time (¢,s,) 9.0 3.2 2.7 3.2
External communication latency (C,ss,) | 20.0 | 13.4 | 41.9 7.2
Internal communication time (¢,,,) 0.7 - 5.6 9.0
Internal communication latency (C,,,) 35.0 -1 59.1| 18.0

moved to the neighboring PE; i.e., there is no ON-PE communication. This means
that

Tom = g% togrp + Cogrpy,  d=g. (4)

Finally, if d is a power of two and larger than g, then the CM shift time is twice as
much as for ¢ = d since the longest distance between any two PE addresses is always
two. This is due to the Gray-code ordering of the OFF-PE bits of grid addresses.
This means that

Tem =2 [92 loffp + COffp]: d>g. (5)

The value of the parameters t,¢7,, Coffp, Lonp, and C,,, for different machines can
be obtained from the measured results given in Figures 1 through 6. For the MPP,
MP-1, and 610C, the parameters ¢,s, and C,fs, are obtained by applying Eq. (1)
to the timing results for ¢ = 1. Then the parameters ¢,,, and C,,, for the MP-1
and 610C are approximated using Eq. (2) and the timing results for ¢ > 1. For the
CM2, the parameters t,s, and C, s, are computed by applying Eq. (4) to the timing
results for d = g. Then the parameters ,,, and C,,, are approximated using Eq. (3)
and the timing results for d < g. The measured values of these parameters for the
four machines are given in Table 2. These values show that the ratio of external to
internal communication times (t,sfp/tonp) is higher for the CM2 than for the other
machines, where it is less than one for the MP-1 and 610C. The results for the MP-
1 show that the latencies (Cyfs, and C,yy,) are relatively high which mainly due to
software overhead.

The shift time for the four machines can be estimated using the models (Egs.
(1) through (5)) and the measured timing parameters (Table 2). The dotted lines
in Figures 1 through 6 represent the estimated shift times for these machines. The
differences between the measured and estimated results are within 10% for all cases
and within 5% for most cases.

The performance models show that the hierarchical approach, which is used by the
CMF compiler in partitioning large arrays, is more efficient than the cut-and-stack
approach, which is used by the MP-1 and 610C compilers. This can be explained
by considering the case of quadrupling the array size; i.e., g is doubled. For d < g¢
on the CM2, Eq. (3) shows that the OFF-PE communication time will be at most
doubled, since the parameter C, s, will not change. For the ON-PE communication
time, the first term will increase by a factor of more than four while the parameter
Conp will remain unchanged. Overall, the CM2 shift cost will increase by a factor of
less than four if the array size is quadrupled. For the MP-1 and 610C, if the array



size is quadrupled, then Eq. (2) shows that shift time will increase by a factor of
more than four because of the parameter 1,,,,.

The models also show that with hierarchical there is no internal communication
for long communication (d > ¢) while with cut-and-stack internal communication can
not be ignored. In summary, the hierarchical performance improves for large arrays
while the cut-and-stack performance degrades for large arrays. The two different
approaches cause the 610C to outperform the 32k processor CM2 for small arrays
(Figure 7) while the CM2 outperformed the 610C for large arrays (Figure 10).

Several experiments have shown that for d < ¢ on the CM2 shifting along the
second dimension is more expensive than along the first dimension. These experi-
ments also indicate that the difference between the two shifts is a function of g. Pozo
[11] attributed this difference to the cyclic characteristic of the Gray-code ordering
of the OFF-PE bits of grid addresses. Since the estimated results do not take into
account this overhead and the measured results are based on the average of two shifts
along two directions, the differences between the measured and estimated results can
partially be attributed to the difference between the two shifts.

Another interesting observation is that for a small g, T.,, can be smaller using Eq.
(4) than using Eq. (3) even though d is larger in Eq. (4) than in Eq. (3). This case
is clearly shown in Figure 7 for the 64 x 64 array on the 32k processor CM2 where
there is a dip at d = 2. This happens mainly because the latency times, C,,, and
Cofp, dominate the shift time for a small ¢; see Eq. (3).

The communication bandwidth between adjacent processors (or PEs) can be ob-
tained from the measured value of t,sr, (Table 2). The measured communication
bandwidth is therefore 0.44 MBytes/sec for the CM2, 1.25 MBytes/sec for the MPP,
1.48 MBytes/sec for the MasPar MP-1, and 1.25 MBytes/sec for the DAP 610C.
These measured values are for a unidirectional data transfer. These results show that
the CM2 lags the other machines in communication bandwidth.

4 Compute to shift speed

For scientific programming shift operations are not useful without arithmetic op-
erations. One interesting measure is the ratio of the floating point speed to the
communication speed. This ratio is called « [9]. It is computed by taking the ratio
of the shift time to the floating point time. The floating point time is measured for
each array size by taking the average time of adding and multiplying two arrays of
32-bit elements. Except for the CM2, the time to do addition is not the same as for
multiplication since these machines do not have 32-bit floating point units.

Table 3 lists the Mflops rates obtained from the floating point times. The results
for the CM2 and 610C show performance improves as the array size increases from
64 x 64 to 512 x 512. A factor of 2.9 improvement is observed for the 32k processor
CM2 while a factor of 1.7 improvement is observed for the 610C. (The CM2 results
will be discussed further in the next section.) On the other hand, the MP-1 achieves
its best rate when the array size matches the machine size. For larger arrays, the
MP-1 shows a drop and then an improvement in performance.

Figures 11 through 16 show the measured value of « for different array sizes and



Table 3: Average performance (in Mflops) of 32-bit floating point operations (add
and multiply).

array CM2 MPP MP-1 610C
size (8k) | (32k) | (16k) | (4k) | (16k) | (4k)
64 x 64 | 169 | 303 - 117 - 196
128 x 128 | 220 | 677 185 | 109 | 464 | 295
256 x 256 | 222 | 880 - - 354 | 324
512 x 512 | 220 | 889 - - 413 | 332

machine configurations. The shift speed is obtained from Figures 1 through 6 while
the compute speed is obtained from Table 3. The results for the 8k processor CM2
show that, in general, « is higher for small arrays than for large arrays. On the other
hand, the results for the 610C show that « increases as the array size increases. This
is because for oversized arrays on the 610C the shift speed decreases (Eq. (2) and
Figure 6) while the compute speed improves (Table 3).

The results, given in Figures 11 through 16, also show that the ratio of computa-
tion to communication is much higher on the CM2 than on the MPP while the MP-1
and 610C fall in between. In some cases, communication on the CM2 is as much as
15 times slower than computation. Even short distance communication can cost as
much as five times the computation on the CM2. While on the other machines, this
type of communication costs less than twice the computation.

5 Computation cost on the CM2

The average performance rates of basic operations, given in Table 3, differ from the
peak rates, given in Table 1. Basic operations achieve 57%, 33%, and 64% of the
peak rates of the MPP, MP-1, and 610C, respectively, while they achieve only 6% of
that of the CM2. The low percentage rate on the CM2 needs further explanation.
This is accomplished by first giving more details about the FPUs of the CM2 and
then by developing a simple performance model for floating point operations using
the slicewise model.

Each FPU of the CM2 is a Weitek wtl 3164 microprocessor. This microprocessor
has add and multiply pipes, which can be chained to get multiply/add operations.
Also, it has several vector registers, each of size four, so that all vector operations
are based on this size. The data path between the PE memory and vector registers
is 32-bit wide. The floating point pipes as well as the load pipe can produce a result
every cycle after a latency of two cycles while the store pipe can produce a result
every other cycle after a latency of four cycles. All these features have a great impact
on the performance of the machine.

There are several studies about the performance of the floating point operations
on the CM2. Levit [9] measured the fieldwise model performance using the nine
loops given in [5]. Pozo [11] also measured the fieldwise model performance using
basic and triad operations. Chang [4] measured the slicewise model performance
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using basic, triad and some finite difference floating point operations. In addition,
he developed a simple performance model for these operations where the parameters
of his model are computed from the measured results using a least square fit. The
following model is similar to Chang’s model except that the parameters are computed
using the Processing Element Assembler Code (PEAC) language [13]; i.e., it is based
on the number of cycles required to perform each operation.

The following performance model is for doing floating point operations within a
loop using arrays of size A : (a X a) elements each on a P : (p x p) PE machine so
that each PE has G : (¢ X g) elements of each array. The computation time of the
loop on the CM2 is modeled by

Tcomp = (g2/4)tcomp + Ccomp; (6)

where t.,,;, 1s the time to compute the loop on each PE using vectors of length four
and C,ypp 1s the startup time for the CM to receive addresses and data from the
frond end for the loop. The value of t.,,,, includes time to load and store operands to
memory. The value of {.,,,, and C,,,,, can be obtained using the PEAC cycle count
[13].

The processing rate, R,, of a loop is computed by

Rp = Nf A/Tcompv (7)

where Ny is the number of flops in the loop.

The performance model is used to estimate the cost of adding (or multiplying)
two arrays of 32-bit floats on the CM2. (This operation is used to compute « in the
previous section.) The compute time for this operation is obtained from [13]:

tcomp - [tlod + tadd + tstr + t]nz]/Rm (8)

where 1,4 is the vector load time using 32-bit floats (= 6 cycles), t4q4q is the vector add
time using 32-bit floats (= 6 cycles), ¢, is the vector store time using 32-bit floats (=
12 cycles), t;,. is the decrement and jump time (= 5 cycles), and R, is the clock rate
(= 7 MHz for the machine at NAS). The value of ¢.,, for this operation is therefore
equal to 4.14 (29/7) pseconds. Similarly, the value of C.,,,, for this operation is equal
to 3.29 (23/7) pseconds.

The processing rates, both measured and estimated, for adding two arrays of
different sizes are given in Table 4. The results show the performance improves with
the increase in the domain size. The results also show that the model predicts the
execution time within 10% for the largest array while it is off by up to 40% for the
smallest domain. This shows that the model, which is based on the PEAC cycle
count, may have underestimated the startup cost of this loop.

The performance rates, as given in Table 4, show that the 1024 PE (32k processor)
machine achieves less than one Gflops for this basic operation, using both measured
and estimated values. As shown in the model, this operation requires 29 cycles
(ignoring the startup time) to produce four results with an efficiency of less than
14%. However, if the loop has more operations, performance can improve.

Table 5 shows the performance, both measured and estimated, of the 512 x 512
array on the 8k processor CM2 for the nine loops given in [5]. The values of .., and
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Table 4: Performance (in Mflops) of a 32-bit floating point operation (add or multiply)
on the CM2.

array 256 PEs 1024 PEs
size Measured | Estimated | Measured | Estimated
64 x 64 169 206 303 551
128 x 128 220 235 677 825
256 x 256 222 244 880 942
512 x 512 220 246 889 977

Table 5: Performance on 256 PEs (8k procs.) CM2 using 32-bit arithmetic, where
a,b,c,d, e are arrays of size 512 x 512 and «, 3,7, 6 are scalars.

Loop | Operation Flop Leomp | Ceomp | Measured | Estimated
No. Count | (psec) | (psec) | (Mflops) | (Mflops)
1 a=ab 1 3.29 4.43 284 310
2 a = be 1 4.14 3.29 220 246
3 a=alb+c) 2 5.00 4.86 368 408
4 a="b(c+d) 2 5.00 3.71 359 408
5 a=ab+ fc 3 4.43 6.43 617 690
6 a=ab+cd 3 5.29 5.29 544 579
7 a = bc+ de 3 6.14 4.14 434 499
8 a=ab+ pc+~d 5 5.57 8.43 812 914
9 a=ab+ fc+ vyd + de 7 6.71 | 10.43 932 1061

Ceomp are computed using the PEAC cycle count. The estimated performance rates
are computed using Eqs. (6) and (7). For all these loops, the differences between the
estimated and measured values are within 13%. These results show that performance
varies significantly between one loop and another. For example, the compute time
(tcomp) for loop 9 is only 62% more than that of loop 2 even though loop 9 does seven
flops while loop 2 does only one flop. This translates to a performance difference
of a factor of more than four between these two loops. The results also show that
a reasonable percentage of the peak rate of the CM2 can only be achieved for very
special loops.

In summary, these results show that the performance of the machine is quite
sensitive to the complexity of the loop. Loops with many arithmetic operations can
achieve reasonable performance on the CM2 since data reuse as well as chaining
multiply and add operations are more likely to happen in these loops.
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6 Performance of two algorithms

6.1 Algorithms

The previous sections concentrated only on shift and basic operations. In order to
have a better understanding of the impact of regular communication on the perfor-
mance of the four machines, two numerical algorithms are also considered. These
algorithms are a four color cell relaxation scheme for the solution of the Cauchy-
Riemann equations and an ADI method for the solution of the diffusion equation.
These algorithms are chosen since they depict two different communication patterns
and can be parts of more complex problems. The two solution procedures, which
are summarized in this section, are not unique but they are used on all four ma-
chines. Some machines, such as the CM2, have a library routine to solve tridiagonal
equations. This routine has been tested and found to be faster than this implemen-
tation for large domains. Therefore, the following solution procedures represent only
one way to solve these problems on all machines rather than the best way on each
machine.

The Cauchy-Riemann equations are solved using a four color reordering scheme
[8]. This is done by dividing the domain into four sets of disjoint cells so that the cells
of each set are processed simultaneously. The relaxation process is performed for each
set color separately, that is, four times to complete a sweep. The maximum residual
is then computed and tested against the convergence tolerance. The whole process
is repeated until the iteration converges. This algorithm maps well onto a SIMD
architecture since it can be implemented almost entirely with matrix operations and
a few scalar operations. In addition, nearly all data transfer operations are between
nearest neighbors.

The diffusion equation is solved using an ADI method which requires solving two
sets of tridiagonal equations [7]. These equations are solved by the cyclic elimination
algorithm. The ADI method is reasonably efficient on a SIMD machine since it
requires mostly matrix operations with a few scalar operations. However, it requires
long distance communication since at the end of each level of the elimination process
the distance shifted is doubled. Also, cyclic elimination is not the most efficient
algorithm to solve tridiagonal equations; Gaussian elimination is more efficient [7].

The numbers of floating point operations and shift operations are computed for
each kernel. Here division is considered as a single operation. The ratio of compute
operations to shift operations is about two for the first kernel, which is called RELAX,
where all shift operations are to nearest neighbors. This ratio is about 2.2 for the
second kernel, which is called ADI, provided that communication is ranging between
one step and a/2 steps in power-of-two steps where a is the array dimension.

6.2 Results

The two algorithms have been implemented on the four machines using different grid
sizes and machine configurations. Early results on the CM2 (using CMF 1.0 Fieldwise
and Slicewise), the MPP, the MP-1 (using MPFortran 1.0), and the DAP 510 and

510C were reported in [6]. Also, performance comparisons with vector machines (Cray
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Table 6: Results on the CM2 with SUN 4/490 and CMF 1.1 Slicewise.

Domain 8k 32k

size time rate time rate
(msec) | (Mflops) | (msec) | (Mflops)
RELAX
64 x 64 11.8 49 8.2 70
128 x 128 26.5 89 12.5 187
256 x 256 77.4 122 28.1 335
512 x 512 | 266.0 142 81.4 465
ADI

64 x 64 23.4 28 12.6 53
128 x 128 77.6 40 28.0 112
256 x 256 | 298.5 48 92.4 155
512 x 512 | 1207.8 53 364.6 176

Table 7: Results on the MPP (16k processors)

Domain RELAX ADI
size time rate time rate
(msec) | (Mflops) | (msec) | (Mflops)
128 x 128 | 13.6 172 23.7 132

Y-MP, Cray-2, and NEC SX-2) are given in [6]. In this section, an updated set of
results as well as the DAP 610C results are given.

Tables 6 through 9 list the results on the CM2 (8k and 32k processors using CMF
1.1), the MPP (16k processors using MPP Pascal), the MasPar MP-1 (4k and 16k
processors using MPFortran 2.0), and DAP 610C (4k processors using DAP Fortran-
Plus). All timing results are for a single iteration of the relaxation scheme and one
time step for the ADI method. These results represent the best case times from
many runs. The processing rates are computed by counting the number of additions,
multiplications, and divisions in the source codes. All the results are in single precision
(32 bits).

The CM2 results (Table 6) show a significant performance improvement (up to
a factor of 6.6) as the domain size increases. Performance improves because both
communication and computation on the CM2 improve as the array size increases;
see Figures 1 and 2 and Table 3. The 610C results (Table 9) also show performance
improvement as the domain size increases but by a smaller factor (less than 30%).
This is because on the 610C the computation speed improves while the communication
speed degrades for larger arrays. The MP-1 results (Table 8) show best rates when the
domain size matches the machine size, which also agree with the timing results given
in Figures 4 and 5 and Table 3. (A speedup of more than four was observed for the
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Table 8: Results on the MasPar MP-1 using MPFortran 2.0 compiler.

Domain 1k 16k
size time rate time rate
(msec) | (Mflops) | (msec) | (Mflops)
RELAX
64 x 64 7.0 82 - -
128 x 128 37.8 62 7.1 331
256 x 256 | 144.0 65 37.5 257
512 x 512 | 557.5 67 144.7 262
ADI
64 x 64 8.6 77 - -
128 x 128 72.2 43 11.6 268
256 x 256 | 282.7 51 90.3 158
512 x 512 | 1176.6 55 349.6 184

Table 9: Results on the DAP 610C (4k processors)

Domain RELAX ADI
size time rate time rate
(msec) | (Mflops) | (msec) | (Mflops)
64 x 64 3.7 156 6.6 102
128 x 128 14.7 159 29.5 106
256 x 256 54.5 173 118.3 121
512 x 512 | 213.3 178 495.0 130
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Table 10: Relative performance of the two algorithms to 8k processor CM?2

Domain CM2 MPP | MasPar MP-1 | DAP 610C

size (8k) ‘ (32k) | (16k) | (4k) ‘ (16k) (4k)
RELAX
64 x 64 | 1.00| 1.44 - 1.69 - 3.19
128 x 128 | 1.00 | 2.12 | 1.95 | 0.70 3.73 1.80
256 x 256 | 1.00 | 2.75 - 0.54 2.06 1.42
512 x 512 | 1.00 | 3.27 - 0.48 1.84 1.25
ADI

64 x 64 | 1.00| 1.86 - 2.72 - 3.55
128 x 128 | 1.00 | 2.77 | 3.27 | 1.07 6.69 2.63
256 x 256 | 1.00 | 3.23 - 1.06 3.31 2.52
512 x 512 | 1.00 | 3.31 - 1.03 3.45 2.44

two algorithms using the 128 x 128 domain when the number of processors increased
from 4k to 16k.) Increasing the domain size on the MP-1 causes a performance
degradation, but then the performance improves for larger domains.

The performance of the two algorithms on the four machines is compared to the
performance of the 8k processors of the CM2. Table 10 shows the relative performance
rates of the machines. These rates show that the MPP, the 16k processor MP-1 and
the 610C outperform the 8k processor CM2 in all cases considered. In some cases,
these machines even outperform the 32k processor CM2. The 4k processor MP-1
outperforms the 8k processor CM2 for ADI and for the small domain of RELAX. Also,

these results show that these machines are competitive in solving these problems.

6.3 Communication cost

The communication cost of the two algorithms on the four machines is estimated by
using the measured shift costs, as given in Section 3. These shift costs are multiplied
by the number of shift operations in each code, using the source codes, to estimate
the communication cost. Table 11 shows the estimated communication costs relative
to the total measured times for the two codes. The results show that, except for the
oversized problems on the MP-1, communication costs more in ADI than in RELAX
since ADI requires long communication while RELAX requires only nearest neighbor
communication. The results also show that communication is least expensive on the
MPP. While on the other machines, the communication cost is quite significant even
for nearest neighbor communication.

The CM2 results, as given in Table 11, show that the communication cost depends
on the domain size where it is less significant for large domains. The same conclusion
can be drawn from « results and the ratio of compute to shift operations for the
two kernels. The value of « for nearest neighbor communication on the 8k processor
CM2, as given in Figure 11, is ranging between four for the 64 x 64 array and less
than one for the 512 x 512 array, and slightly above two for the 128 x 128 array. Since
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Table 11: Percentage (%) of communication cost to total cost for the two codes.

Domain CM2 MPP MP-1 610C
size (8k) ‘ (32k) | (16k) | (4k) ‘ (16k) | (4k)
RELAX
64 x 64 64 67 - 47 - 20
128 x 128 | 49 61 8 54 46 39
256 x 256 | 38 47 - - 51 37
512 x 512 | 30 36 - - 46 37
ADI
64 x 64 80 80 - 61 - 47
128 x 128 | T8 83 25 40 67 57
256 x 256 | 76 81 - - 47 55
512 x 512 | 74 77 - - 44 53

the ratio of compute to shift operations for RELAX is two, then the communication
cost should be more than 50% for the 64 x 64 array, less than 50% for the 512 x 512
array, and about 50% for the 128 x 128 array. The results of Table 11 confirm that.
The same analysis can be obtained for the 32k processor results as well as for the
ADI results.

The 610C results (Table 11) show that the communication cost is less for domain
sizes which match the machine size than for oversized problems. This observation
agrees with the results obtained for o (Figure 16). For nearest neighbor communica-
tion, « is about 0.5 for the 64 x 64 array and about 1.5 for larger arrays. This means
that for routines that have twice as many arithmetic operations as shift operations,
such as RELAX, the communication cost will be less than 50% and reasonably small
for domain sizes that match the machine size. As given in Table 11, the communica-
tion cost is 20% for the 64 x 64 problem and less than 40% for the other domains.

The MPP results (Table 11) show a low communication overhead, which agrees
with the « results (Figure 13). The MP-1 results (Table 11) show that the commu-
nication cost is about 50% for RELAX and ranging between 40% and 67% for ADI.
The value of « for nearest neighbor communication on the MP-1 (Figures 14 and 15)
is between one and two. Some of the MP-1 results are not quite justified and seem
to depend on factors like compiler partitioning and mapping techniques.

The communication costs on these machines have also been estimated using other
techniques. The TMC Prism programming environment, version 1.0, is also used to
estimate the communication cost on the 8k processor CM2. The differences between
the two techniques (using the measured shift costs and Prism) are within 1% for most
cases and within 4% for the two smallest domains for RELAX. This means that the
CM2 results are reasonably accurate. The MPP results are verified by successfully
estimating the total cost which includes the computation cost; see [7] and [8].

Another technique to estimate the communication cost is by removing all shift
operations from the codes and rerunning them. (Obviously, the numerical results are
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not correct.) The differences in execution time between the no communication runs
and the actual runs is considered as the communication cost. This technique is used on
both the MP-1 and 610C. The results using this technique agree with the results given
in Table 11 in some cases, while they are off by more than 10% in other cases. The
problem with this technique is that compilers might do different optimizations using
two different codes (one with communication and the other without communication).

7 Concluding remarks

This study analyzed the cost of regular communication on four SIMD machines and
how this type of communication affects the performance of two kernels. This was ac-
complished by developing performance models for shift operations on these machines.
These models showed that the performance of shift operations depends on many fac-
tors including the connectivity, the communication bandwidth between processors,
and the partitioning scheme that the compiler uses to map oversized arrays onto
these machines. The performance models predicted the shift cost within about 10%
of the measured values. The study showed that shift cost varies from one machine
to another by up to an order of magnitude depending on the array size and machine
configuration.

The results of performing basic operations on the CM2 showed that the machine
achieves only a small percentage of its peak performance with these operations. The
low percentage rate was investigated further by developing a simple performance
model and by studying the performance of nine different loops. The results showed
that the CM2 can achieve a reasonable percentage of its peak rate only for very
specific loops where there is data reuse and many arithmetic operations.

The results of two kernels showed that the performance of SIMD machines has
not improved very much since the introduction of the MPP (more than a decade
ago). The CM2, MP-1 and 610C have much more memory than the MPP, and
have compilers that can partition oversized arrays, unlike the MPP. However, these
machines have comparable performance rates to the MPP. This might change with
the introduction of the CM5 and MP-2.

One interesting point about the implementation of the two kernels is the porta-
bility between the four machines. The two codes needed only small modifications to
run on these machines, with no changes to the numerical algorithm. In some cases,
such as on the CM2 and MP-1, the same code basically ran on both machines. This
shows that on one class of parallel architectures, codes can easily be moved from one
machine to another.

One interesting question is “which machine has the best compute to shift speed
ratio (called «) for a certain type of application?” This question is hard to answer
since applications have different computation and communication requirements which
depend on the numerical algorithm used and the mapping of the algorithm onto the
architecture. Some applications have more data locality than others, which translates
to a better compute to communicate ratio.

If the objective is to have no more than 50% communication overhead, then for
the two kernels considered here (which have roughly twice as many floating point
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operations as shift operations) the MP-1 and 610C seem to have the desirable «
while the CM2 has a high a and the MPP has a low a. Obviously, a low « does not
hurt except it might be considered “overkill”. For other applications where there are
more arithmetic operations for each shift operation, a high a may not be harmful.

The study showed that the ratio of the compute speed to shift speed can be
estimated for several SIMD machines. This is the architecture side of the problem
of mapping algorithms onto architectures. From the algorithm side, the ratio of
compute to shift operations can also be computed. From the two ratios (architecture
and algorithm), a rough estimate of the communication cost can be obtained.

This work can be extended to estimate the communication cost for more com-
plex problems once the ratio of compute to shift operations is computed. Using the
computed value of a from this study, the communication cost can be estimated even
before implementing these applications on parallel machines. Such a study requires a
full understanding of the communication and computation requirements of different
numerical algorithms used to solve complex problems.

This study is only the first step in understanding the impact of the communi-
cation overhead on the performance of parallel machines. Many features of these
architectures were not exploited. For example, the ability of some of these machines,
such as the CM2, to communicate with more than one neighbor simultaneously was
not exploited even though this type of communication requires a reordering of the
computation and calling special routines on the CM2. The impact of the X-Net on
the performance of the MP-1 is not fully understood even though it seems to be min-
imal. The performance of irregular communication, which is sometimes referred to as
the router communication, was not considered. Neither was the impact of front end
machine nor the performance of arrays with non-power-of-two dimensions. Also, this
study concentrated only on single precision (32 bit) arithmetic even though a similar
procedure can be used for double precision. All these issues can have a great impact
on the performance of any machine.
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