
Table of Contents
Best Practices.......................................................................................................................1

Lustre Best Practices...................................................................................................1
Streamlining PBS Job File Transfers from Pleiades to Lou.........................................7
Avoiding Job Failure from Overfilling /PBS/spool........................................................8
Choosing an MPI Library...........................................................................................10



Best Practices

Lustre Best Practices

Summary: At NAS, Lustre filesystems (/nobackup) are shared among many users and
many application processes, which causes contention for various Lustre resources. This
article explains how Lustre I/O works, and provides best practices for improving application
performance.

 How Does Lustre I/O Work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades contend for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs while working in our high-end
computing environment.

Best Practices

Avoid Using ls -l

The ls -l command displays information such as ownership, permission, and size of all
files and directories. The information on ownership and permission metadata is stored on
the MDTs. However, the file size metadata is only available from the OSTs. So, the ls -l
command issues RPCs to the MDS/MDT and OSSes/OSTs for every file/directory to be
listed. RPC requests to the OSSes/OSTs are very costly and can take a long time to
complete if there are many files and directories.

Use ls by itself if you just want to see if a file exists• 

Best Practices 1

http://www.nas.nasa.gov/hecc/support/kb/Lustre_Basics_224.html#striping


Use ls -l filename if you want the long listing of a specific file• 

Avoid Having a Large Number of Files in a Single Directory

Opening a file keeps a lock on the parent directory. When many files in the same directory
are to be opened, it creates contention. A better practice is to split a large number of files
(in the thousands or more) into multiple subdirectories to minimize contention.

Avoid Accessing Small Files on Lustre Filesystems

Accessing small files on the Lustre filesystem is not efficient. When possible, keep them on
an NFS-mounted filesystem (such as your home filesystem on Pleiades /u/username) or
copy them from Lustre to /tmp on each node at the beginning of the job, and then access
them from /tmp.

Use a Stripe Count of 1 for Directories with Many Small Files

If you must keep small files on Lustre, be aware that stat operations are more efficient if
each small file resides in one OST. Create a directory to keep small files, set the stripe
count to 1 so that only one OST will be needed for each file. This is useful when you extract
source and header files (which are usually very small files) from a tarfile. Use the Lustre
utility lfs to create a specific striping pattern, or find the striping pattern of existing files.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to stripe
across more than one OST. You can create a new directory with a larger stripe count and
copy the larger files to that directory. Note that moving files into that directory with the mv
command will not change the strip count of the files. Files must be created in or copied to a
directory to inherit the stripe count properties of a directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100 MB) and a few very large files
(greater than 1 GB), then it may be better to create a new subdirectory with a larger stripe
count. Store just the large files and create symbolic links to the large files using the symlink
command ln.

pfe1%  mkdir bigstripe

Lustre Best Practices 2



pfe1%  lfs setstripe -c 16 -s 4m bigstripe
pfe1%  ln -s bigstripe/large_file large_file

Use mtar for Creating or Extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the number
of stripes is set to the number of gigabytes of the file.

Keep Copies of Your Source Code on the Pleiades Home Filesystem
and/or Lou

Be aware that files under /nobackup[p1-p6] are not backed up. Make sure that you have
copies of your source codes, makefiles, and any other important files saved on your
Pleiades home filesystem or on Lou, the NAS storage system.

Avoid Accessing Executables on Lustre Filesystems

There have been a few incidents on Pleiades where users' jobs encountered problems
while accessing their executables on the /nobackup filesystem. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on the
Lustre filesystem. This can cause a bus error when a job tries to bring the next set of
instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run executables
from your home filesystem on Pleiades. On rare occasions, running executables from the
Lustre filesystem can cause executables to be corrupted. Avoid copying new executables
over existing ones of the same name within the Lustre filesystem. The copy causes a
window of time (about 20 minutes) where the executable will not function. Instead, the
executable should be accessed from your home filesystem during runtime.

Increase the stripe_count for Parallel Writes to the Same File

When multiple processes are writing blocks of data to the same file in parallel, the I/O
performance for large files will improve when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the stripe
count is set to 1. While this default setting provides for efficient access of metadata--for
example to support the ls -l command--large files should use stripe counts of greater
than 1. This will increase the aggregate I/O bandwidth by using multiple OSTs in parallel
instead of just one. A rule of thumb is to use a stripe count approximately equal to the
number of gigabytes in the file.

Lustre Best Practices 3



Another good practice is to make the stripe count be an integral factor of the number of
processes performing the write in parallel, so that you achieve load balance among the
OSTs. For example, set the stripe count to 16 instead of 15 when you have 64 processes
performing the writes.

Limit the Number of Processes Performing Parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or fewer,
there will be contention if a large number of processes of an application are involved in
parallel I/O. Instead of allowing all processes to do the I/O, choose just a few processes to
do the work. For writes, these few processes should collect the data from other processes
before the writes. For reads, these few processes should read the data and then broadcast
the data to others.

Stripe Align I/O Requests to Minimize Contention

Stripe aligning means that the processes access files at offsets that correspond to stripe
boundaries. This helps to minimize the number of OSTs a process must communicate for
each I/O request. It also helps to decrease the probability that multiple processes accessing
the same file communicate with the same OST at the same time.

One way to stripe-align a file is to make the stripe size the same as the amount of data
in the write operations of the program.

Avoid Repetitive "stat" Operations

Some users have implemented logic in their scripts to test for the existence of certain files.
Such tests generate "stat" requests to the Lustre server. When the testing becomes
excessive, it creates a significant load on the filesystem. A workaround is to slow down the
testing process by adding sleep in the logic. For example, the following user script tests
the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while ( 0 <= 1  )
  if(-e WAIT) then
    mpiexec ...
    rm WAIT
  endif
  if(-e STOP) then
    exit
  endif
 end

Lustre Best Practices 4



When neither the WAIT nor STOP file exists, the loop ends up testing for their existence as
quickly as possible (on the order of 5,000 times per second). Adding sleep inside the loop
slows down the testing.

touch WAIT
 rm STOP

 while ( 0 <= 1  )
  if(-e WAIT) then
    mpiexec ...
    rm WAIT
  endif
  if(-e STOP) then
    exit
  endif
sleep 15

 end

Avoid Having Multiple Processes Open the Same File(s) at the Same
Time

On Lustre filesystems, if multiple processes try to open the same file(s), some processes
will not able to find the file(s) and your job will fail.

The source code can be modified to call the sleep function between I/O operations. This will
reduce the occurrence of multiple, simultaneous access attempts to the same file from
different processes.

 100  open(unit,file='filename',IOSTAT=ierr)
      if (ierr.ne.0) then
       ...

call sleep(1)
      go to 100
      endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

Avoid Repetitive Open/Close Operations

Opening files and closing files incur overhead and repetitive open/close should be avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the open
statement. If possible, read the files once each and save the results, instead of reading the
files repeatedly.

Lustre Best Practices 5



If you intend to write to a file many times during a run, open the file once at the beginning of
the run. When all writes are done, close the file at the end of the run.

See also: Lustre Basics

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlate issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 6



Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1. 

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2. 

Streamlining PBS Job File Transfers from Pleiades to Lou 7



Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool directory
of the first node of your job. However, the space under /PBS/spool is limited, and when it
fills up, any job that tries to write to /PBS/spool may die. This makes the node unusable by
jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined sizes of
error and output files produced by a job. If this policy goes into effect and a job exceeds that
limit, PBS will kill the job. 

To prevent this from happening to your job, do not write large amounts of content in the
PBS output/error files. If your executable normally writes a lot of messages to either
standard out or standard error, you should redirect them in your PBS script. Below are a
few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1. 

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2. 

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3. 

The files "output" and "error" are created under your own directory and you can view the
contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the script,
you can create unique filenames for each run. For example, you can add the PBS JOBID to
"output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server, such as

Avoiding Job Failure from Overfilling /PBS/spool 8



12345.pbspl1.nas.nasa.gov.

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a file, you
can see the contents of your PBS output/error files before your job completes by following
the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1. 

%qstat -u your_username -W o=+rank0
JobID         User   Queue  Jobname   TSK Nds    wallt S    wallt  Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long   ABC       512  64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug  2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800  1234236 Aug  2 19:33 868819.pbspl1.nas.nasa.gov.ER

2. 

Avoiding Job Failure from Overfilling /PBS/spool 9



Choosing an MPI Library

Summary: Use an up-to-date version of SGI's MPT library (such as version 2.04). MPT is
generally more efficient on SGI systems than third-party MPI libraries, and versions 2.04
and later help system administrators identify issues with the InfiniBand interconnect more
quickly.

Message Passing Interface (MPI) is a standardized and portable message-passing library
specification. It is widely used for parallel programming across a network of computers.

Among the three MPI implementations available on Pleiades (Intel MPI, MVAPICH2, and
SGI MPT) and their installed versions, we recommend using SGI MPT version 2.04 --
specifically, the module mpi-sgi/mpt.2.04.10789 -- unless there is a strong reason for
using something else. You can get that library with the following:

%module load mpi-sgi/mpt.2.04.10789
Benefits of using SGI MPT instead of other MPI libraries:

SGI MPT contains MPI enhancements that are specific to SGI systems; in particular,
it offers multiple features for scaling applications to very large process counts

• 

Use of MPT on Pleiades is supported by SGI; MPT bugs or issues encountered on
Pleiades are tracked closely by SGI to provide timely resolution

• 

Benefits of using mpi-sgi/mpt.2.04.10789 instead of other MPT modules:

SGI MPT 2.04 is a full implementation of the MPI 2.2 specification• 
The Lustre awareness feature of MPT 2.04 can improve MPI I/O performance on
Lustre filesystems (/nobackupp1-6)

• 

On Pleiades, the environment variable MPI_IB_RAILS is set to 2 by default, in order
to make use of both InfiniBand (IB) fabrics for communications; this can increase
communication transfer rates in some cases

• 

With mpi-sgi/mpt.2.04.10789, IB issues or failures may be recorded in system
logfiles, allowing system administrators to better track issues with the IB network

• 

Detailed information about the enhancements and bug fixes/issues is found in sections 4
and 5, respectively, of the following document on Pleiades:
/nasa/sgi/mpt/2.04.10789/doc/README.relnotes.

See the article Porting with SGI MPT to learn more on using mpi-sgi/mpt.2.04.10789.

Choosing an MPI Library 10


	Table of Contents
	Best Practices
	Lustre Best Practices
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Choosing an MPI Library


