
Table of Contents
Program Development Tools...1

Recommended Intel Compiler Debugging Options...1
Totalview..4
Totalview Debugging on Pleiades...5
Totalview Debugging on Columbia..7
IDB...9
GDB...10
Using pdsh_gdb for Debugging Pleiades PBS Jobs..11

Program Development Tools

Recommended Intel Compiler Debugging Options

Commonly Used Options for Debugging

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide source
file traceback information when a severe error occurs at runtime.
Specifying -traceback will increase the size of the executable program, but has no
impact on runtime execution speeds.

-check all
Checks for all runtime failures.
Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform runtime checks on array subscript
and character substring expressions.
Fortran only.
Once the program is debugged, omit this option to reduce executable program size
and slightly improve runtime performance.

-check uninit
Checks for uninitialized scalar variables without the SAVE attribute.
Fortran only.

-check-uninit
Enables runtime checking for uninitialized variables. If a variable is read before it is
written, a runtime error routine will be called. Runtime checking of undefined
variables is only implemented on local, scalar variables. It is not implemented on
dynamically allocated variables, extern variables or static variables. It is not
implemented on structs, classes, unions or arrays.
C/C++ only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large integer or
an invalid address. References to these variables are then likely to cause run-time
errors that can help you detect coding errors. This option sets -g.

-debug all
Enables debug information and control output of enhanced debug information. To
use this option, you must also specify the -g option.

Program Development Tools 1

-gen-interfaces
-warn interfaces

Tells the compiler to generate an interface block for each routine in a source file; the
interface block is then checked with -warn interfaces.

Options for Handling Floating-Point Exceptions

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow, invalid
operation, underflow, denormalized number, positive infinity, negative infinity or a
NaN) handling for the main program at runtime.
Fortran only.
-fpe0: underflow gives 0.0; abort on other IEEE exceptions
-fpe3: produce NaN, signed infinities, and denormal results
Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler option that
enables flush-to-zero. Use of -fpe3 on IA-64 systems such as Columbia will slow
runtime performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in a
program at runtime. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3.
Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine entry
and restore them on routine exit. This option can slow runtime performance.
Fortran only.

-ftz
Flushes denormal results to zero when the application is in the gradual underflow
mode. This option has effect only when compiling the main program. It may improve
performance if the denormal values are not critical to your application's behavior. For
IA-64 systems (such as Columbia) -O3 sets -ftz. For Intel 64 systems (such as
Pleiades), every optimization option O level, except -O0, sets -ftz.

Options for Handling Floating-Point Precision

-mp
Enables improved floating-point consistency during calculations. This option limits
floating-point optimizations and maintains declared precision. -mp1 restricts
floating-point precision to be closer to declared precision. It has some impact on
speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations. It disables optimizations that can change the result of

Recommended Intel Compiler Debugging Options 2

floating-point calculations. These semantics ensure the accuracy of floating-point
computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations and enables floating-point exception semantics. This is the
strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the accuracy of
the significand, or fractional part of the floating-point value. For example, iterative
operations like division and finding the square root can run faster if you lower the
precision with the -pc[n] option. -pc64 sets internal FPU precision to 53-bit
significand. -pc80 is the default and it sets internal FPU precision to 64-bit
significand.

Recommended Intel Compiler Debugging Options 3

Totalview

TotalView is a GUI-based debugging tool that gives you control over processes and thread
execution and visibility into program state and variables for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks and race conditions, etc.

TotalView allows you to debug serial, OpenMP, or MPI codes.

TotalView is available on both Pleiades and Columbia. See TotalView Debugging on
Pleiades for some basic instructions on how to start using TotalView on Pleiades. See
TotalView Debugging on Columbia for some basic instructions on how to start using
Totalview on Columbia.

Totalview 4

Totalview Debugging on Pleiades

TotalView is an advanced debugger for complex and parallel codes. Its versions have been
installed as modules. To find out what versions of TotalView are available, use the module
avail command.

On Pleiades, our current licenses allow using TotalView up to a total of 256 processes. Use
the following command to find if there are unused licenses before you start TotalView:

pfe% /u/scicon/tools/bin/check_licenses -t
There are additional steps needed in order to start the TotalView GUI. You'll need to rely on
the ForwardX11 feature of your SSH. First, you'll have to make sure that your sysadmin
had turned on ForwardX11 when SSH was installed on your system or use the -X or -Y (if
available) options of ssh to enable X11 forwarding for your SSH session.

For Debugging on a Back-End Node

Step 1: Compile your code with -g

Step 2: Start a PBS session. For example:

% qsub -I -V -lselect=2:ncpus=8,walltime=1:00:00
Step 3: Test the X11 forwarding with xlock

% xclock
Step 4: Load the totalview module

% module load totalview/8.9.2-1
Step 5: Start TotalView Debugging

For Serial Applications

Simply start totalview with your application as an argument

% totalview ./a.out
If your application requires arguments:

% totalview ./a.out -a app_arg_1 app_arg_2

•

For MPI Applications Built with SGI's MPT

Make sure that you have loaded the latest MPT module:

% module load comp-intel/11.1.072
% module load mpi-sgi/mpt.2.04.10789

•

Totalview Debugging on Pleiades 5

Launch your program with the following:

% mpiexec_mpt -tv -np 16 ./a.out
For Applications Built with MVAPICH:

Load the appropriate modules:

% module load comp-intel/11.1.072
% module load mpi-mvapich2/1.4.1/intel

♦

Launch TotalView by typing "totalview" all by itself. Once the TotalView
windows pop up, you will see four tabs in the "New Program" window:
Program, Arguments, Standard I/O and Parallel.

♦

Fill in the executable name in the "Program" box or use the Browse button to
find the executable

♦

Give any arguments to your executable by clicking on the "Arguments" tab
and filling in what you need. If you need to redirect input from a file, do so by
clicking the "Standard I/O" tab and filling in what you need.

♦

In the "Parallel" tab, select the parallel system option MVAPICH2.♦
Enter in the number of processes in the "tasks" box; leave the "nodes" field 0.
For example, if you run your application with 2 nodes x 4 MPI processes/node
= 8 processes in total, fill in 8 in the "tasks" box and 0 in the "node" box.

♦

Then press "Go" to start. Note that it may initially dump you into the mpiexec
assembler source which is not your own code.

♦

Respond to the popup dialog box which says "Process xxx is a parallel job.
Do you want to stop the job now?" Choose "No" if you just want to run your
application. Choose "Yes" if you want to set breakpoint in your source code or
do other tasks before running.

♦

•

TIP: If you want to use the Replay Engine feature of TotalView, you need to set these two
environment variables:

setenv IBV_FORK_SAFE 1
setenv LD_PRELOAD /nasa/sles11/totalview/toolworks/totalview.8.9.2-1/
 linux-x86-64/lib/undodb_infiniband_preload_x64.so

Because of a formatting issue, the second variable may break across two lines. It should
only be one line.

More information about TotalView can be found at the TotalView online documentation
website.

Totalview Debugging on Pleiades 6

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

Totalview Debugging on Columbia

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

TotalView is an advanced debugger for complex and parallel codes. It has been installed as
modules. To find out what versions of TotalView are available, use the command module
avail totalview.

You'll need to rely on the ForwardX11 feature of your ssh. First, you'll have to make sure
that your sysadmin had turned on ForwardX11 when SSH was installed on your local
system or use the -X or -Y (if available) options of ssh to enable X11 forwarding for your
SSH session.

For Debugging on the Front-End cfe2

Login to the front-end cfe21.
Compile your code with -g2.
Make sure that X11 forwarding works and test it with xclock

cfe2%echo $DISPLAY
cfe2:xx.0
cfe2%xclock

3.

Load the totalview module

cfe2% module load totalview.8.9.0-1

4.

Start TotalView. For serial jobs:

cfe2% totalview a.out
For MPI jobs built with SGI's MPT library:

cfe2% totalview mpirun.real -a -np xxx a.out

5.

For Debugging on a Back-End Node

Compile your code with -g1.
Start a PBS session and pass in the environment variable DISPLAY. Assuming PBS
assign your job to run on Columbia21:

cfe2% qsub -I -v DISPLAY -lncpus=8,walltime=1:00:00

2.

Totalview Debugging on Columbia 7

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Test the X11 forwarding with xlock

PBS(8cpus)columbia21% xclock

3.

Load the totalview module

PBS(8cpus)columbia21% module load totalview.8.9.0-1

4.

Start TotalView. For serial jobs:

PBS(8cpus)columbia21% totalview a.out
For MPI jobs built with SGI's MPT library:

PBS(8cpus)columbia21% totalview mpirun.real -a -np xxx a.out

5.

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Columbia 8

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

IDB

The Intel Debugger is a symbolic source code debugger that debugs programs compiled by
the Intel Fortran and C/C++ Compiler, and the GNU compilers (gcc, g++).

IDB is included in the Intel compiler distribution. For IA-64 systems such as Columbia, both
the Intel 10.x and 11.x compiler distributions provide only an IDB command-line interface.
To use IDB on Columbia, load an Intel 10.x or 11.x compiler module. For example:

%module load intel-comp.11.1.072
%idb
(idb)

For Intel 64 systems such as Pleiades, a command-line interface is provided in the 10.x
distribution and is invoked with the command idb just like on Columbia. For the Intel 11.x
compilers, both a graphical user interface (GUI), which requires a Java Runtime, and a
command-line interface are provided. The command idb invokes the GUI interface by
default. To use the command-line interface under 11.x compilers, use the command idbc.
For example:

%module load comp-intel/11.1.072 jvm/jre1.6.0_20
%idb
.... This will bring up an IDB GUI

%module load comp-intel/11.1.072
%idbc
(idb)

Be sure to compile your code with the -g option for symbolic debugging.

Depending on the Intel compiler distributions, the Intel Debugger can operate in either the
gdb mode, dbx mode or idb mode. The available commands under these modes are
different.

For information on IDB in the 10.x distribution, read man idb.

For information on IDB in the 11.x distribution, read documentations under pfe or
cfe2:/nasa/intel/Compiler/11.1/072/Documentation/en_US/idb

IDB 9

GDB

The GNU Debugger, GDB, is available on both Pleiades and Columbia under /usr/bin. It
can be used to debug programs written in C, C++, Fortran, and Modula-a.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior•
Make your program stop on specified conditions•
Examine what has happened, when your program has stopped•
Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself
%gdb
(gdb)

•

Start the debugger and specify the executable
%gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file
%gdb your_executable core-file
(gdb)

•

Attach gdb to a running process
%gdb your_executable pid
(gdb)

•

At the prompt (gdb), type in commands such as break for setting a breakpoint, run for
starting to run your executable, step for stepping into next line, etc. Read man gdb to
learn more on using gdb.

GDB 10

Using pdsh_gdb for Debugging Pleiades PBS Jobs

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 11

	Table of Contents
	Program Development Tools
	Recommended Intel Compiler Debugging Options
	Totalview
	Totalview Debugging on Pleiades
	Totalview Debugging on Columbia
	IDB
	GDB
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

