
Table of Contents
Lustre on Pleiades...1

Lustre Basics...1
Pleiades Lustre Filesystems..4
Lustre Best Practices...6
Lustre Filesystem Statistics in PBS Output File...12
Using 'mtar' to Create or Extract Tar Files on Lustre...13

Lustre on Pleiades

Lustre Basics

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput. On
Pleiades, the Lustre filesystems are named "/nobackupp."

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

•

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

•

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

•

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

•

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

•

File Striping

A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

Lustre on Pleiades 1

allows one to have a file size larger than the size of an OST•

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

•

Drawbacks of striping:

higher risk of file damage due to hardware malfunction•

increased overhead due to network operations and server contention•

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1.

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2.

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3.

Use the lfs setstripe command for setting the stripe parameters.

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe20% mkdir dir1
pfe20% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.•

Lustre Basics 2

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

•

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe20% lfs osts

•

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp1:
pfe20% lfs df -h
pfe20% lfs df -h /nobackupp1

•

To list inode usage for all filesystems or a specific one, for example, /nobackupp1:
pfe20% df -i
pfe20% df -i /nobackupp1

•

To create a new (empty) file or set directory default with specified stripe parameters

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

•

To list the striping information for a given file or directory

pfe20% lfs getstripe dir|filename

•

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp1):

pfe20% lfs quota -u username /nobackupp1

or

pfe20% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe20% lfs quota -v -u username /nobackup/username

•

See the lfs man page for more options and information.

Lustre Basics 3

Pleiades Lustre Filesystems

Summary: The Lustre filesystems on Pleiades are called "nobackup." As the name
suggests, these filesystems are for temporary use, and are not backed up. Lustre can
handle many large files, but you cannot store those files on Pleiades; if you want to save
them, move them to Lou.

Pleiades has several Lustre filesystems (/nobackupp[1-6]) that provide a total of about
6.795 petabytes of storage and serve thousands of cores. These filesystems are managed
under Lustre software version 1.8.6.

Lustre filesystem configurations are summarized at the end of this article.

WARNING: As the names suggest, these filesystems are not backed up, so any files that
are removed cannot be restored. Essential data should be stored on Lou[1-2] or on other,
more permanent storage.

Which /nobackup Should I Use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. Find out which Lustre filesystem you have been assigned to by typing
the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp2/username

In the above example, the symlink from /nobackup to /nobackupp2 shows that the
user's assigned nobackup system is /nobackupp2.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard quota limits for inodes are 75,000 and 100,000, respectively. Those for the disk
space are 500 gigabytes and 1 terabyte, respectively. To check your disk space and inodes
usage and quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid nnnn):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 530000000 1100000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent that lists
your current usage and remaining grace period. It is expected that users will occasionally
exceed their soft limit, as needed; however after 14 days, users who are still over their soft

Pleiades Lustre Filesystems 4

limit will have their batch queue access to Pleiades disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, the jobs writing to it will hang. A Lustre error
with code -28 in the system log file indicates that the filesystem is full. The NAS Control
Room staff normally will send out emails to those using the most space, asking them to
clean up their files.

Lustre File Systems Configurations

In the table below, /nobackupp[1-6] are abbreviated as nbp[1-6]. P=Petabytes; T=Terabytes

Pleiades Lustre Configurations
Filesystem nbp1 nbp2 nbp3 nbp4 nbp5 nbp6
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 0.9T 0.9T 0.6T 0.6T 0.8T 0.9T
of usable inodes
on MDTs ~256x10^6 ~256x10^6 ~173x10^6 ~173x10^6 ~512x10^6 ~256x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 120 60 60 120 120
size/OST 15T 15T 7.1T 7.1T 15T 7.1T
Total Space 1.7P 1.7P 424T 424T 1.7P 847T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1
NOTE: After January 13, 2011, directories without an explicit stripe count and/or stripe size
adopted the new stripe count of 1 and stripe size of 4MB. However, old files in that directory
retain their old default values. New files that you create in these directories will adopt the
new default values.

Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding the I/O operations of other users,
read the related articles listed below.

Pleiades Lustre Filesystems 5

mailto:support@nas.nasa.gov

Lustre Best Practices

Summary: At NAS, Lustre filesystems (/nobackup) are shared among many users and
many application processes, which causes contention for various Lustre resources. This
article explains how Lustre I/O works, and provides best practices for improving application
performance.

 How Does Lustre I/O Work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades contend for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs while working in our high-end
computing environment.

Best Practices

Avoid Using ls -l

The ls -l command displays information such as ownership, permission, and size of all
files and directories. The information on ownership and permission metadata is stored on
the MDTs. However, the file size metadata is only available from the OSTs. So, the ls -l
command issues RPCs to the MDS/MDT and OSSes/OSTs for every file/directory to be
listed. RPC requests to the OSSes/OSTs are very costly and can take a long time to
complete if there are many files and directories.

Use ls by itself if you just want to see if a file exists•
Use ls -l filename if you want the long listing of a specific file•

Lustre Best Practices 6

http://www.nas.nasa.gov/hecc/support/kb/Lustre_Basics_224.html#striping

Avoid Having a Large Number of Files in a Single Directory

Opening a file keeps a lock on the parent directory. When many files in the same directory
are to be opened, it creates contention. A better practice is to split a large number of files
(in the thousands or more) into multiple subdirectories to minimize contention.

Avoid Accessing Small Files on Lustre Filesystems

Accessing small files on the Lustre filesystem is not efficient. When possible, keep them on
an NFS-mounted filesystem (such as your home filesystem on Pleiades /u/username) or
copy them from Lustre to /tmp on each node at the beginning of the job, and then access
them from /tmp.

Use a Stripe Count of 1 for Directories with Many Small Files

If you must keep small files on Lustre, be aware that stat operations are more efficient if
each small file resides in one OST. Create a directory to keep small files, set the stripe
count to 1 so that only one OST will be needed for each file. This is useful when you extract
source and header files (which are usually very small files) from a tarfile. Use the Lustre
utility lfs to create a specific striping pattern, or find the striping pattern of existing files.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to stripe
across more than one OST. You can create a new directory with a larger stripe count and
copy the larger files to that directory. Note that moving files into that directory with the mv
command will not change the strip count of the files. Files must be created in or copied to a
directory to inherit the stripe count properties of a directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100 MB) and a few very large files
(greater than 1 GB), then it may be better to create a new subdirectory with a larger stripe
count. Store just the large files and create symbolic links to the large files using the symlink
command ln.

pfe1% mkdir bigstripe
pfe1% lfs setstripe -c 16 -s 4m bigstripe
pfe1% ln -s bigstripe/large_file large_file

Lustre Best Practices 7

Use mtar for Creating or Extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the number
of stripes is set to the number of gigabytes of the file.

Keep Copies of Your Source Code on the Pleiades Home Filesystem
and/or Lou

Be aware that files under /nobackup[p1-p6] are not backed up. Make sure that you have
copies of your source codes, makefiles, and any other important files saved on your
Pleiades home filesystem or on Lou, the NAS storage system.

Avoid Accessing Executables on Lustre Filesystems

There have been a few incidents on Pleiades where users' jobs encountered problems
while accessing their executables on the /nobackup filesystem. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on the
Lustre filesystem. This can cause a bus error when a job tries to bring the next set of
instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run executables
from your home filesystem on Pleiades. On rare occasions, running executables from the
Lustre filesystem can cause executables to be corrupted. Avoid copying new executables
over existing ones of the same name within the Lustre filesystem. The copy causes a
window of time (about 20 minutes) where the executable will not function. Instead, the
executable should be accessed from your home filesystem during runtime.

Increase the stripe_count for Parallel Writes to the Same File

When multiple processes are writing blocks of data to the same file in parallel, the I/O
performance for large files will improve when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the stripe
count is set to 1. While this default setting provides for efficient access of metadata--for
example to support the ls -l command--large files should use stripe counts of greater
than 1. This will increase the aggregate I/O bandwidth by using multiple OSTs in parallel
instead of just one. A rule of thumb is to use a stripe count approximately equal to the
number of gigabytes in the file.

Another good practice is to make the stripe count be an integral factor of the number of
processes performing the write in parallel, so that you achieve load balance among the

Lustre Best Practices 8

OSTs. For example, set the stripe count to 16 instead of 15 when you have 64 processes
performing the writes.

Limit the Number of Processes Performing Parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or fewer,
there will be contention if a large number of processes of an application are involved in
parallel I/O. Instead of allowing all processes to do the I/O, choose just a few processes to
do the work. For writes, these few processes should collect the data from other processes
before the writes. For reads, these few processes should read the data and then broadcast
the data to others.

Stripe Align I/O Requests to Minimize Contention

Stripe aligning means that the processes access files at offsets that correspond to stripe
boundaries. This helps to minimize the number of OSTs a process must communicate for
each I/O request. It also helps to decrease the probability that multiple processes accessing
the same file communicate with the same OST at the same time.

One way to stripe-align a file is to make the stripe size the same as the amount of data
in the write operations of the program.

Avoid Repetitive "stat" Operations

Some users have implemented logic in their scripts to test for the existence of certain files.
Such tests generate "stat" requests to the Lustre server. When the testing becomes
excessive, it creates a significant load on the filesystem. A workaround is to slow down the
testing process by adding sleep in the logic. For example, the following user script tests
the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their existence as
quickly as possible (on the order of 5,000 times per second). Adding sleep inside the loop

Lustre Best Practices 9

slows down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
sleep 15

 end

Avoid Having Multiple Processes Open the Same File(s) at the Same
Time

On Lustre filesystems, if multiple processes try to open the same file(s), some processes
will not able to find the file(s) and your job will fail.

The source code can be modified to call the sleep function between I/O operations. This will
reduce the occurrence of multiple, simultaneous access attempts to the same file from
different processes.

 100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

Avoid Repetitive Open/Close Operations

Opening files and closing files incur overhead and repetitive open/close should be avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the open
statement. If possible, read the files once each and save the results, instead of reading the
files repeatedly.

If you intend to write to a file many times during a run, open the file once at the beginning of
the run. When all writes are done, close the file at the end of the run.

Lustre Best Practices 10

See also: Lustre Basics

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlate issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 11

Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

Open/close of files on the Lustre file system•
Stat/statfs are query operations invoked by commands such as ls -l•
Read/write is the total volume of I/O in gigabytes•

The following is an example of this listing:

==
 LUSTRE Filesystem Statistics
--
nbp10 Metadata Operations
 open close stat statfs read(GB) write(GB)
 1057 1058 1394 0 2 14
Read 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 9 3 1 0 1 0 3 2 319
Write 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 138 13 1 11 36 9 21 37 12479
__
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

 CPU Time Used : 00:03:56
 Real Memory Used : 2464kb
 Walltime Used : 00:04:26
 Exit Status : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads occurred with block sizes between 4 KB and
8 KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

For tips for improving Lustre I/O, see Lustre Best Practices for multiple tips to improve the
Lustre I/O performance of your jobs.

Lustre Filesystem Statistics in PBS Output File 12

Using 'mtar' to Create or Extract Tar Files on Lustre

NAS's in-house developed mtar program is a modification of GNU tar version 1.25. It is
exactly equivalent to tar except that, if it detects a Lustre filesystem, then it restripes files
as they are "tarred" and/or "untarred" for better performance. Specifically:

The stripe count of files extracted on a Lustre filesystem will be dynamically selected
based on the original file size, so, small files will be extracted with small stripe counts
and large files will be extracted with large stripe counts

•

Tar files created on a Lustre file system will have a stripe count based on the sum of
the sizes of all component files

•

TIP: We recommend using mtar in place of tar when creating or extracting from a tar file
on Lustre.
Currently, the number of stripes set by mtar is essentially the number of gigabytes of that
file (for disk storage, 1 GB = 109 bytes), limited by the number of object storage targets in
that Lustre filesystem.

Tar files created with gzip (-z), bzip2 (-j), and arbitrary compression
(--use-compress-program) will preserve the striping of the uncompressed tar file.

Using mtar

mtar is available in /usr/local/bin on the Pleiades front-ends (pfe[20-27], bridge[1-4]).
Usage of mtar is exactly the same as tar and you don't have to know anything extra, as it
all happens automatically.

The following example demonstrates its usage and the comparison between mtar and
tar. Note that some output has been removed for clarity.

%ls -l *_file
-rw------- 1 zsmith s0101 16800000112 Aug 3 14:58 17g_file
-rw------- 1 zsmith s0101 1200000008 Aug 3 14:51 2g_file
-rw------- 1 zsmith s0101 1215 Aug 3 15:04 2k_file

%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

Notice that the default stripe count is 1 on all Pleiades Lustre filesystems.

Comparison of tar and mtar

Using 'mtar' to Create or Extract Tar Files on Lustre 13

tar mtar
%tar cvf tar.tar 17g_file 2g_file 2k_file
%lfs getstripe tar.tar
tar.tar
lmm_stripe_count: 1

%mtar cvf mtar.tar 17g_file 2g_file 2k_file
%lfs getstripe mtar.tar
mtar.tar
lmm_stripe_count: 19

%tar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar zcvf tar.tgz tar.tar
%lfs getstripe tar.tgz
tar.tgz
lmm_stripe_count: 1

%mtar zcvf mtar.tgz mtar.tar
%lfs getstripe mtar.tgz
mtar.tgz
lmm_stripe_count: 19

Notice that the tar-created archive has a default stripe count, while the mtar-created
archive has a stripe count based on the sizes of component files. In addition, tar-extracted
files all have a default stripe count, while mtar-extracted files have a variable stripe count
depending on size. Also notice that using mtar with compression preserves striping of the
uncompressed tar file.

The mtar script was created by NAS staff member Paul Kolano.

Using 'mtar' to Create or Extract Tar Files on Lustre 14

	Table of Contents
	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File
	Using 'mtar' to Create or Extract Tar Files on Lustre

