
Table of Contents
Porting to Pleiades...1

Recommended Compiler Options..1
Porting with SGI MPT..3
With MVAPICH..8
With Intel-MPI..10
With OpenMP..12
With SGI's MPI and Intel OpenMP..14
With MVAPICH and Intel OpenMP..16

Porting to Pleiades

Recommended Compiler Options

Intel compiler versions 10.0, 10.1, 11.0, 11.1, and 12.0 are available on Pleiades as
modules. Use the module avail command to find available versions. Since NAS does
not set a default version for users on Pleiades, be sure to use the module load ...
command to load the version you want to use.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn On Optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you
want more aggressive optimizations, you can use -O3. Note that using -O3 may not
improve performance for some programs.

Generate Optimized Code for a Processor Type: -xS, -xSSE4.1 or -xSSE4.2

Intel version 10.x, 11.x and 12.x compilers provide flags for generating optimized codes
specialized for various instruction sets used in specific processors or microarchitectures.

Processor Type Intel V10.x Intel V11.x and above
Harpertown -xS -xSSE4.1
Nehalem-EP

Westmere
N/A -xSSE4.2

Sandy Bridge N/A -axAVX
Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 can run on Harpertown, Nehalem-EP, Westmere, or Sandy Bridge processors.
An application that is compiled with -xSSE4.2 can only run on Nehalem-EP or Westmere
processors. An application that is compiled with -axAVX can run only on Sandy Bridge
processors.

If your goal is to get the best performance out of the Nehalem-EP/Westmere processors, it
is recommended that you do the following:

Use either Intel 11.x or 12.x compilers as they are designed for
Nehalem-EP/Westmere-EP micro-architecture optimizations

•

Use the Nehalem-EP/Westmere-EP processor specific optimization flag -xSSE4.2•

WARNING: Running an executable built with the -xSSE4.2 flag on the Harpertown

Porting to Pleiades 1

processors will result in the following error:

Fatal Error: This program was not built to run on the processor in
your system. The allowed processors are: Intel(R) processors with
SSE4.2 and POPCNT instructions support.

If your goal is to have a portable executable that can run on Harpertown, Nehalem-EP,
Westmere, or Sandy Bridge you can choose one of the following approaches:

Use none of the above flags•
Use -xSSE4.1 (with 12.x compiler)•
Use -O3 -ipo -axSSE4.1,axAVX (with version 12.x compiler)•

This allows a single executable that will run on any of the four Pleiades processor types
with suitable optimization to be determined at run time.

Turn Inlining On: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One
of these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Use a Specific Memory Model: -mcmodel=medium and -shared-intel

Should you get a link time error relating to R_X86_64_PC32, add in the compiler option of
-mcmodel=medium and the link option of -shared-intel. This happens if a common
block is > 2gb in size.

Turn Off All Warning Messages: -w -vec-report0 -opt-report0

Use of -w disables all warnings; -vec-report0 disables printing of vectorizer diagnostic
information; and -opt-report0 disables printing of optimization reports.

Parallelize Your Code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc.

Recommended Compiler Options 2

Porting with SGI MPT

Among the many MPI libraries installed on Pleiades, it is recommended that you start with
SGI's MPT library.

The available SGI MPT modules are:

mpi/mpt.1.25•
mpi-sgi/mpt.1.26•
mpi-sgi/mpt.2.04.10789•

There is no default MPT version set, but you are recommended to start with the MPT
2.04.10789 version by loading the mpi-sgi/mpt.2.04.10789 module. You should load the
same module when you build your application on the front-end node and also inside your
PBS script for running on the back-end nodes.

Note:Pleiades uses an InfiniBand (IB) network for interprocess RDMA (remote direct
memory access) communications and there are two InfiniBand fabrics, designated as ib0
and ib1. In order to maximize performance, SGI advises that the ib0 fabric be used for all
MPI traffic. The ib1 fabric is reserved for storage related traffic. The default configuration for
MPI is to use only the ib0 fabric.

Environment Variables

When you load an MPT module, several paths (such as CPATH, C_INCLUDE_PATH,
LD_LIBRARY_PATH, etc.) and MPT or ARRAYD related variables are set or modified. For
example, with the mpi-sgi/mpt.2.04.10789 module, the following MPT and ARRAYD related
variables are reset to some non-default values:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_IB_TIMEOUT 20
setenv MPI_IB_RAILS 2
setenv MPI_DSM_DISTRIBUTE 0 (for Harpertown processors)
setenv MPI_DSM_DISTRIBUTE 1 (for Nehalem-EP, Westmere, and Sandy Bridge processors)
setenv ARRAYD_CONNECTTO 15
setenv ARRAYD_TIMEOUT 180

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (that is, the Pleiades node used in the run). These buffers are
used to send and receive long inter-host messages.
Default: 96 pages (1 page = 16KB)

MPI_IB_TIMEOUT

Porting with SGI MPT 3

When an IB card sends a packet it waits some amount of time for an ACK packet to
be returned by the receiving IB card. If it does not receive one it sends the packet
again. This variable controls that wait period. The time spent is equal to 4 * 2 ^
MPI_IB_TIMEOUT microseconds.
Default: 18

MPI_IB_RAILS

If the MPI library uses the IB driver as the inter-host interconnect it will by default use
a single IB fabric. If this is set to 2, the library will try to make use of multiple
available separate IB fabrics (ib0 and ib1) and split its traffic across them. If the
fabrics do not have unique subnet IDs then the rail-config utility is required to have
been run by the system administrator to enable the library to correctly use the
separate fabrics.
Default: 1

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.
Default: Enabled for MPT.1.26; Not Enabled for MPT.1.25

ARRAYD_CONNECTTO

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to
prevent MPI start up problems due to connection time-out.
Default: 5 seconds

ARRAYD_TIMEOUT

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help
to prevent MPI start up problems due to connection time-out.
Default: 45 seconds

For more MPT related variables, read man mpi after loading an MPT module. Some of
them may be useful for some applications or for debugging purposes on Pleiades. Here are
a few of them for you to consider:

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process (that is, the MPI rank). These buffers are used to send long
messages and intrahost messages.

Porting with SGI MPT 4

Default: 32 pages (1 page = 16KB)
MPI_IB_FAILOVER

When the MPI library uses IB and a connection error is detected, the library will
handle the error and restart the connection a number of times equal to the value of
this variable. Once there are no more failover attempts left and a connection error
occurs, the application will be aborted.
Default: 4

MPI_COREDUMP

Controls which ranks of an MPI job can dump core on receipt of a core-dumping
signal. Valid values are NONE, FIRST, ALL, or INHIBIT.
NONE means that no rank should dump core.
FIRST means that the first rank on each host to receive a core-dumping signal
should dump core.
ALL means that all ranks should dump core if they receive a core-dumping signal.
INHIBIT disables MPI signal-handler registration for core-dumping signals.
Default: FIRST

MPI_STATS (toggle)

Enables printing of MPI internal statistics. Each MPI process prints statistics about
the amount of data sent with MPI calls during the MPI_Finalize process.
Default: Not enabled

MPI_DISPLAY_SETTINGS

If set, MPT will display the default and current settings of the environmental variables
controlling it.
Default: Not enabled

MPI_VERBOSE

Setting this variable causes MPT to display information such as what interconnect
devices are being used and environmental variables have been set by the user to
non-default values. Setting this variable is equivalent to passing mpirun the -v
option.
Default: Not enabled

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

Porting with SGI MPT 5

MPI executables built with SGI's MPT are not allowed to run on the Pleiades front-end
nodes.

You can run your MPI job on the back-end nodes in an interactive PBS session or through
a PBS batch job. After loading an MPT module, use mpiexec, not mpirun, to start your
MPI processes. For example:

#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har
....
module load mpi-sgi/mpt.2.04.10789
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
product of the value specified for select and that specified for mpiprocs.

Performance Issues

On Nehalem-EP, Westmere, and Sandy Bridge nodes, if your MPI job uses all the
processors in each node (8 MPI processes/node for Nehalem-EP, 12 MPI processes/node
for Westmere, and 16 MPI processes/node for Sandy Bridge), pinning MPI processes
greatly helps the performance of the code. SGI's mpi-sgi/mpt.2.06r6 will pin processes by
default by setting the environment variable MPI_DSM_DISTRIBUTE to 1 (or true) when jobs
are run on the Nehalem-EP, Westmere, and Sandy Bridge nodes. On Harpertown nodes,
setting MPI_DSM_DISTRIBUTE to 1 is not recommended due to a processor labeling issue.

If your MPI job do not use all the processors in each node, it is recommended that you
disable MPI_DSM_DISTRIBUTE by:

setenv MPI_DSM_DISTRIBUTE 0
Then let the Linux kernel decide where to place your MPI processes. If you want to pin
processes explicitly, you can use dplace. Beware that with SGI's MPT, only one shepherd
process is created for the entire pool of MPI processes and the proper way of pinning using
dplace is to skip the shepherd process. In addition, knowledge of the processor labeling in
each processor type is essential when you use dplace. Below are the recommended ways
of pinning an 8 MPI process job with every 4 processes on 4 processor cores of a node,
using two nodes:

Harpertown
mpiexec -np 8 dplace -s1 -c2,3,6,7 ./your_executable

•

Nehalem-EP
mpiexec -np 8 dplace -s1 -c2,3,4,5 ./your_executable

•

Westmere
mpiexec -np 8 dplace -s1 -c4,5,6,7 ./your_executable

•

Porting with SGI MPT 6

Sandy Bridge
mpiexec -np 8 dplace -sl -c6,7,8,9 ./your_executable

•

Porting with SGI MPT 7

With MVAPICH

On Pleiades, there are multiple modules of MVAPICH2 built with either gcc or Intel
compilers.

mpi-mvapich2/1.2p1/gcc•
mpi-mvapich2/1.2p1/intel•
mpi-mvapich2/1.2p1/intel-PIC•
mpi-mvapich2/1.4.1/gcc•
mpi-mvapich2/1.4.1/intel•

You can get more information of what options were used to build each module as follows:

Load the desired MVAPICH2 module:
%module load mpi-mvapich2/1.4.1/intel

•

Use the mpiname utility provided with the module:
%mpiname -a
MVAPICH2 1.4.1 2010-03-12 ch3:mrail

Compilation
CC: icc -fpic -DNDEBUG -O2
CXX: icpc -DNDEBUG -O2
F77: ifort -fpic -DNDEBUG -O2
F90: ifort -DNDEBUG -O2

Configuration
--prefix=/nasa/mvapich2/1.4.1/intel.sles11 --enable-f77 --enable-f90 --enable-cxx --enable-romio --with-file-system=lustre+nfs --enable-threads=multiple --with-rdma=gen2 --with-pm=remshell

Because of a formatting issue, the "Configuration" above may appear as several
lines. It should only be one line.

•

Building Applications

Here is an example of how to build an MPI application with MVAPICH2:

%module load mpi-mvapich2/1.4.1/intel
%module load comp-intel/11.1.072
%mpif90 program.f90

Running Applications

To run your job, submit your job through PBS. Within the PBS script, there are two ways to
run MPI applications built with MVAPICH2.

#PBS ..1.

With MVAPICH 8

...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpiexec -np TOTAL_CPUS your_executable

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpirun_rsh -np TOTAL_CPUS -hostfile $PBS_NODEFILE your_executable

2.

Performance Issues

To pin processes, the MVAPICH library uses the environment variable
VIADEV_USE_AFFINITY, which does something similar to SGI's
MPI_DSM_DISTRIBUTE. By default, VIADEV_USE_AFFINITY is set to 1.

If you wish to pin processes explicitly, beware that with MVAPICH, one shepherd process is
created for each MPI process. You can use the command to see these processes of your
running job:

/u/scicon/tools/bin/qsh.pl jobid

'ps -C executable -L -opsr,pid,ppid,lwp,time,comm'

To properly pin MPI processes using dplace, one cannot skip the shepherd processes. In
addition, knowledge of the processor labeling in each processor type is essential when you
use dplace. Below are the recommended ways of pinning an 8 MPI process job with every
4 processes on 4 processors of a node, using two nodes:

Harpertown
mpiexec -np 8 dplace -c2,3,6,7 ./your_executable

•

Nehalem-EP
mpiexec -np 8 dplace -c2,3,4,5 ./your_executable

•

Westmere
mpiexec -np 8 dplace -c4,5,6,7 ./your_executable

•

Sandy Bridge
mpiexec -np 8 dplace -c6,7,8,9 ./your_executable

•

Further information about pinning can be found here.

For more descriptions including the MVAPICH User Guide and other MVAPICH
publications, see http://mvapich.cse.ohio-state.edu.

With MVAPICH 9

http://mvapich.cse.ohio-state.edu

With Intel-MPI

Intel's MPI library is another alternative for building and running your MPI application. The
available Intel MPI modules are:

mpi-intel/3.1.038•
mpi-intel/3.1b•
mpi-intel/3.2.011•
mpi-intel/4.0.028•
mpi-intel/4.0.2.003•

To use Intel MPI, first create a file $HOME/.mpd.conf that has the single line:

MPD_SECRETWORD=sometext
'sometext' should be unique for each user. Change the permission of the file to read/write
by you only.

%chmod 600 $HOME/.mpd.conf

Building Applications

To compile, load an Intel compiler module and an Intel MPI module. Make sure that no
other MPI module is loaded (that is, MPT, MVAPICH or MVAPICH2):

%module load mpi-intel/4.0.2.003
%module load comp-intel/11.1.072

Use the mpiifort/mpiicc scripts which invoke the Intel ifort/icc compilers.

%mpiifort -o your_executable program.f

Running Applications

To run it, in your PBS script make sure the Intel MPI modules are loaded as above, start the
MPD daemon, use mpiexec, and terminate the daemon at the end. For example:

#PBS ..
..
module load mpi-intel/4.0.2.003
module load comp/intel/11.1.072

Note: The following three lines should really be in one line

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE |
sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE`
 --rsh=ssh --mpd=`which mpd` --ordered

CPUS_PER_NODE and TOTAL_CPUS below represent numerical numbers

With Intel-MPI 10

for the job at hand

mpiexec -ppn CPUS_PER_NODE -np TOTAL_CPUS ./your_executable

terminate the MPD daemon

mpdallexit

With Intel-MPI 11

With OpenMP

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%module load comp-intel/11.1.072
%ifort -o your_executable -openmp program.f

Running Applications

The maximum number of OpenMP threads an application can use on a Pleiades node
depends on (i) the number of physical processor cores in the node and (ii) if hyperthreading
is available and enabled. Hyperthreading technology is not available for the Harpertown
processor type. It is available and enabled at NAS for the Nehalem-EP, Westmere, and
Sandy Bridge processor types. With hyperthreading, the OS views each physical core as
two logical processors and can assign two threads to it. This is beneficial only when one
thread does not keep the functional units in the core busy all the time and can share the
resources in the core with another thread. Running in this mode may take less than 2 times
the walltime compared to running only one thread on the core.

Tip: Before running with hyperthreading for your production runs, it is recommended that
you experiment with it to see if it is beneficial for your application.

Maximum Threads

Processor Type Maximum Threads
without Hyperthreading

Maximum Threads
with Hyperthreading

Harpertown 8 N/A
Nehalem-EP 8 16
Westmere-EP 12 24
Sandy Bridge 16 32
Here is sample PBS script for running OpenMP applications on a Pleiades Nehalem-EP
node without hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=8:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

Here is sample PBS script with hyperthreading:

With OpenMP 12

#PBS -lselect=1:ncpus=8:ompthreads=16:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

With OpenMP 13

With SGI's MPI and Intel OpenMP

Building Applications

To build an MPI/OpenMP hybrid executable using SGI's MPT and Intel's OpenMP libraries,
your code needs to be compiled with the -openmp flag and linked with the -mpi flag.

%module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
%ifort -o your_executable prog.f -openmp -lmpi

Running Applications

Here is a sample PBS script for running MPI/OpenMP application on Pleiades using three
nodes and on each node, four MPI processes with two OpenMP threads per MPI process.

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
setenv OMP_NUM_THREADS 2

cd $PBS_O_WORKDIR

mpiexec ./your_executable

You can specify the number of threads, ompthreads, on the PBS resource request line,
which will cause the PBS prologue to set the OMP_NUM_THREADS environment variable.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

cd $PBS_O_WORKDIR

mpiexec ./your_executable

Performance Issues

For pure MPI codes built with SGI's MPT library, performance on Nehalem-EP and
Westmere nodes improves by pinning the processes through setting
MPI_DSM_DISTRIBUTE environment variables to 1 (or true). However, for MPI/OpenMP
codes, all the OpenMP threads for the same MPI process have the same process ID and
setting this variable to 1 causes all OpenMP threads to be pinned on the same core and the
performance suffers.

With SGI's MPI and Intel OpenMP 14

It is recommended that MPI_DSM_DISTRIBUTE is set to 0 and omplace is to be used for
pinning instead.

If you use Intel version 10.1.015 or later, you should also set KMP_AFFINITY to disabled or
OMPLACE_AFFINITY_COMPAT to ON as Intel's thread affinity interface would interfere with
dplace and omplace.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

setenv MPI_DSM_DISTRIBUTE 0
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

mpiexec -np 4 omplace ./your_executable

With SGI's MPI and Intel OpenMP 15

With MVAPICH and Intel OpenMP

Building Applications

To build an MPI/OpenMP hybrid executable using MVAPICH and Intel's OpenMP libraries,
use mpif90, mpicc, and mpicxx with the -openmp flag.

%module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel
%mpif90 -o your_executable prog.f90 -openmp

Running Applications

With MVAPICH, a user's environment variables (such as VIADEV_USE_AFFINITY and
OMP_NUM_THREADS) are not passed in to mpiexec, thus they need to be passed in
explicitly, such as with /usr/bin/env.

Here is an example on how to run a MVAPICH/OpenMP hybrid code with a total of 12 MPI
processes and 2 OpenMP threads per MPI process:

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh

module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel

mpiexec /usr/bin/env VIADEV_USE_AFFINITY=0 OMP_NUM_THREADS=2 ./your_executable

Performance Issues

Setting the environment variable VIADEV_USE_AFFINITY to 0 disables CPU affinity
because MVAPICH does its own pinning. Setting it to 1 actually causes multiple OpenMP
threads to be placed on a single processor.

With MVAPICH and Intel OpenMP 16

	Table of Contents
	Porting to Pleiades
	Recommended Compiler Options
	Porting with SGI MPT
	With MVAPICH
	With Intel-MPI
	With OpenMP
	With SGI's MPI and Intel OpenMP
	With MVAPICH and Intel OpenMP

