
1

A Software Model for Visualization of
Large Unsteady 3-D CFD Results

Al Globus, Computer Sciences Corporation1

globus@nas.nasa.gov

Abstract
The largest unsteady 3-D computational fluid dynamics (CFD) results produced
today exceed 100 gigabytes. Visualizing these large data sets stresses computa-
tional resources, requiring users and visualization systems to make trade-offs
between time, space, and flexibility. Current CFD visualization systems make
trade-offs which severely limit visualization of the largest unsteady 3-D CFD
results. We propose a software model that breaks visualization processing into sev-
eral stages: generation of solutions, extracts, graphic objects, scenes, and movies
(explained below). Discarding data from early stages saves storage. Postponing
decisions to later stages improves flexibility and speed. We also propose storing
these data in a persistent object database in order to separate the logical and physi-
cal representations of the data and provide a consistent, clean interface between
visualization software and data from all stages. Meta-data, such as performance
information, may also be stored to support intelligent time vs. space vs. flexibility
trade-offs. Ultimately, more optimal trade-offs expand the visualizations possible
within constant hardware and wall clock time limits. This paper will describe,
explain, and motivate the proposed model. In principle, the model should be of
value in disciplines other than CFD.

I. Introduction
CFD scientists use flow solver software to generate vector and scalar fields describing fluid flow.
These fields are called the solution. The solution is discretely sampled on spatial grids with
enough sample points, called nodes, to capture the complex fluid physics. Capturing ever more
detailed physics requires more and more nodes, increasing storage requirements. Unsteady solu-
tions consist of a series of single-time solutions, called time steps. Adding the time dimension
dramatically increases solution size.

1. This work is supported through NASA contract NAS2-12961.

2

CFD results are traditionally among the largest numerical data sets visualized. The largest 3-D
unsteady data sets recently generated at NAS1 range from 5,600 to 162,000 megabytes (see table
1).

Many visualization systems have been successfully used to examine steady-state CFD solutions
[Bancroft90, Buning85, Legensky90, SGI92, Upson89, Wavefront91]. However, visualization of
3-D unsteady solutions is difficult because existing systems make performance trade-offs that
assume much smaller quantities of data;i.e., that the solution and grid fit in RAM. Unfortunately,
no current computer has enough RAM to hold the solutions in table 1. When faced with data
quantity problems, it is tempting to wait for hardware improvements. However, simulation codes
typically use all of available memory for a single time-step, and then save hundreds or thousands
of timesteps on disk. Since CFD codes usually have access to at least as much memory as visual-
ization systems, the largest unsteady CFD results will not fit in RAM until the physics cannot be
improved by adding grid nodes. This will not occur for quite some time.

1. The NAS (Numerical Aerodynamic Simulation) Systems Division at NASA Ames Research Center is a
leading supercomputer facility dedicated to the study of computational aerosciences, particularly CFD
[Bailey86].

a. At 3.6 megabytes/second, the best performance achieved on workstations at NAS [Lam92].

Table 1: Some Unsteady CFD Simulations at NAS

Data Set Grid Nodes Time Steps
Disk Read

Timea

(sec/time step)

Total Size
(megabytes)

Smith91 2,800,000 100 15.6 5,600

GB92 1,400,000 400 7.8 11,200

Atwood92 1,600,000 500 8.9 16,000

Chawla92 900,000 9,000 5.0 162,000

3

The proposed visualization software model allows trade-offs to be customized to the visualization
problem at hand; thus avoiding unnecessary data motion and processing. This should help make
visualization of large unsteady solutions feasible. Figure 1 is a schematic of the model. A detailed
description is found in section III.

There are several key points explained in section III:

• Extracts,i.e., scientific data, are calculated from solutions rather than graphics as is usu-
ally the case. Extracts are further processed to generate the graphics.

• Computation space fields on extracts are stored to postpone decisions about the fields to
visualize and to avoid redundant extraction steps.

• All data are collected into a persistent object database, along with performance data. The
database maintains a clean interface between the logical schema and the physical repre-
sentation on disk.

Most, although not all, of the elements proposed in this paper appear in the visualization literature
or existing visualization systems, as indicated by the references in sections II and III. Some have
been adopted by visualization system developers working with the author since the first draft of
this paper appeared two years ago. The main contributions of this paper are in assembling the ele-
ments important to unsteady flow visualization into a coherent software model, carefully examin-
ing the time vs. space vs. flexibility trade-offs involved, and identifying weaknesses in existing
approaches. We hope that this model will help developers create visualization systems that meet
the challenges of unsteady flow visualization.

Overview

Section II reviews previous work. Section III describes the model. Section IV briefly discusses
miscellaneous issues. Section V explores future possibilities. Section VI is a brief summary.
Appendix A is a glossary of the terminology used in this paper. Appendix B discusses visualiza-
tion techniques in the model’s terms. Appendix C contains data relevant to space vs. time trade-

Database

CFD
SolutionSolution

Computation
Space Fields

Extracts

Graphic
Objects

Scenes Movies

Graphics Data

time CFD
Solution multiple

fieldssteps

extractor

interpolator

field calculator

Science Data

data transformation

one to many
includes
severalKey:

artist

director camera

� � � � � � � � � � 	
 	 � � �
 	 � � �

Extract

4

offs.

II. Previous Work
Previous work can be divided into two categories: 1. papers on visualization models and, 2., visu-
alization systems designed for unsteady flow. Visualization systems always have some underlying
model, although it may not be explicit. Some of the literature straddles these two categories.

Visualization Models

Upson89 describes the data flow model of visualization implemented and popularized by AVS
and other visualization systems. In this model, data flows between independent modules that
implement pure functions. Most implementations have a visual programming ‘language’ to con-
struct networks of modules. For unsteady flow visualization, data flow systems are difficult to use
because looping is problematic and data management facilities are weak. This is pointed out in
Lang91. Lang91 argues that a database is a key element in visualization systems and the data flow
model has no concept of a database.

Lucas92 describes an implementation of the data flow model with the interesting property that the
data are cached in what is effectively a database. In this system (the IBM Data Explorer), the data
flow description is used as a program for a process that automatically makes decisions about what
data to keep in RAM.

Smith89 proposed unsteady flow visualization by taking subsets of the data and visualizing the
subsets rather than the entire data set. Smith, et. al., write “... in many cases the storage of the
solution set versus time at a few well-chosen cross-sections (e.g., two-coordinate slices through
the three-coordinate space) can capture the critical flow features.” This is a limited special case of
the extract concept presented in section III.

Butler89b and Haber91 developed a model of scientific visualization data. As Haber91 says,
“Butler and Pendley observed that the mathematical notion offiber bundles provides a useful
abstraction for an object-oriented scientific data model of considerable generality [Butler89a, But-
ler89b]. This paper [Haber91] specializes and extends this idea to incorporate localized, piece-
wise field descriptions.” Unfortunately, fiber bundles are difficult to describe and are not well
understood within the visualization community. For these reasons, we do not use the fiber bundle
model in this paper.

Campbell89 discusses the application of AI techniques to handling large-scale scientific data-
bases. The focus in this paper is on sensor data rather than numerical experiments.

Two workshops on data models for scientific visualization deserve mention. The SIGGRAPH ‘90
Workshop Report on Data Structures and Access Software for Scientific Visualization [Trein-
ish90] discusses a complex data model including calibration data, lab notes, data error character-
istics, etc. The Visualization ‘91 Workshop Report on Scientific Visualization Environments
[Butler91] proposes a scientific visualization reference model. Some of the ideas presented here
were touched on at this workshop.

Visualization Systems

Hibbard90 describes the VIS-5D system designed for interactive visualization of unsteady 3-D
data. VIS-5D uses a five dimensional array to store data in RAM.

Haimes91 describes the Visual3 software package used to visualize unsteady 3-D flows, particu-
larly on unstructured grids. Performance on large 3-D unsteady solutions is currently inadequate.

5

To improve performance, processing was distributed over networked workstations and parts of
our model (extracts) incorporated [Haimes94].

Dickenson91 presents excellent time control facilities, at least on small data sets.

Bryson91 uses virtual reality techniques to examine time-dependent vector fields, although data
sets must fit in RAM. Bryson92 distributes processing between a workstation and a mini-super-
computer to increase RAM, and therefore problem, size.

Yamasaki92 distributes computation between supercomputer and workstation to visualize
unsteady flow. Gerald-Yamasaki has made significant contributions to this paper and has used
some of the ideas presented here in recent work.

Schroeder92 describes an object oriented visualization system where animation is an integral part
of every object’s capabilities.

Lane93 implements particle paths and streaklines in the Unsteady Flow Analysis Toolkit (UFAT)
visualization system. Some ideas from this paper have been incorporated into UFAT.

Finally, an earlier version of this report appeared as an internal technical report [Globus92b] that
was distributed to NAS visualization ‘customers’ over the Internet and via the World Wide Web.

III. The Model
The most generic visualization system processes raw data to generate images. Hopefully, these
images illuminate the content of the raw data. We start with a diagram of a generic visualization
system.

Current CFD Visualization Systems

The next step in presenting the model is to describe current CFD visualization systems as a vari-
ant of the generic visualization model. Additional elements are then added one at a time, with
explanations following a diagram, until the model is complete.

For CFD, the raw data to be visualized are solutions of partial differential equations modelling
fluid flow. Remember that these solutions are represented by scalar and vector fields sampled on a
time-space domain. At NAS, these fields are typically density, momentum and energy. Scientists
frequently wish to examine additional fields derived from the scalar and vector fields solvers pro-

� � � � � � � � � � � � �
� � � � � � � � � � � 	 �

� � � 	 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � �

 � �
 � � !
� � � � � � � � � � � 	 �

� � � 	 � � � � � �

� � � � � � " � # �
 � ! � � � � � � � � � � � � � � � � 	 � � � � � � �

$ % & � ! � �CFD
Solution

� 	 � � � � 	 �

' � � � ! � � ! � � � � 	 �

6

duce; so most CFD visualization systems use a field calculator to generate additional derived
fields, such as pressure or vorticity, from solver output. These field calculations generally store
derived fields in newly allocated memory. This trades storage and preprocessing time to increase
speed when derived fields are interactively explored.

Images are very inflexible,i.e., the viewpoint cannot be changed, so most visualization systems
used in CFD create intermediate results we callgraphic objects.1 Graphic objects are usually con-
verted to images by workstation hardware. A single time step of a graphic object is a set of verti-
ces defining a set of surfaces, curves, and/or points combined with rendering information such as
vertex colors and normal vectors. Graphic objects greatly increase flexibility because the view-
point can be changed. Furthermore, graphic objects usually, but not always, require less space
than images. The cost of using graphic objects is the time to display successive time steps. Even
the fastest workstation hardware cannot often compete with a 30 frame per second video tape of a
complex scene.

Extracts

An extract is a set of fields defined over a subdomain of the solution domain. To understand
extracts, note that generating graphic objects from solutions can be divided into two steps: 1.
extracting surface, curve, and/or point locations and associated field values to be visualized (the
extractor step), and 2. converting field values to graphical properties (the artist step). The results
of step 1 (locations and field values) are extracts. Extracts are much like solutions in that they are
scalar, vector, and/or tensor fields on a (sub)domain. Examples of extract domains include isosur-
faces, cut planes, and particles traces. Each solution time step usually has a corresponding extract
time step. See appendix B for a discussion of common visualization algorithms as extract produc-
ers.

1. The termsdisplay list, geometry, and geom are approximate synonyms for graphic object.

� (� � � ! � 	 � � � � � � �

� � � � � �) � * (� � � ! � �

CFD
Solution

� 	 � � � � 	 � � �
 � � !
$ % & � ! � �CFD

Solution

* (� � � ! � �

' � � � ! � � ! � � � � 	 �' � � � ! � � ! � � � � 	 �

7

Figure 5 provides an example of converting a solution to an extract, calculating a derived field,
and drawing a graphic object.

Comparing extracts to graphic objects:

• Graphic object vertices are the equivalent of extract nodes. Both have a spatial location
(x,y,z). However, extract nodes are associated with scientific data such as scalar, vector,
and tensors while graphic object vertices are associated with rendering information such
as colors and normal vectors.

• Each graphic object line segment usually has a corresponding extract grid edge.

• Each graphic object polygon usually has a corresponding extract grid cell.

• Each graphic object time step has a corresponding extract object time step.

Consider the trade-offs between storing extracts and graphic objects as separate objects vs. only
storing graphic objects:

• Extracts require roughly the same storage as graphic objects. Consider each extract node
and equivalent graphic object vertex:

• Both generally contain a physical location (x,y,z).

• For color mapped scalar fields, a scalar value requires the same space as eight
bits each of red, green, blue, and alpha.

• For vector plots, a vector requires the same space as the endpoint of a line repre-
senting the vector.

• The extractor step usually (but not always) requires much more time than rendering
graphic objects (factors of 8 - 2124, see appendix C). For one thing, extraction is gener-
ally done with standard CPUs whereas very fast special purpose graphics hardware is

0,0,0 1,7,3,4,5 1,0,0 1,2,3,4,5 2,0,0 1,2,6,4,5

0,1,0 1,2,3,4,5 1,1,0 1,9,3,4,5 2,1,0 1,2,3,0,5

0,2,0 1,2,0,4,5 1,2,0 2,2,3,4,5 2,2,0 1,9,3,4,5

Grid and Solution
x,y,z q1, q2, q3, q4, q5

1,1,0 1,9,3,4,5 2,1,0 1,2,3,0,5

1,2,0 2,2,3,4,5 2,2,0 1,9,3,4,5
Subset extract with

1,1,0 1,1,0

-1,1,0 -1,1,0
Derived vector field

Graphic object
(grid lines and arrows)

� � � � � � + � � 	 � � � � 	 � , * (� � � ! � , � �
 � � ! $ % & � ! �

grid and full solution

8

available for rendering. More important is that extraction algorithms must sometimes
access much or all of each 3-D solution time step (consider isosurface extraction),
whereas graphic object rendering accesses only surfaces, lines, and/or points.

• Extracts can be quickly converted to different graphic representations (see previous bul-
let). Consider a scalar field, say pressure, calculated on a streamline. This extract can be
rendered as a color mapped curve, a tube with diameter as a function of scalar value, a
ribbon with ribbon orientation controlled by the scalar field, etc.

• Extracts can be processed to produce new extracts. For example, streamlines1 on a cut-
plane can be calculated from a velocity field on the cutplane, but not from a set of nor-
mals.

• Graphic objects may be implemented using extract data directly, or as optimized graphic
data structures into which converted extract data are copied. Using extract data directly
conserves space by a factor of about two, but can sometimes require substantially longer
rendering times (factors of up to 4 in appendix B’s data).

Consider calculating derived fields on the entire solution vs. on an extract. Although the solution
domain has three spatial dimensions plus time, the spatial domain of most extracts and their corre-
sponding graphic objects is 0, 1, or 2 dimensional (points, curves, or surfaces) plus time. It is inef-
ficient to calculate and store a field over the entire 4-D solution domain if the field is to be viewed
only on lower dimensional graphic objects. Thus, derived field calculations should be limited to
extracts whenever possible. In order to calculate some derived fields on extracts, it is necessary to
find the derivatives of solver output fields on extract domains.

The following trade-offs require attention when comparing extracts to solutions.

• If the solution can be discarded once extracts are calculated, storage requirements are
greatly reduced. In our investigation, individual extracts vary from 0.3% - 6.7% of solu-
tion size, although these figures depend on many assumptions (see appendix C). On the
other hand, the flexibility to examine the solution domain outside of the chosen extracts
is lost completely.

• If field calculation can be limited to a few extract domains, computation time is substan-
tially reduced. Extracts are much smaller than solutions and most derived field computa-
tions are 0(data-size). When derived field calculations are limited to extracts, one cannot
quickly examine derived fields outside of those extracts.

Note that choosing the right extracts is critical to successful visualization, much as choosing the
right instrumentation is crucial to the success of a wind-tunnel experiment.

1. A streamline is a particle trace in a steady velocity field.

9

Computation Space Fields

Extraction may be divided into two steps: 1. finding extract nodes in computation space, and 2.
interpolating fields using computation space positions to index into field data. The results of step 1
are a computation space field.

An extract’s computation space field is a set of computation space positions on an extract’s
domain. A computation space position is the memory offsets and interpolation coefficients used to
interpolate solutions or derived fields at a point. In a sense, computation space is the way a field’s
data is laid out in memory, e.g., in a three dimensional array. For 3-D curvilinear grids, the formal
definition of computation space is:

where maps a regular grid onto physical space and is the inverse mapping.

Thus, for 3-D curvilinear grids, a computation space position can be expressed as three real num-
bers. The integer part of each number indexes into a 3-D array. The fractional parts are the inter-
polation values for each dimension.

Most visualization algorithms find computation space positions on the fly, use them to interpolate
the fields desired, and discard them. The model suggests that computation space positions be
stored as fields on extract domains for later reuse. Storing computation space positions involves

Extracts

Graphic
Objects

extractor

interpolator

field calculator

� � � � � � - � � 	 �
 � � � � � 	 � �
 � ! � * (� � � ! � �

artist

Computation
Space Fields

Extract
CFD
SolutionSolution

ξ x y z, ,() ξ η ζ, ,=X ξ η ζ, ,() x y z, ,=
X ξ η ζ, ,() ξ x y z, ,()

Computational Space One Possible Physical Space

� � � � � � . � � 	 �
 � � � � � 	 � � � � � / � � � � � ! � � �
 � ! �

10

the following trade-offs:

• Storage requirements increase. Remember that for 3-D curvilinear grids, computation
space positions are three floating point values. This price must be paid for each extract
node.

• Additional fields can be interpolated later without rerunning the extractor. This increases
flexibility since one is not limited to the fields calculated when the extractor is run.

• Visualization software is simpler and potentially faster. If all extractors create computa-
tion space extracts, then the same interpolation code can be used for all extractor output.
This interpolation code is embarrassingly parallel because it does the identical operation
on each computation space position. Thus, vectorization and parallelization are easy.

Note that even the physical location of extract nodes may be calculated by using computation
space positions to index into the grid [Haimes92].

Animation

Although animation is not a focus of this paper, any unsteady flow visualization system needs ani-
mation facilities. A minimal animation data type is a sequence of images, called amovie. Like
images, movies have no viewpoint control. To provide viewpoint control, the model also provides
scenes. A scene is a set of graphic objects evolving through time and anavigation. A navigation is
the path a virtual camera takes through time and space to create a movie, i.e., an ordered set of
viewpoints and viewing directions. Scenes are put together by adirector. A movie is created by
‘turning on’ a virtualcamera and running a scene.

The terms artist, director, and camera are obviously borrowed. An artist chooses a visual represen-
tation for an idea (extract). A director chooses props and actors (graphic objects) and camera
angles (navigation). Cameras record movies.

Scenes generally (although not always) require much less storage than movies, and scenes often
playback more slowly. Movies stored on video tape can circumvent the storage problem, although
video quality is seldom as good as that provided by the computer screen.

Extracts

Graphic
Objects

Scenes Movies

extractor

interpolator

field calculator

artist

director camera

� � � � � � 0 � � � � � � � � 	 � � � ! � � � � � � �

Computation
Space Fields

Extract
CFD
SolutionSolution

11

Persistent Object Database

Each solution, extract, graphic object, scene, navigation, and movie is an object. These disparate
objects need a coherent organization and should be persistent. Furthermore, it is often useful to
distinguish between the logical organization of the data (logical schema) and the physical repre-
sentation on disk (physical schema). These facilities can be provided by collecting all objects into
a persistent, possibly distributed, object database. Note that objects may be classified as either sci-
ence or graphics data.

The database should be designed to provide:

• Separation of logical and physical schemas. This simplifies visualization algorithms and,
sometimes, can dramatically improve performance. Visualization algorithms using a log-
ical schema can, without change, access data physically laid out in many formats, with
(usually) some loss of performance. On the other hand, working with massively parallel
processors, [Seamons94] has shown that storing multi-dimensional arrays in single pro-
cessor ‘chunks’ can improve IO performance by an order of magnitude. A logical inter-
face to the arrays allows simulation and visualization software to remain unchanged,
even thought the data are not arranged in traditional FORTRAN (or C) order.

• Unity and completeness. At a minimum, all objects may be accessed, created, deleted,
and modified through at least one common interface. Special purpose interfaces can pro-
vide more optimal access to different types of data.

• Performance metrics,i.e., object storage requirements and generation time. These are
essential to making informed time vs. space vs. flexibility trade-offs. For example, the
storage required for an isosurface not currently being rendered vs. the time to re-calcu-
late the isosurface from the solution; or the flexibility lost when a solution is discarded
after extracts are calculated vs. the storage required by the solution.

• Persistence,e.g., lossless save and restore state. This allows visualization work sessions
to be restarted, moved between machines, and shared with others just as word processor

Database Extracts

Graphic
Objects

Scenes Movies

Graphics Data

extractor

interpolator

field calculator

Science Data

artist

director camera

� � � � � � 1 � � � � � � � � � � � $ % & � ! � � � � � % � � �

Computation
Space Fields

Extract
CFD
SolutionSolution

12

documents are. Note that splitting and merging of databases is a valuable feature, since
portions of a database can be shared and reused.

• Object history. A description of how each object is created. This is useful to conveniently
implement repetitive operations; for example, calculating an isosurface for many time
steps. Object history can help a system make time vs. space trade-offs when saving state;
e.g., choosing whether to save a cutplane to disk or recalculate it when restoring state.

• An archive. The database can be pruned to a bare minimum of storage supporting (or
invalidating) an experiment’s hypothesis, and stored on suitable media along with jour-
nal articles, solver source code, etc. As large simulations can consume months of a scien-
tist’s career, it makes sense to keep a substantial, well organized, portable archive.

To understand a unsteady flow, it is often useful to watch a scene over and over, with small
changes in the point of view. To do this rapidly requires that graphic object time steps be stored in
the database rather than recomputed from the solution. Storing extract time steps also allows rela-
tively fast changes in graphic representation.

In general, the database aspect of visualization is not well supported by current systems, with the
notable exception of [Lang91]. Data flow systems such as AVS and SGI Explorer are particularly
weak in database support [Globus92a]. This is a serious deficiency.

IV. Discussion
The most popular visualization system model today is the data flow model used by AVS
[Upson89], SGI Explorer [SGI92], IBM Data Explorer [Lucas92], and others. Clearly, the data
flow model can accommodate breaking visualization processing into extracting computation
space fields, interpolating extract physical space fields, and then generating graphic objects. Each
of these steps can be implemented as a set of modules. Implementing a database as described in
this paper within the data flow model is much more difficult, requiring major rethinking by system
developers.

Although the model is very flexible and can be used in many ways, it was developed to address
the situation where the solution is calculated on a supercomputer, visualized on a workstation, and
there is not enough disk space to store all solution time steps. An approach to this problem using
the model is illustrated in figure 10.

13

This paper has focused on very large unsteady CFD solutions. These data are characterized by a
set of 3-D steady-state solutions indexed by time. Many disciplines produce data with similar
characteristics and might benefit from this model. Furthermore, the fact that the index istime is
not crucial to the model. In a more complex situation, one can imagine numerical experiments
with two indexes,e.g., Reynolds number and time. In this case, the model should be even more
useful, but database management and director tools become more complex.

Visualization is used not only to understand results, but also to debug solvers [Tuchman91]. The
system characteristics required for unsteady flow visualization are similar to those required for
debugging since the solution is converging and is thus unsteady. For debugging, discarding solu-
tion time steps is much less objectionable than when visualizing results, so extracts are more use-
ful.

Extracts

Scenes

Solutions

Graphics

Solver

Extractor

Artist

Director

Movies

Camera
Data Flow

Legend
Data Type

Tool

� � � � � � � 2 � $ � � 3 � � 	 4 � � �
 	 � � �

5 6 7 8 9 : ; < 7 6 = 8 9

> ; 9 ? @ = A = B ; C

D E F

Extractor

G A 9 H I A 9 8

The supercomputer computes solu-
tion time steps and calculates
extracts extracted directly from the
solution. Solution time steps are
buffered on disk to give maximum
time to find the right extracts. Due
to storage limitations, however,
eventually solution time steps must
be archived to tape or deleted.

The workstation calculates extracts
extracted from other extracts, con-
verts extracts to a variety of graphic
objects, and creates scenes.

Video tape captures scenes as
sequences of images, i.e., movies.

14

V. Future Work
The author worked with unsteady CFD visualization system developers such as R. Haimes
[Haimes91], M. Gerald-Yamasaki [Yamasaki92], D. Lane [Lane93] and the FAST team [Ban-
croft90] to help integrate the model into working systems. In general, the extract concept has been
fairly well accepted, but developers have yet to embrace the database concept.

The model assumes that users examine the performance data in the object database to make time
vs. space trade-offs. Once sufficient experience is gained, it may be possible to develop intelligent
software assistants [Miceli92] to automate the trade-offs based on available resources and user
goals.

For the most part, this paper has assumed that users choose the extracts to calculate. However,
imagine smart sensors that examine solution time steps to find features and generate extracts
appropriately. For example, setting an isosurface threshold at the center of the steepest gradient of
a scalar field, or creating three orthogonal cutting planes at vector field stationary points. This
concept, contributed by Val Watson, is a rich area for future research.

VI. Summary
We have presented a software model intended as a guide to solving performance and flexibility
problems encountered when visualizing the largest unsteady volumetric CFD results. The model
consists of a database of solutions, extracts, graphic objects, scenes, and movies. The most impor-
tant parts of the model are:

• Calculating extracts rather than graphic objects from solutions.

• Dividing extract computations into finding computation space fields and interpolating
physical space fields.

• Collecting all data into a persistent object database separating the logical schema from
the physical representation of data.

Although most visualization systems implement parts of the model and can be analyzed in the
model’s terms, there is no complete implementation to prove the concept.

We hope to see the model used to guide developers as visualization systems are developed or
modified to examine large unsteady data sets. Developers should recognize that all portions of the
model are important. We believe that leaving out portions will lead to loss of flexibility and
reduced performance.

Appendix A: Glossary
Theartist creates graphic objects from extracts.

An animation is a picture that changes over time.

Thecamera produces movies by recording the sequence of images produced by a scene.

A persistent objectdatabase unifies access to all objects, maintains object histories and perfor-
mance metrics, and separates the logical schema from the data’s physical representation.

Thedirector produces scenes by choosing a set of graphic objects to animate and the path the
camera navigates.

An extractor creates extracts from solutions and/or other extracts.

15

Extracts are a subset of a solution’s nodes or a resampling of the solution domain. In each case,
an extract may extend over some or all time steps.

Graphic objects are sets of vertices with rendering information.

Movies are sequences of images, e.g., video tapes.

A navigation is a sequence of viewpoints and view direction used to animate a set of graphic
objects in a scene. Navigations may be canned or interactive.

A scene is a set of graphic objects and a navigation. A navigation is a viewpoint and viewing
direction evolving over time.

A solution is a set of sampled scalar and vector fields evolving in time in a volume. Fields are
sampled at each node of a computational grid at each of many time steps. Grids may evolve with
time. Solution time steps are generated from initial conditions or previous time steps by solvers.

Viewpoint is the location of the viewer, or camera.

View direction is the direction a camera is looking.

Appendix B: Visualization Techniques Producing Extracts
Most common visualization techniques can be easily modified to produce extracts rather than
graphic objects. Table 2 summarizes the characteristics of common visualization techniques
applied to fields on curvilinear grids. Fields are not discussed because any field may be calculated
on any extract, although some make more sense than others. Table 5 gives performance data for
some of these extracts.

Table 2: Visualization Techniques

Visualization
Technique

Grid Type
Produceda

Description

Grid Plane 2-D curvilinear A two dimensional slice of a 3-D field created by holding
one index constant and allowing the other two to vary
over their whole range. A set of grid planes over time is
similar to a 3-D data set and may be examined with some
of the same techniques.

Grid Volume 3-D curvilinear A three dimensional portion of a 3-D field created by lim-
iting the number of solution grid nodes included, e.g., by
limiting the extent of each dimension.

Surface Grid 2-D curvilinear Covers the surface of the vehicle or hardware investi-
gated.

Cut Plane 2-D unstruc-
tured

An arbitrarily oriented plane through the data. If one uses
marching cubes to generate the cutplane [Kerlick89], the
plane is represented by an unstructured grid of triangles.

16

Appendix C: Storage and CPU Time Data

a. The type of grid at a single time step assuming a 3D curvilinear solution.

Isosurface 2-D unstruc-
tured

The surface where a scalar field has a constant value. Isos-
urfaces do not always need to have field values calculated
for each vertex since the spatial information alone is fre-
quently of great interest.

Tangent Curve 1-D curvilinear A curve that is everywhere tangent to a vector field. Func-
tions on tangent curves are frequently used to control
graphic representation, e.g., stream polygons
[Schroeder91].

Particle Trace 0-D The path a massless particle takes when released into a
vector field. Note that in a steady vector field, a particle
trace is identical to a tangent curve.

Streaklines 0-D A set of points generated by continuously emitting parti-
cles from seed points. Each time step new grid nodes are
created at the seed point.

Tangent Sur-
face
[Hultquist90,
92b]

2-D curvilin-
ear or unstruc-
tured

A surface that is everywhere tangent to a vector field.

Pixel Plane Ray
Casting

2-D regular An image created by casting rays from the eye-point
through each pixel into the data volume. Information col-
lected along the ray is deposited in the pixel. Thus, a 2-D
field in the viewing plane is produced.

X-Rays
[Darmofal91]

2-D An image created by casting rays from an emitter to a
detector. Rays process information along their path and
deposit a scalar field on the detector.

Vector Field
Topology
[Helman90]

0-D, 1-D, 2-D The zeros (stationary or critical points) in a vector field
and the stable and unstable manifolds passing through
them. Thus, at each time step there is a set of points (0-D),
a set of tangent curves (1-D) and tangent surfaces (2-D).
The eigenvalues and eigenvectors of the derivative tensor
at each zero may be thought of as a field on the stationary
point grid. A derived field may only be desired on parts of
the grid (e.g., the zeros but not the manifolds).

Table 2: Visualization Techniques

Visualization
Technique

Grid Type
Produceda

Description

17

Extract Sizes

Imagine that three grid planes, three large marching cubes surfaces (isosurfaces or cutting planes),
and a particle cloud containing 20,000 particles are extracted from various size 3D solutions on
curvilinear grids. Assume two scalar and one vector fields are on each extract. Table 3 shows the
relative sizes of the extracts and the solution. Note that the extract/solution size ratio decreases as
the solution size increases because solutions are three dimensional and extracts are 2, 1, or 0
dimensional.

Note that a user can control the memory needed by extracts by choosing the number and type of
extracts to calculate. Consider a solution on a 3,000,000 node solution on a curvilinear grid. Table
4 shows storage requirements for various extracts. Note that the marching cubes surfaces con-
sume the most storage:

Extractor CPU Time

Table 5 provides performance metrics for the extracts and related graphic objects in table 2. Many
simplifying assumptions were made to generate this table, some of which are described in the

a. Marching cubes surfaces can vary greatly in size depending on the number of cells intersected.
b. The first number assumes one scalar field on the extract’s grid (x,y,z plus scalar). The second number
assumes a vector field on the extract’s grid (x,y,z plus 3 vector).

Table 3: Relationship Between Solution and Extract Time Step Storage Requirements

Solution Grid (nodes)
Solution

(megabytes)
Combined Extracts

(megabytes)
Extract as a Percent

of Solution

500,000 10 5.2 52%

1,000,000 20 8.0 40%

2,000,000 40 12.5 31%

3,000,000 60 16.3 27%

4,000,000 80 19.7 25%

5,000,000 100 22.8 23%

10,000,000 200 36.0 18%

Table 4: Space Consumed by Different Extracts

Measure Grid Plane
Smalla

Marching
Cubes Surface

Large
Marching

Cube Surface

10,000
Particles

Size (megabytes) 0.3 / 0.5b 0.8 / 1.0 3.3 / 4.0 0.2 / 0.3

Percent of Solution
Size

0.5% / 0.8% 1.4% / 1.7% 5.6% / 6.7% 0.3% / 0.4%

18

footnotes.

Acknowledgments
E. Raible suggested the term ‘extract’. R. Haimes, J. Hultquist, B. Klein, T. Lasinski, D. Lane, K.
Miceli, E. Miya, A. Vaziri, and, particularly, M. Gerald-Yamasaki reviewed drafts of this paper
and provided many helpful comments, some of which lead to wholesale revision. This work is
supported through NASA contract NAS2-12961.

a. These data were taken using FAST on a 226,800 node data set [Rizk85] using an SGI 320 VGX with 64
Mbytes of memory. All numbers were linearly extrapolated to simulate a 1,000,000 point data set. Elapsed
times were measured with a stop watch. Rendering times are the average of 100 trials.
b. This column is the number of each type of extract that might be desired for a visualization. This number,
although somewhat arbitrary, is necessary to calculate the values in the performance columns.
c. Assuming one scalar and one vector field for each extract.
d. Added for reference.
e. 20 Mbytes for a typical 5 value (density, momentum vector, energy) CFD solution
f. Solver seconds per visualization time step assuming 10 solver time steps per visualization time step.
Speeds are consistent with typical NAS solvers on a Cray YMP.

Table 5: Extract Performancea Characteristics

Extract
Number

 in a
Sceneb

Grid
Nodes

(x1000)

Grid
Size

(Mbytes)

Scalar/Vector
Field Size per
Time Stepc

(Mbytes)

Extract
Calc/Render

CPU Time per
Time Step
(seconds)

Graphic
Object
Render
CPU

Time per
Time
Step

(seconds)

Grid Plane 5 111 1.78 0.44/1.33 NA/7.94 2.43

Cut Plane 5 265 9.38 1.06/3.18 66/26.46 6.61

Isosurface 3 214 7.55 0.86/2.57 53/20.24 5.69

Tangent
Curve

100 222 2.66 0.89/2.66 131/0.72 0.55

Vector
Field
Topology

0D: 88
1D: 265

0D: 0.088
1D: 148

0D: 0
1D: 1.78

0D:0/0
1D:0.59/1.78

0D: 406/0.53
1D: 1041/1.15

0D: 0.49
1D: 0.75

Total NA 960 23 3.84/11.53 1697/57 16.51

Total w/o
topology

NA 811 21 3.25/9.74 250/55 15

Solutiond 1 1,000 16 4/12/20e 150f NA

19

References
[Atwood92] C. A. Atwood and W. R. Van Dalsem, “Flowfield Simulation about the SOFIA Air-
borne Observatory,” 30th AIAA Aerospace Sciences Meeting and Exhibit, January 1992, Reno,
Nevada, AIAA 92-0656.

[Bailey86] F. R. Bailey, “Status and Projections of the NAS Program,”Symposium on Future Di-
rections of Computational Mechanics, ASME, Anaheim, CA, 7-12 December, 1986.

[Bancroft90] G. Bancroft, F. Merritt, T. Plessel, P. Kelaita, R. McCabe, and A. Globus, “FAST: A
Multi-Processing Environment for Visualization of CFD,”Proceedings Visualization ‘90, IEEE
Computer Society/ACM SIGGRAPH, San Francisco (1990).

[Bryson91] S. Bryson and C. Levit, “The Virtual Windtunnel: An Environment for the Explora-
tion of Three-Dimensional Unsteady Flows,”Proceedings \ Visualization ‘91, IEEE Computer
Society/ACM SIGGRAPH, 22-25 October, 1991, San Diego, California.

[Bryson92] S. Bryson and M. Gerald-Yamasaki, “The Distributed Virtual Windtunnel”,Proceed-
ings Supercomputing ‘92, IEEE Computer Society/ACM, November, 1992.

[Buning85] P. G. Buning and J. L. Steger, “Graphics and Flow Visualization in Computational
Fluid Dynamics,” AIAA-85-1507-CP, AIAA 7th Computational Fluid Dynamics Conference, 15-
17 July, 1985, Cincinnati, OH.

[Butler89a] D. M. Butler and M. H. Pendley, “The Visualization Management System Approach
to Visualization in Scientific Computing,”Computers in Physics, Vol. 3, pp. 40-44, 1989.

[Butler89b] D. M. Butler and M. H. Pendley, “A Visualization Model Based on the Mathematics
of Fiber Bundles,”Computers in Physics, Vol. 3, pp. 45-51, 1989.

[Butler91] D. M. Butler, C. Hansen, organizers, “Visualization ‘91 Workshop Report: Scientific
Visualization Environments,” IEEE/ACM SIGGRAPH Visualization ‘91, 22-25 October, 1991,
San Diego, California.

[Campbell89] W. J. Campbell, N. M. Short, L. A. Treinish, “Adding Intelligence to Scientific
Data Management,”Computers in Physics, May/June 1989.

[Chawla92] K. Chawla and W. R. Van Dalsem, “Numerical Simulation of STOL Operations Us-
ing Thrust Reversers,” AIAA 92-4254, AIAA Aircraft Design Systems Meeting, 24-26 August,
1992, Hilton Head, SC.

[Dickenson91] R. R. Dickenson, “Interactive Visualization of Transient Fields,”Proceedings
SPIE/IS&T Symposium on Electronic Imaging Science and Technology, 24 February - 1 March
1991, San Jose, California, USA.

[Globus92a] A. Globus, “Perspectives on the IRIS Explorer Visualization Environment,” NASA
Ames Research Center, NAS Systems Division, Applied Research Branch technical report RNR-
92-021, May 1992.

[Globus92b] A. Globus, “A Software Model for Visualization of Time Dependent 3-D Computa-
tional Fluid Dynamics Results,” NASA Ames Research Center, NAS Systems Division, Applied
Research Branch technical report RNR-92-031, November 1992.

[GB92] K. Gundy-Burlet, personal communication.

[Haber91] R. B. Haber, B. Lucas, N. Collins, “A Data Model for Scientific Visualization with Pro-
visions for Regular and Irregular Grids,”Proceedings Visualization ‘91, IEEE Computer Society/

20

ACM SIGGRAPH, San Diego, CA, pp. 298-305, 1991.

[Haimes91] R. Haimes and M. Giles, “VISUAL3: Interactive Unsteady Unstructured 3D Visual-
ization,” 29th AIAA Aerospace Sciences Meeting and Exhibit, January 1991, Reno, Nevada,
AIAA 91-0794.

[Haimes92] R. Haimes, “Techniques for Interactive and Interrogative Scientific Volumetric Visu-
alization,” personal communication.

[Haimes94] R. Haimes, “pV3: A Distributed System for Large-Scale Unsteady CFD Visualiza-
tion,” 32th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 94-0321, Reno, NV, Jan.
1994

[Hibbard90] B. Hibbard and D. Santek, “The VIS-5D System for Easy Interactive Visualization,”
Proceedings Visualization ‘90, IEEE Computer Society/ACM SIGGRAPH, San Francisco, 1990.

[Kerlick89] G. D. Kerlick, “ISOLEV: A Level Surface Cutting Plane Program for CFD Data,”
NASA Ames Research Center, NAS Systems Division, Applied Research Branch technical report
RNR-89-006, March 1992.

[Lam92] T. L. Lam, “Improving File System Performance by Striping,” NASA Ames Research
Center, NAS Systems Division, Systems Development Branch technical report RND-92-014,
April 1992.

[Lane93] D. A. Lane, “Visualization of Time-Dependent Flow Fields,”Proceedings Visualization
‘91, IEEE Computer Society/ACM SIGGRAPH, San Jose, CA October 1993.

[Lang91] U. Lang, R. Lang, and R. Ruehle, “Integration of Visualization and Scientific Calcula-
tion in a Software System,”Proceedings Visualization ‘91, IEEE Computer Society/ACM SIG-
GRAPH, 22-25 October, 1991, San Diego, California.

[Legensky90] S. M. Legensky, “Interactive Investigation of Fluid Mechanics Data Sets,”Pro-
ceedings Visualization ‘90, IEEE Computer Society/ACM SIGGRAPH, San Francisco, 1990.

[Lucas92] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh, K. P. McAulif fe, “An
Architecture for a Scientific Visualization System,”Proceedings Visualization ‘92, IEEE Com-
puter Society/ACM SIGGRAPH, October, 1992, Boston, MA.

[Miceli92] K. D. Miceli, “A Framework for the Design of Effective Graphics for Scientific Visu-
alization,” NASA Ames Research Center, NAS Systems Division, Applied Research Branch tech-
nical report RNR-92-035, December 1992.

[Schroeder91] W. J. Schroeder, C. R. Volpe, and W. E. Lorensen, “The Stream Polygon: A Tech-
nique for 3D Vector Field Visualization,”Proceedings Visualization ‘91, IEEE Computer Society/
ACM SIGGRAPH, 22-25 October, 1991, San Diego, California.

[Schroeder92] W. J. Schroeder, W. E. Lorenson, “VISAGE: An Object-Oriented Scientific Visual-
ization System,”Proceedings Visualization ‘92, IEEE Computer Society/ACM SIGGRAPH,
October, 1992, Boston, MA, pp. 219-226.

[Seamons94] K. E. Seamons and M. Winslett, “An Efficient Abstract Interface for Multidimen-
sional Array I/O”,Proceedings of Supercomputing ’94, Washington D.C., November 1994.

[SGI92] IRIS Explorer User’s Guide, Silicon Graphics Computer Systems, Document 007-1369-
010, 1992.

[Smith89] M. H. Smith, W. R. Van Dalsem, R. C. Dougherty, and P. G. Buning, “Analysis and

21

Visualization of Complex Unsteady Three-Dimensional Flows,” 27th AIAA Aerospace Sciences
Meeting and Exhibit, January 1989, Reno, Nevada, AIAA 91-0794.

[Smith91] M. Smith, K. Chawla, and W. Van Dalsem, “Numerical Simulation of a Complete
STOVL Aircraft in Ground Effect,” AIAA-91-3293, AIAA 9th Applied Aerodynamics Confer-
ence, 23-25 September 1991, Baltimore, MD.

[Treinish90] L. A. Treinish, “SIGGRAPH ‘90 Workshop Report on Data Structures and Access
Software for Scientific Visualization,”Computer Graphics, Vol. 25, Number 2, April 1991, pp.
104-116.

[Tuchman91] A. Tuchman, D. Jablonowski, G. Cybenko, “Run-time Visualization of Program
Data,”Proceedings Visualization ‘91, IEEE Computer Society/ACM SIGGRAPH, 22-25 Octo-
ber, 1991, San Diego, California, pp. 255-261.

[Upson89] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A.
van Dam, “The Application Visualization System: A Computational Environment for Scientific
Visualization,”IEEE Computer Graphics and Applications, July 1989, pp. 30-41.

[Wavefront91]The Data Visualizer User’s Guide. Wavefront Technologies, Inc.

[Yamasaki92] M. J. Gerald-Yamasaki, “Interactive and Cooperative Visualization of Unsteady
Fluid Flow,” NASA Ames Research Center, NAS Systems Division, Applied Research Branch
technical report RNR-92-018, March 1992.

