
Table of Contents
Effective Use of PBS..1

Streamlining PBS Job File Transfers from Pleiades to Lou...1
Avoiding Job Failure from Overfilling /PBS/spool..2
Running Multiple Serial Jobs to Reduce Wall-Time...4
Checking the Time Remaining in a PBS Job from a Fortran Code.............................7
Using GNU Parallel to Package Multiple Jobs in a Single PBS Job............................8

Effective Use of PBS

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Effective Use of PBS 1

Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool directory
of the first node of your job. However, the space under /PBS/spool is limited, and when it
fills up, any job that tries to write to /PBS/spool may die. This makes the node unusable by
jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined sizes of
error and output files produced by a job. If this policy goes into effect and a job exceeds that
limit, PBS will kill the job.

To prevent this from happening to your job, do not write large amounts of content in the
PBS output/error files. If your executable normally writes a lot of messages to either
standard out or standard error, you should redirect them in your PBS script. Below are a
few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1.

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2.

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3.

The files "output" and "error" are created under your own directory and you can view the
contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the script,
you can create unique filenames for each run. For example, you can add the PBS JOBID to
"output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server, such as

Avoiding Job Failure from Overfilling /PBS/spool 2

12345.pbspl1.nas.nasa.gov.

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a file, you
can see the contents of your PBS output/error files before your job completes by following
the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

2.

Avoiding Job Failure from Overfilling /PBS/spool 3

Running Multiple Serial Jobs to Reduce Wall-Time

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

Processor Types Cores/node Available Memory/node
Harpertown 8 7.6 GB
Nehalem-EP 8 22.5 GB
Westmere 12 22.5 GB
Sandy Bridge 16 ~31.0 GB
The examples below allow you to spawn serial jobs across nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel
module is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE
and places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of
the arguments -comm none for this version of mpiexec is essential for serial codes or
scripts. In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script wrapper.csh in which the input/output identifier (that is, ${rank}) is
calculated from the sum of $MPIEXEC_RANK and an argument provided as input by the
user.

Example 1

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh

Running Multiple Serial Jobs to Reduce Wall-Time 4

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (that is,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can
be modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you, and you have the current
directory included in your path.

Example 2

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of processors requested in a PBS job. Thus, the serial jobs
are divided into a few batches and the batches are processed sequentially. Again, the
wrapper script is used where multiple versions of the program a.out in a batch are run in
parallel.

serial2.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

The total number to run at once is automatically determined
at runtime by the number of CPUs available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. No changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

Running Multiple Serial Jobs to Reduce Wall-Time 5

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Wall-Time 6

Checking the Time Remaining in a PBS Job from a Fortran
Code

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example:

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable
external pbs_time_left
integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed
call pbs_time_left(seconds_left)
print*,"Seconds remaining in PBS job:",seconds_left

Note: The return value from pbs_time_left is only accurate to within a minute or
two.

2.

Compile your modified code and link with the above library using, for example:
LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 7

Using GNU Parallel to Package Multiple Jobs in a Single
PBS Job

GNU is a complete, free software system, upward-compatible with Unix. GNU parallel is a
shell tool for executing jobs in parallel. It uses the lines of its standard input to modify shell
commands, which are then run in parallel. Detailed information about this tool can be found
on the GNU Operating System website and its related parellel man page.

On Pleiades, a copy of GNU parallel is available under /usr/bin.

The three examples below demonstrate how you can use GNU parallel to run multiple tasks
in a single PBS batch job.

Example 1

This example script runs 64 copies of a serial executable file, and assumes that 4 copies
will fit in the available memory of one node and that 16 nodes are used.

gnu_serial1.pbs

#PBS -lselect=16:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD;./myscript.csh {}"

In the above PBS script, the last command uses the parallel command to simultaneously
run 64 copies of myscript.csh located under $PBS_O_WORKDIR. Here is the specific
breakdown:

seq 64

Generates a set of integers 1, 2, 3, ..., 64 that will be passed to the parallel
command.

•

-j 4

GNU parallel will determine the number of processor cores on the remote computers
and run the number of tasks as specified by -j. In this case, -j 4 tells the the
parallel command to run 4 tasks in parallel on one compute node.

•

-u•

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 8

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/man.html

Tells the parallel command to print output as soon as possible. This may cause
output from different commands to be mixed. GNU parallel runs faster with -u. This
can be reversed with --group.
--sshloginfile $PBS_NODEFILE

Distributes tasks to the compute nodes listed in $PBS_NODEFILE.

•

"cd $PWD; ./myscript.csh {}"

Changes directory to the current working directory and runs myscript.csh located
under $PWD. At this point, $PWD is the same as $PBS_O_WORKDIR. The {} is an
input to myscript.csh (see below) and will be replaced by the sequence number
generated from seq 64.

•

myscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

In this above sample script executed by the parallel command:

$1 refers to the sequence numbers (1, 2, 3, ..., 64) from the seq command that was
piped into the parallel command

•

For each serial run, a subdirectory named run_$1 (run_1, run_2, ...) is created•
The echo line prints information back to the PBS stdout file•
The serial a.out is located under $HOME/bin•
The input for each run, input_$1 (input_1, input_2, ...) is located under
$PBS_O_WORKDIR, which is the directory above run_$1

•

The output for each run (output_1, output_2, ...) is created under run_$1•

Potential Modifications to Example 1

There are multiple ways to pass arguments to parallel. For example, instead of using the
seq command to pass a sequence of integers, you can also pass in a list of directory
names or filenames using ls -1 or cat mylist, where the file mylist contains a list of
entries.

Example 2

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 9

This script is similar to Example 1, except that 6 nodes are used instead of 16 nodes. This
means that 24 serial a.outs can be run simultaneously, since a total of 24 cores (6 nodes
x 4 cores) are requested. As each a.out completes its work on a core, another a.out is
launched by the parallel command to run on the same core.

myscript.csh is the same as that shown in the previous example.

gnu_serial2.pbs

#PBS -lselect=6:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myscript.csh {}"

Example 3

In this example, an OpenMP executable is run with 12 OpenMP threads on one Westmere
node. To run 64 copies of this executable with 10 copies running simultaneously on 10
nodes:

gnu_openmp.pbs

#PBS -lselect=10:ncpus=12:mpiprocs=1:ompthreads=12:model=wes
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 1 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myopenmpscript.csh {}"

myopenmpscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

setenv OMP_NUM_THREADS 12

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 10

	Table of Contents
	Effective Use of PBS
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Wall-Time
	Checking the Time Remaining in a PBS Job from a Fortran Code
	Using GNU Parallel to Package Multiple Jobs in a Single PBS Job

