
Table of Contents
Memory Usage on Pleiades.................................................................................................1

Memory Usage Overview............................................................................................1
Checking memory usage of a batch job using qps......................................................3
Checking memory usage of a batch job using qtop.pl.................................................4
Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"...........5
Checking memory usage of a batch job using gm.x....................................................6
Checking if a Job was Killed by the OOM Killer...........................................................8
How to Get More Memory for your Job......................................................................10



Memory Usage on Pleiades

Memory Usage Overview

Running jobs on cluster systems such as Pleiades requires more attention to the memory
usage of a job than on shared memory systems. Below are a few factors that limit the
amount of memory available to your running job:

The total physical memory of a Pleiades compute node varies from 8 GB to 32 GB. A
small amount of the physical memory is used by the system kernel; through PBS, a
job can access up to about 7.6 GB of an 8-GB node (Harpertown), about 22.5 GB of
a 24-GB node (Nehalem-EP and Westmere-EP), and about 31 GB of a 32-GB node
(Sandy Bridge)

• 

The PBS prologue tries to clean up the memory used by the previous job that ran on
the nodes of your current running job; if there is a delay in flushing the previous job's
data from memory to disks (for example, due to Lustre issues), the actual amount of
free memory available to your job will be less

• 

I/O uses buffer cache that also occupies memory; if your job does a large amount of
I/O, the amount of memory left for your running processes will be less

• 

If your job uses more than one node, beware that the memory usage reported in the PBS
output file is not the total memory usage for your job: rather, it is the memory used in the
first node of your job. To help you get a more accurate picture of the memory usage of your
job, we provide a few in-house tools, listed below.

qtop.pl
Invokes top on the compute nodes of a job, and provides a snapshot of the amount
of used and free memory of the whole node and the amount used by each running
process.
For more information, read the article Checking Memory Usage of a Batch Job Using
qtop.pl.

qps
Invokes ps on the compute nodes of a job, and provides a snapshot of the %mem
used by its running processes.
For more information, read the article Checking Memory Usage of a Batch Job Using
qps.

qsh.pl
Can be used to invoke the command cat /proc/meminfo on the compute nodes
to provide a snapshot of the total and free memory in each node.
For more information, read the article Checking Memory Usage of a Batch Job Using
qsh.pl and "cat /proc/meminfo".

gm.x and gm_post.x
Provides the memory high-water mark for each process of your job when the job
finishes.

Memory Usage on Pleiades 1



For more information, read the article Checking Memory Usage of a Batch Job Using
qm.x.

These tools are installed under the directory /u/scicon/tools/bin. It is a good idea to
include this directory in your path by modifying your shell startup script so that you don't
have to provide the complete path name when using these tools. For example:

set path = ( $path /u/scicon/tools/bin )

If your job runs out of memory and is killed by the kernel, this event was probably recorded
in system log files. Instructions on how to check whether this is the case are provided in the
article Checking if a Job was Killed by the OOM Killer.

If your job needs more memory, read the article How to Get More Memory for your Job for
possible approaches.

Memory Usage Overview 2



Checking memory usage of a batch job using qps

qps (available under /u/scicon/tools/bin) is a Perl script that securely connects via ssh into
each node of a running job and gets process status (ps) information on each node.

Syntax:

pfe20% qps jobid
Example:

pfe20% qps 26130

*** Job 26130, User abc, Procs 1
NODE     TIME    %MEM %CPU STAT TASK
r1i0n14 10:17:13  2.8 99.9 RL   ./a.out
r1i0n14 10:17:12  2.9 99.9 RL   ./a.out
r1i0n14 10:17:18  2.9 99.9 RL   ./a.out
r1i0n14 10:16:34  2.9 99.8 RL   ./a.out
r1i0n14 10:17:11  2.9 99.9 RL   ./a.out
r1i0n14 10:17:13  2.9 99.9 RL   ./a.out
r1i0n14 10:17:12  2.9 99.9 RL   ./a.out
r1i0n14 10:17:15  2.9 99.9 RL   ./a.out

Note: The percentage of memory usage by a process reported by this script is the
percentage of memory in the whole node.

Checking memory usage of a batch job using qps 3



Checking memory usage of a batch job using qtop.pl

A Perl script called qtop.pl (available under /u/scicon/tools/bin) was provided by
Bob Hood of the NAS staff. This script "ssh's" into the nodes of a PBS job and performs the
command top. The output of qtop.pl provides memory usage for the whole node and for
each process.

Syntax:

pfe1% qtop.pl [-b] [-p n] [-P s] [-h n] [-H s] [-t s] [-N s] PBSjobid
      -b   : (for running in background or batch) don't run 'resize' command
      -p n : show at most n processes per host
      -P s : show only procs in s, a comma-separated list of ranges
               e.g. -P 1,8-9
      -h   : don't show the column header line
      -H s : show only header lines in s, comma-separated ranges
               e.g. -H 1-2,7
               e.g. -H 0 (don't show any lines)
      -t s : pass string s (must be one argument) to top command
      -n s : show output only from nodes in s, comma-separated ranges
               e.g. -n 0,2-3           (relative node #'s)
      -N s : show output only from nodes in s, a comma-separated list
               e.g. -N r1i1n14,r1i1n15 (absolute node #'s)

Example: to skip the header and list 8 procs per host

pfe1% qtop.pl -H 0 -p 8 996093
all nodes in job 996093:  r184i2n12
r184i2n12   PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
          20027 zsmith    25   0 23.8g 148m 5320 R  101  0.6   5172:37 a.out
          20028 zsmith    25   0 23.8g 140m 5140 R  101  0.6   5173:35 a.out
          20029 zsmith    25   0 23.9g 286m 6640 R  101  1.2   5172:23 a.out
          20030 zsmith    25   0 23.9g 245m 5040 R  101  1.0   5171:18 a.out
          20031 zsmith    25   0 23.9g 265m 6040 R  101  1.1   5171:46 a.out
          20032 zsmith    25   0 23.9g 246m 5300 R  101  1.0   5171:00 a.out
          20033 zsmith    25   0 23.8g 158m 5476 R  101  0.7   5172:41 a.out
          20034 zsmith    25   0 23.8g 148m 5280 R  101  0.6   5173:02 a.out

Checking memory usage of a batch job using qtop.pl 4



Checking memory usage of a batch job using qsh.pl and
"cat /proc/meminfo"

A Perl script called qsh.pl (available under /u/scicon/tools/bin) was provided by
NAS staff member Bob Hood. This script "ssh's" into all the nodes used by a PBS job and
runs a command that you supply.

Syntax:

pfe1% qsh.pl pbs_jobid your_command
One good use of this script is to check the amount of free memory in the nodes of your PBS
job.

Example:

pfe1% qsh.pl 30329 "cat /proc/meminfo"

running "cat /proc/meminfo" on:  r56i2n14 r56i2n15
r56i2n14 :
  MemTotal:      8079728 kB
  MemFree:        857936 kB
  Buffers:             0 kB
  Cached:        3775472 kB
...
r56i2n15 :
  MemTotal:      8079728 kB
  MemFree:       5840920 kB
  Buffers:             0 kB
  Cached:         784280 kB
...

Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo" 5



Checking memory usage of a batch job using gm.x

NAS staff member Henry Jin created a tool called gm.x (available under
/u/scicon/tools/bin) that reports the memory usage at the end of a run from each
process.

TIP: Add /u/scicon/tools/bin to your $PATH so that you can invoke gm.x without the
full path.
Use the -h option to find out what types of memory usage can be reported:

pfe1%gm.x -h
gm - version 1.0
usage: gm.x [-opts] a.out [args]
   -hwm     ; high water mark (VmHWM)
   -rss     ; resident memory size (VmRSS)
   -wrss    ; weighted memory size (WRSS)
   -v       ; verbose flag
Default is by environment variable GM_TYPE (def=WRSS)

Note that the -rss option reports the last snapshot of resident set size usage captured by
the kernel. With the -wrss option, gm.x calls the system function
get_weighted_memory_size. More information about this function can be found from
the man page man get_weighted_memory_size.

gm.x can be used for either OpenMP or MPI applications (linked with either SGI's MPT,
MVAPICH or Intel MPI libraries) and you do not have to recompile your application for it. A
script called gm_post.x then takes the per process memory usage information and
computes the total memory used and the average memory used per process.

To use gm.x for an MPI code, add gm.x after the mpiexec options. For example:

mpiexec -np 4 gm.x ./a.out
Memory usage for (r1i1n0,pid=9767): 1.458 MB (rank=0)
Memory usage for (r1i1n0,pid=9768): 1.413 MB (rank=1)
Memory usage for (r1i1n0,pid=9770): 1.413 MB (rank=3)
Memory usage for (r1i1n0,pid=9769): 1.417 MB (rank=2)

mpiexec -np 4 gm.x ./a.out | gm_post.x
Number of nodes     = 1
Number of processes = 4
Processes per node  = 4
Total memory        = 5.701 MB

Memory per node     = 5.701 MB
Minimum node memory = 5.701 MB
Maximum node memory = 5.701 MB

Memory per process  = 1.425 MB
Minimum proc memory = 1.413 MB
Maximum proc memory = 1.458 MB

Checking memory usage of a batch job using gm.x 6



If you use dplace to pin process, add gm.x after dplace:

mpiexec -np NN dplace -s1 gm.x ./a.out

Checking memory usage of a batch job using gm.x 7



Checking if a Job was Killed by the OOM Killer

If a PBS job runs out of memory and is killed by the Out-Of-Memory (OOM) killer of the
kernel, this event is likely (though not always) recorded in system log files. You can confirm
this event by checking some of the messages recorded in system log files, and then
increase your memory request in order to get your job running.

Follow the steps below to check whether your job has been killed by the OOM killer:

Find out when your job ran, what rack numbers were used by your job, and if the job
exited with the Exit_status=137 from the tracejob output of your job. For
example:

pfe[20-27]% ssh pbspl1
pbspl1% tracejob -n 3 140001

Where "3" indicates that you want to trace your job (PBS JOBID=140001), which ran
within the past 3 days.

1. 

From the rack numbers (such as r2, r3, ...), you then grep messages that were
recorded in the messages file stored in the leader node of those racks for your
executable. For example, to look at messages for rack r2:

pfe[20-27]% grep abc.exe /net/r2lead/var/log/messages
Apr 21 00:32:50 r2i2n7 kernel: abc.exe invoked oom-killer:
gfp_mask=0x201d2, order=0, oomkilladj=-17

2. 

Often, the Out-Of-Memory message doesn't make it into the messages file, but will
be recorded in a consoles file named by each individual node. For example, to look
for abc.exe invoking the OOM killer on node r2i2n7:

3. 

pfe%  grep abc.exe /net/r2lead/var/log/consoles/r2i2n7
abc.exe invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

Note that these messages do not have a timestamp associated with them, so you
will need to use an editor to view the file and look for the hourly time markers
bracketing when the job ran out of memory. An hourly time marker looks like this:

[-- MARK -- Thu Apr 21 00:00:00 2011]
It's also possible that a system process (such as, pbs_mom or ntpd) is listed as
invoking the OOM killer, but it is nevertheless direct evidence that the node had run
out of memory.

If you want to monitor the memory use of your job while it is running, you can use the tools
listed in the article Memory Usage Overview.

In addition, NAS provides a script called pbs_oom_check. This script does the steps
above and parses the /var/log/messages on all the nodes associated with pbs_jobid,
looking for an instance of OOM killer. The script is available under

Checking if a Job was Killed by the OOM Killer 8



/u/scicon/tools/bin and works best when run on the host pbspl1.

Checking if a Job was Killed by the OOM Killer 9



How to Get More Memory for your Job

If your job was terminated because it needed more memory than what was available in the
nodes that it ran on, consider the following examples.

Harpertown Nodes

Among the Harpertown nodes, the 64 nodes in rack 32 have 16 GB per node ( GB/node)
instead of 8 GB/node. You can request running your job on rack 32 with the keyword
bigmem=true. For example, change:

#PBS -lselect=1:ncpus=8

to

#PBS -lselect=1:ncpus=8:bigmem=true

Instead of running your jobs on Harpertown nodes, run them on Nehalem-EP, Westmere, or
Sandy Bridge nodes. For example, change:

#PBS -lselect=1:ncpus=8:model=har

to

#PBS -lselect=1:ncpus=8:model=neh

or

#PBS -lselect=1:ncpus=8:model=wes

or

#PBS -lselect=1:ncpus=8:model=san

Westmere Nodes

Among the Westmere nodes, 17 nodes have 48 GB/node and 4 nodes have 94 GB/node
instead of 24 GB/node. You can request using some of these nodes with the keyword
bigmem=true and model=wes. For example, change:

#PBS -lselect=1:ncpus=12:model=wes

to

#PBS -lselect=1:ncpus=12:bigmem=true:model=wes

If you submit your resource request as shown above, your job will be assigned either a 48

How to Get More Memory for your Job 10



GB or a 94 GB bigmem node, depending on availability.

To explicitly request a bigmem node with 94 GB of memory, add the :mem attribute with a
memory size between 48 and 94 GB. For example:

 #PBS -l select=1:ncpus=12:bigmem=true:mem=90GB:model=wes

Please note that these Westmere bigmem nodes can be used for jobs requesting the
normal, long, debug, and low queues. They are not available for the devel or gpu
queues.

All Nodes

If all processes use about the same amount of memory and you cannot fit 8 processes per
node (for Harpertown or Nehalem-EP), 12 processes per node (for Westmere), or 16
processors per node (for Sandy Bridge), then reduce the number of processes per node
and request more nodes for your job. For example, change:

#PBS -lselect=3:ncpus=8:mpiprocs=8:model=neh

to

#PBS -lselect=6:ncpus=4:mpiprocs=4:model=neh

For a typical MPI job where rank 0 does the I/O and uses a lot of buffer cache, assign rank
0 to one node by itself. For example, if rank 0 needs up to 22.5 GB of memory by itself,
change:

#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes

to

#PBS -lselect=1:ncpus=1:mpiprocs=1:model=wes+1:ncpus=11:mpiprocs=11:model=wes

If rank 0 needs 22.5 - 48 GB of memory by itself, use:

#PBS -lselect=1:ncpus=1:mpiprocs=1:bigmem=true:model=wes+1:ncpus=11:mpiprocs=11:model=wes

Note that due to formatting issues, the above may appear as two lines; it should be entered
as a single line.

If you suspect that certain nodes which your job ran on had less total physical memory than
normal, report it to the NAS Contol Room. Those nodes can be "off-lined" and taken care of
by NAS staff. This prevents you and other users from using those nodes before they are
fixed.

How to Get More Memory for your Job 11



For certain pre- or post-processing work that needs more memory, you can use one of the
Westmere bigmem nodes in a PBS batch job or run the job interactively on the bridge
nodes (bridge[1-4]). Note that an interactive job cannot use more than 56 GB on bridge[1,2]
or 192 GB on bridge[3,4]. Also, MPI applications that use SGI's MPT library cannot run on
the bridge nodes.

For a multi-process or multi-thread job, if any of your processes/threads need more than 94
GB, the job won't run on Pleiades. Instead, run it on a shared-memory system such as
Columbia.

How to Get More Memory for your Job 12


	Table of Contents
	Memory Usage on Pleiades
	Memory Usage Overview
	Checking memory usage of a batch job using qps
	Checking memory usage of a batch job using qtop.pl
	Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"
	Checking memory usage of a batch job using gm.x
	Checking if a Job was Killed by the OOM Killer
	How to Get More Memory for your Job


