
Table of Contents
File Transfers..1

File Transfer: Overview..1
Local File Transfer Commands..6
Remote File Transfer Commands..9
Outbound File Transfer Examples...16
Inbound File Transfer through SFEs Examples...18
Using the Secure Unattended Proxy (SUP)...21
File Staging through DMZ File Servers..29
bbftp...32
The bbscp Script..38
Using bbscp for Test and Verification..42
Using the SUP Virtual File System..45
Using the SUP without the SUP Client..50
Using GPG to Encrypt Your Data..58
Checking File Integrity...61
File Transfers Tips...63
Use Shift for Reliable Local and Remote File Transfers..64

File Transfers

File Transfer: Overview

Lou2 Note:

This article is currently being edited to reflect the changes to Lou2 which take effect on
December 6, 2012. A finalized version will be posted soon.

Here's a general overview of the various file transfer scenarios within the NAS environment,
with pointers to related articles.

File Transfers Between Pleiades, Columbia, and Lou

File transferring between NAS systems in the secure enclave (Pleiades, Columbia, and
Lou) uses host-based authentication (transparent to users) and is usually straightforward.
The following articles provide basic information to help you get started.

Local File Transfer Commands - cp, cxfscp, mcp, shiftc•
Remote File Transfer Commands - scp, bbftp/bbscp•
File Transfer Between Pleiades and Columbia or Lou•
Transferring Files from the Pleiades Compute Nodes to Lou•
Checking File Integrity•

File Transfers between a NAS HECC Host and Your Localhost

Transferring files between a NAS host (such as Pleiades,Columbia, or Lou) and a remote
host, such as your local desktop, is more complex. There are multiple factors that you
should be aware of:

Which commands to use

Remote File Transfer Commands such as scp and bbftp and bbscp are supported on most
NAS high-end computing systems. Depending on the way the transfers are performed, you
may need either one or both of the client and server software of scp and/or bbftp or the
bbscp script installed on your localhost.

Transfer Rate•

File Transfers 1

http://www.nas.nasa.gov/hecc/support/kb/entry/371

File transfer rate with scp, especially using scp from versions of Open that SSH are
older than 4.7, can be as slow as 2 MB/sec. For transferring large files over a long
distance, consider the following:

upgrade to the the latest version of OpenSSH♦
apply the HPN-SSH patch to your OpenSSH♦
enable compression by adding -C to the scp command-line if the data will
compress well

♦

use bbftp/bbscp♦

Security Issues
With scp, users' authentication information (such as password or passcode)
and data are encrypted.

♦

With bbftp and bbscp, only the authentication information is encrypted, while
data is not.

♦

You can use GPG to encrypt your data prior to the transfer.♦

•

Where transfer commands are initiated

Outbound file transfers

When the file transfer command is initiated on a NAS host such as Pleiades,
Columbia, or Lou, the transfer does not need to go through SFE[1,2] or Secure
Unattended Proxy. This is the easiest way to transfer files from and/or to your site if
your localhost is configured to allow the transfer.

To learn more, see also Outbound File Transfer Examples.

•

Inbound file transfers

When the file transfer command is initiated on a remote host such as your local
desktop, the transfer must go through either SFE[1,2] or Secure Unattended Proxy.

Going through SFE[1,2]

Going through SFE[1,2] requires authentication via your RSA SecurID fob at
the time of operation; you will be prompted for your passcode when you issue
the file transfer commands, such as scp, bbftp, or bbscp.

Transfers can be done with one of the following two approaches:

Two steps: Initiate scp from your localhost to SFE[1,2], and then initiate
another scp from SFE[1,2] to Columbia, Pleiades or Lou.

1.

♦

•

File Transfer: Overview 2

http://www.openssh.com

WARNING: Do not store files on the SFEs since space is very limited.
Any file transfers though the SFE really should use the SSH
pass-through option described next.
One step: Initiate scp, bbftp/bbscp from your localhost to
PleiadesmColumbia, or Lou if SSH Passthrough has been set up.

2.

To learn more, see also Inbound File Transfers through SFEs Examples.

Going through SUP

Going through the Secure Unattended Proxy does not require SecurID fob
authentication at the time of operation. Instead, special "SUP keys" using
SecurID authentication must be obtained ahead of time. The "SUP keys" are
good for one week and are used automatically to authenticate users for file
transfers using scp, bbftp or bbscp issued on a command-line or in a job
script.

WARNING: Although users have accounts on the SUP servers, no login
session is allowed.

File transfers going through SUP offers multiple benefits over going through
the SFEs:

SUP allows the transfer to be unattended; that is, you do not have to
type in your password, passphrase, or passcode when the file transfer
command is issued. So, file transfers can be done within a script that
can be scheduled to run ahead of time. On the other hand, file
transfers through the SFEs can not be done in a script.

◊

File transfers through SUP are done in one step, and setting up SSH
passthrough is not needed since the SFEs are not involved.

◊

SUP automatically sets some options, such as the port range allowed
for bbftp transfers, so that you don't have to set them explicitly. Thus,
the syntax for bbftp over SUP is greatly simplified compared to bbftp
without SUP.

◊

NOTE: Some sites only allow specific outbound ports; SUP allows
setting custom ports manually if needed. For example:
sup bbftp -E 'bbftpd -e5000:5011' -e 'put foobar /tmp/foobar'
pfe20.nas.nasa.gov

See the article Using the Secure Unattended Proxy (SUP) and the examples
there for more information.

♦

File staging•

File Transfer: Overview 3

When there are issues (such as a firewall) that hinder the inbound and/or outbound
transfers, file staging through DMZFS[1,2] is another option. You can deposit and
retrieve files on DMZFS[1,2] by issuing the scp or bbftp command on either a NAS
host or your localhost.

WARNING: The total storage space on DMZs is 2.5TB, shared among all users; files
older than 24 hours are removed.

DMZFS[1,2] do not use SecurID fob for authentication. Instead, password or public
key authentication is used for file transfers via DMZFS[1,2].

Unattended file transfers can also be done through DMZFS[1,2] if public key
authentication has been set up on DMZFS[1,2].

Note, however, that for this purpose, the SUP is preferred as SUP transfers are
direct to the end target so do not have the storage restrictions and two step
performance limitations of DMZFS when using bbftp/bbscp.

Read File Staging through DMZ File Servers for more information.

NAS Username and Your Local Username

If your NAS username and local username are different, you may have to add the
appropriate username in the scp, bbftp or bbscp command-line.

If you issue the command on your local host, then the username is your NAS
username.

•

If you issue the command on a NAS host, then the username is your local username.•

In the examples shown in the articles Outbound File Transfer Examples and Inbound File
Transfers through SFEs Examples, you will find the correct syntax for adding the
appropriate username in the file transfer commands.

For inbound file transfers, if you have correctly included your NAS username in the
~/.ssh/config file of your localhost, you do not have to include the NAS username in the scp,
bbftp or bbscp command. A template for the ~/.ssh/config is available for download.

Check File Integrity Before and After the Transfer

It's a good practice to ensure the integrity of the data before and after the transfer. For more
information, see Checking File Integrity.

File Transfer: Overview 4

http://www.nas.nasa.gov/kb/download/3/

Tuning your Local System to Improve File Transfer Performance

Some file transfer commands provide options that can be used to improve your transfer
rates. For example, enabling compression during file transfers may help in some cases:
with bbftp, you can use multiple streams instead of a single stream for better performance.
Read Tips for File Transfers for more information.

On the other hand, file transfer performance is also dependent on some system-wide
settings. If necessary, ask your local system administrator to look into issues discussed in
the following articles:

TCP Performance Tuning for WAN Transfers•
Optional Advanced Tuning for Linux•
Pittsburgh Supercomputing Center's Enabling High Performance Data Transfers - a
properly tuned TCP/IP stack

•

File Transfer: Overview 5

http://www.psc.edu/networking/projects/tcptune
http://www.psc.edu/networking/projects/tcptune

Local File Transfer Commands

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

The following file transfer commands can be used when both the source and destination
locations are accessible on the same host where the command is issued. Basic information
about each command is provided below.

cp

cp is a UNIX command for copying files between two locations (for example, two different
directories of the same filesystem or two different filesystems such as NFS, CXFS or
Lustre).

Where is it installed at NAS?

cp is available on all NAS systems except SFE[1,2], and DMZFS[1,2].

Examples

pfe20% cp $HOME/foo $HOME/newdir/foo2
pfe20% cp $HOME/foo /nobackup/username

cxfscp

cxfscp is a program from SGI for quickly copying large files to and from a CXFS
filesystem (for shared-memory systems such as Columbia). It can be significantly faster
than cp on CXFS filesystems since it uses multiple threads and large direct I/Os to fully
utilize the bandwidth to the storage hardware.

For files less than 64 kilobytes in size, which will not benefit from large direct I/Os, cxfscp
will use a separate thread for copying these files using buffered I/O similar to cp.

Where is it installed at NAS?

cxfscp is installed on cfe2, all Columbia hosts, and the Pleiades bridge nodes.

When to use it?

Local File Transfer Commands 6

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

The Columbia CXFS filesystems (/nobackup[1-2][a-i]) are mounted on all Columbia hosts
(cfe2, c21-24), and the Pleiades bridge nodes (bridge[1-4]). The command cxfscp can be
issued on any of these hosts to copy large files to and from Columbia's /nobackup[1-2][a-i].
This is an easy way to transfer files between Columbia and Pleiades without the need for
scp, bbftp or bbscp.

Examples

cfe2% cxfscp /nobackup2a/username/foo /nobackup2a/username/new_dir
bridge2% cxfscp $HOME/foo /nobackup2a/username
bridge2% cxfscp /nobackup/username/foo /nobackup2a/username

Performance

Some benchmarks done by NAS staff show that cxfscp is typically 4-7 times faster than
cp for large files (2+ GB) and can achieve up to 400 MB/sec.

For more information, read man cxfscp.

shiftc

Shift is a NAS-developed tool for performing automated local and remote file transfers. It
utilizes a variety of underlying file transports to achieve maximum performance for files of
any size on any file system.

Where is it installed at NAS?

Shift is installed on cfe2, Lou[1-2], the Pleiades front-end nodes (pfe[20-27]), and the
Pleiades bridge nodes (bridge[1-4]).

When to use it?

The command shiftc can be used as a drop-in replacement for cp at any time on any
system on which it is installed.

Examples

cfe2% shiftc /nobackup2a/username/foo /nobackup2a/username/new_dir
lou2% shiftc /nobackup/username/foo $HOME
bridge2% shiftc $HOME/foo /nobackup2a/username
bridge2% shiftc /nobackup/username/foo /nobackup2a/username

Performance

Some benchmarks done by NAS staff show that shiftc can be up to 10 times faster than
cp for large files (2+ GB) and can achieve up to 1.8 GB/sec on a single host.

Local File Transfer Commands 7

For more information, see Reliable Local and Remote File Transfers Using Shift.

Local File Transfer Commands 8

Remote File Transfer Commands

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: Use the file transfer commands scp, bbftp, bbscp, or shiftc when the
source and destination are located on different hosts.

Use the following file transfer commands to transfer files either between NAS high-end
computing hosts, or between a NAS host and a remote host such as your local desktop
system.

Except for bbFTP, the basic syntax is: copy-command [options]...source...destination.

scp command (with/without HPN-SSH patch)

Secure Copy Protocol (SCP), based on the Secure Shell Protocol (SSH), is a means of
securely transferring files between a local and a remote host. Both your authentication
information (such as password or passcode) and your data are encrypted.

Normal scp (without the HPN-SSH patch)

The most widely used scp program is from OpenSSH.

Where is scp installed at NAS?

A copy of scp from OpenSSH without the patch is available on the Pleiades front ends
(PFEs) and bridge nodes, all Columbia nodes, Lou, and the secure front ends (SFE).

Use scp on Columbia, Pleiades, Lou, or your local host to push files into or pull files out of
the the DMZ files servers (DMZFS).

Do you need it installed on your local host?

If you have a version of SSH installed on your local host, scp is most likely already installed
there.

Remote File Transfer Commands 9

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

When to use it?

Typically, scp is used to transfer small files within NAS (<< 5 GB) or offsite (<< 1 GB) that
take a reasonable amount of time to complete.

Examples

"Outbound" means the file transfer command is initiated on a NAS host such as Columbia,
Pleiades, or Lou, whether the file is being pushed or pulled. "Inbound" means the
commands are initiated on your local host.

Omit local_username@ and nas_username@ in the examples below if your local username
and NAS username are identical. Substitute your own filenames for the dummy parameter
"foo." These examples assume you already know how log into the NAS enclave.

For outbound transfer:

lou2% scp local_username@your_localhost.domain:foo ./foo2
For inbound two-step transfer:

your_localhost% scp foo nas_username@sfe1.nas.nasa.gov:foo2
sfe1% scp foo2 lou2:

For inbound one-step transfer if SSH-passthrough has been set up correctly:

your_localhost% scp foo nas_username@lou2.nas.nasa.gov:foo2
To transfer files through the DMZFS, initiate the scp command from either a NAS host or
your local host, not from the DMZFS. For example:

your_localhost% scp foo nas_username@dmzfs1.nas.nasa.gov:foo2
pfe20% scp dmzfs1:foo2 .

In the last example above, the dot (.) means your current directory. If no path is given after
the remote host specifier (for example, dmzfs1.nas.nasa.gov:), the file is copied to/from the
home directory of the remote host.

Performance

Within the NAS secure enclave, depending on source and destination hosts and other
factors, the performance range will be 40-100 MB/sec.

If your data will compress well, consider enabling compression by adding -C to your scp
command line.

Remote File Transfer Commands 10

We recommend upgrading to OpenSSH version 5.0 or newer.

In cases where OpenSSH 5.0 or a newer version does not yield satisfactory performance,
consider applying the HPN-SSH patch to your OpenSSH, detailed below.

HPN-SSH enabled scp

HPN-SSH is a patch for OpenSSH designed to eliminate a network throughput bottleneck
that typically occurs in an SSH session over long-distance and high-bandwidth networks
(that is, when the bandwidth-delay product is high). The bottleneck is eliminated by allowing
internal flow control buffers to be defined and grow at runtime, rather than statically defining
them, as OpenSSH does. The resulting performance increase can range from 10x to more
than 50x, depending on the cipher used and host tuning.

HPN-enabled SSH is fully interoperable with other SSH servers and clients. HPN clients will
be able to download faster from non-HPN servers, and HPN servers will be able to receive
uploads faster from non-HPN clients. However, the host receiving the data must have a
properly tuned TCP/IP stack.

Where is HPN-SSH installed at NAS?

The client version of OpenSSH with the HPN patch is available on cfe2, c[21-24],
and Lou

•

On SUP, both the OpenSSH client and server have been patched with the latest
HPN

•

The OpenSSH server with HPN patch is installed on dmzfs1-hpn and dmzfs2-hpn•

On cfe2, c[21-24], and Lou, the HPN-patched SSH programs are purposely named as
hpn-ssh, hpn-scp, and hpn-sftp to distinguish them from the default non-HPN versions
(ssh, scp, and sftp) of OpenSSH.

Do you need it installed on your local host?

To get good performance, an HPN-SSH server must be installed on your local system if
data is to be received on your local system. Ask your local network staff for help to see if an
HPN-SSH patch is needed.

Typical installation procedure:

Download the latest HPN-SSH patch (openssh-x.xpx-hpnxxvx.diff.gz) from
Pittsburgh Supercomputing Center

1.

Download the latest OpenSSH source (openssh-x.xpx.tar.gz)2.
Uncompress and untar the above distributions3.

Remote File Transfer Commands 11

http://www.psc.edu/networking/projects/hpn-ssh
http://www.openssh.com

Move the file openssh-x.xpx-hpnxxvx.diff to the directory openssh-x.xpx4.
Patch: % cat ../openssh-x.xpx-hpnxxvx.diff | patch -p15.
Configure [OPTIONS]: % ./configure --prefix6.
Make [OPTIONS]: % make7.
% make install-nosysconf8.
Validate, as shown in the example box, below
% ssh -v
OpenSSH_x.xpx-hpnxxvx

9.

Examples

lou2% hpn-scp -c arcfour -o TCPRcvBufPoll=yes source destination
your_localhost% scp -c arcfour -o TCPRcvBufPoll=yes source destination

Notes:

arcfour (RC4) is a more CPU-efficient 128-bit cipher; you can also choose NONE
for cipher so that there is no encryption of data

•

Enabling TCPRcvBufPoll allows for the TCP receive buffer to be polled throughout
the duration of the connection

•

Performance

With an HPN-SSH enabled scp, you can expect good performance for transferring large
files to remote sites over a long distance with high-latency connections. Improvement over
non-patched scp versions older than 4.7 may be 10x to 50x.

bbftp command

bbFTP is a high-performance remote file transfer protocol that supports parallel TCP
streams for data transfers. Basically, it splits a single file in several pieces and sends them
through parallel streams. The whole file is then rebuilt on the remote site. bbFTP also
allows dynamically adjustable TCP/IP window sizes instead of a statically defined window
size used by normal scp. In addition, it provides a secure control channel over SSH and
allows data to be transferred in cleartext to reduce overhead in unnecessary encryption.
These characteristics allow bbFTP to achieve transfers that are faster than with normal
scp.

We recommend using bbftp in place of scp large data transfers over long distances.

Where is it installed at NAS?

Remote File Transfer Commands 12

Both the bbFTP server (bbftpd) and client (bbftp) are installed on all Columbia hosts,
Lou, Pleiades front-end and bridge nodes, and the SUP.

For DMZFS, only the bbFTP server (bbftpd) is installed. Issue the bbftp command from
Columbia, Pleiades, Lou, or your local host (if bbFTP client has been installed) to push files
into DMZFS or pull files out of DMZFS.

Do you need it installed on your local host?

If you want to initiate bbftp from your local host, you must download and install the client
version of bbFTP on your local host. If you want to initiate bbftp from a NAS system and
transfer files from/to your local host, download and install the server version of bbFTP on
your local host.

When to use it?

Consider using bbFTP when transferring large files (> 1 GB) offsite. Be sure to use multiple
streams to get better transfer rates.

Example

bbFTP is like a non-interactive FTP, and the syntax can be complicated.

your_localhost% bbftp -u nas_username -e 'setnbstream 8; get filename' -E 'bbftpd -s -m 8' lou2.nas.nasa.gov

(Note that the above command may appear to be broken into two lines. When you use it,
enter it all on one line.)

Performance

bbFTP typically transfers data 10-20 times faster than normal scp.

If you are not getting good performance, check with your network administrator to see if
performance tuning is needed on your system. See the article bbFTP for more instructions
on installing and using bbFTP.

bbscp

bbSCP, written in Perl by Greg Matthews at NAS, is a bbFTP wrapper that provides an
scp-like command-line interface. It assembles the proper command-line for bbFTP and then
executes bbftp to perform the transfers. bbSCP is designed and tested for bbFTP version

Remote File Transfer Commands 13

3.2.0.

bbSCP only encrypts usernames and passwords, it does not encrypt the data being
transferred.

Where is it installed at NAS?

bbSCP is installed on all Columbia hosts, Lou, and Pleiades front-end and bridge nodes
under /usr/local/bin.

Do you need it installed on your local host?

If you want to initiate bbscp from your local host, you need to:

Download and install bbftp-client-3.2.0 on your local host•
Download bbSCP version 1.0.6 (also attached at the end of this article) and install it
on your local host

•

When to use it?

Use the bbSCP script when you want the bbFTP functionality and performance but with
scp-like syntax. It can be used to transfer files within NAS enclave or between NAS and a
remote site.

Example

your_localhost% bbscp foo nas_username@lou2.nas.nasa.gov:

Performance

The performance of bbSCP is the same as that of bbFTP.

See The bbscp Script for more information (man page, performance tuning, test and
verification).

shiftc

Shift (shiftc) is a NAS-developed tool for performing automated local and remote file
transfers. Shift utilizes a variety of underlying file transports to achieve maximum
performance for files of any size on any file system.

Remote File Transfer Commands 14

http://www.nas.nasa.gov/kb/file/4

Where is it installed at NAS?

Shift is installed on cfe2, Lou, the Pleiades front-end nodes (PFEs), and the bridge nodes.

Do you need it installed on your local host?

For transfers between your local host and NAS systems, you must install the SUP client as
discussed in Use Shift for Reliable Local and Remote File Transfers.

When to use it?

Shift can be used as a drop-in replacement for scp or bbSCP between any enclave
systems. For transfers between your local host and NAS systems, the transfer must be
initiated from your local host with shiftc invoked via the SUP client (that is, using the
command sup shiftc). If an encrypted transfer is required, use the shiftc --encrypt
option.

Example

bridge2% shiftc /nobackupp2/username/foo lou:
your_localhost% sup shiftc pfe:foo .

Performance

Shift uses the highest performing file transport that is available on both sides of the transfer,
and is optimal for the sizes of the files being transferred. This means that Shift will be as
fast as bbFTP for large transfers and faster than bbFTP for small and mixed transfers.

For more information, see File Transfer: Overview and Use Shift for Reliable Local and
Remote File Transfers.

Remote File Transfer Commands 15

Outbound File Transfer Examples

When the file transfer command (such as scp, bbftp or bbscp) is initiated on a NAS
HECC host such as Columbia, Pleiades or Lou, the transfer does not need to go through
SFE[1-4] or SUP. This is the fastest way to transfer files from/to your site if your localhost is
configured to allow the transfer.

To simplify the instructions, the approaches will be described in terms of transfers to/from
one of the Pleiades front-end node, pfe20, but they also apply to any of the other systems
that are in the enclave (such as other Pleiades front-end or bridge nodes, Columbia or Lou).
For each method described, two commands are provided. The first one is used when the
user have identical username between his/her localhost and the NAS HECC systems. The
second one is used when the usernames are different.

Logging into pfe20 and Using scp for the Outbound Transfer

To push files out of pfe20:

pfe20% scp foo your_localhost:
pfe20% scp foo local_username@your_localhost:

To pull files into pfe20:

pfe20% scp your_localhost:foo .
pfe20% scp local_username@your_localhost:foo .

Logging into pfe20 and Using bbftp for Outbound Transfer

If you find that using scp gives poor performance rates, we recommend using the
application bbftp. This will require that the bbFTP server (bbftpd) is installed on your
localhost.

To push files out of pfe20:

pfe20% bbftp -s -e 'setnbstream 8; put foo' your_localhost
pfe20% bbftp -s -u local_username -e 'setnbstream 8; put foo' your_localhost

To pull files into pfe20:

pfe20% bbftp -s -e 'setnbstream 8; get foo' your_localhost
pfe20% bbftp -s -u local_username -e 'setnbstream 8; get foo' your_localhost

See bbftp for more instructions.

Outbound File Transfer Examples 16

Logging into pfe20 and Using bbscp for Outbound Transfer

bbSCP is a wrapper for bbFTP which provides scp-like syntax. Using this method for
outbound transfer requires that the bbFTP server (bbftpd) is installed on your localhost.

To push files out of pfe20:

pfe20% bbscp foo your_localhost:
pfe20% bbscp foo local_username@your_localhost:

To pull files into pfe20:

pfe20% bbscp your_localhost:foo .
pfe20% bbscp local_username@your_localhost:foo .

See bbscp for more instructions.

Outbound File Transfer Examples 17

Inbound File Transfer through SFEs Examples

Lou2 Note:

This article is currently being edited to reflect the changes to Lou2 which take effect on
December 6, 2012. A finalized version will be posted soon.

Inbound file transfers through SFEs require SecurID fob authentication, and the transfer
can be done in two steps or one step depending on whether you have set up SSH
passthrough.

To simplify the instructions, the approaches will be described in terms of transfers to/from
one of the Pleiades front-end node, pfe20, but they also apply to any of the other systems
that are in the enclave (such as other Pleiades front-end or bridge nodes, Columbia or Lou).
For each method described, two commands are provided. The first one is used when (1)
the user have identical username between his/her localhost and the NAS HECC systems,
or (2) the usernames are different but the user has set up his/her local ~/.ssh/config
file to include the NAS username. To learn how to set this up, download the ~/.ssh/config
template. The second one is used when the usernames are different and the user does not
include the NAS username in his/her local ~/.ssh/config file.

Two-Step File Transfers

If you have not set up SSH passthrough, this will be your only option for inbound file
transfers. It requires you to use scp twice: once on your localhost to transfer files to/from
one of the SFEs (for example, sfe1), and the second one on the SFE or the host inside the
HECC Enclave to transfer files between SFEs and the HECC host such as pfe20.

To push files out of your localhost:

Step 1:
your_localhost% scp foo sfe1.nas.nasa.gov:
your_localhost% scp foo nas_username@sfe1.nas.nasa.gov:

Step 2:
sfe1% scp foo pfe20:
or
pfe20% scp sfe1:foo .

To pull files into your localhost:

Step 1:
sfe1% scp pfe20:foo .
or
pfe20% scp foo sfe1:

Inbound File Transfer through SFEs Examples 18

http://www.nas.nasa.gov/hecc/support/kb/entry/371
http://www.nas.nasa.gov/kb/file/3
http://www.nas.nasa.gov/kb/file/3

Step 2:
your_localhost% scp sfe1.nas.nasa.gov:foo .
your_localhost% scp nas_username@sfe1.nas.nasa.gov:foo .

One-Step File Transfers

If you have set up SSH passthrough correctly, you can use either scp, bbftp or bbscp
to transfer files between your localhost and a NAS HECC host.

Using scp

Using scp to push files out of your localhost:

your_localhost% scp foo pfe20.nas.nasa.gov:
your_localhost% scp foo nas_username@pfe20.nas.nasa.gov:

Using scp to pull files into your localhost:

your_localhost% scp pfe20.nas.nasa.gov:foo .
your_localhost% scp nas_username@pfe20.nas.nasa.gov:foo .

Using bbftp

This requires that you have a bbFTP client installed on your localhost.

Using bbtfp to push files out of your localhost:

your_localhost% bbftp -s -e 'setnbstream 8; put foo' pfe20.nas.nasa.gov
your_localhost% bbftp -s -u nas_username
 -e 'setnbstream 8; put foo' pfe20.nas.nasa.gov

Because of a formatting issue, the second command above was broken into two lines. In
reality, it should be in one line.

Using bbftp to pull files into your localhost:

your_localhost% bbftp -s -e 'setnbstream 8; get foo' pfe20.nas.nasa.gov
your_localhost% bbftp -s -u nas_username
 -e 'setnbstream 8; get foo' pfe20.nas.nasa.gov

Because of a formatting issue, the second command above was broken into two lines. In
reality, it should be in one line.

See bbftp for more instructions.

Inbound File Transfer through SFEs Examples 19

Using bbscp

This requires that you have the bbFTP client version 3.2.0 and the NAS bbSCP script
installed on your localhost.

To push files out of your localhost:

your_localhost% bbscp foo pfe20.nas.nasa.gov:
your_localhost% bbscp foo nas_username@pfe20.nas.nasa.gov:

To pull files into your localhost:

your_localhost% bbscp pfe20.nas.nasa.gov:foo .
your_localhost% bbscp nas_username@pfe20.nas.nasa.gov:foo .

See bbscp for more instructions.

Inbound File Transfer through SFEs Examples 20

Using the Secure Unattended Proxy (SUP)

The Secure Unattended Proxy (SUP) allows users to perform remote operations on specific
hosts within the HEC enclave (currently the Columbia front-ends, Pleiades
front-ends/bridge nodes, and Lou[1-2]) without the use of SecurID at the time of the
operation. Users must obtain special "SUP keys" using SecurID authentication, after which
those keys can be used to perform operations from unattended jobs and/or scripts.

SUP keys are currently allowed to call scp, sftp, bbftp, qstat, rsync, and test. In the
future, other operations may be available via the SUP. Each SUP key is valid for a period of
one week from the time it is generated. Users may have multiple SUP keys at the same
time, which will expire asynchronously.

SUP Usage Summary

The steps below demonstrate how to quickly get up and running with the SUP using an scp
transfer to pfe20 as an example. Consult the link in each step for full details (or simply read
this page to completion).

Download and install client (one time)

your_localhost% wget -O sup http://www.nas.nasa.gov/hecc/support/kb/file/9
your_localhost% chmod 700 sup
your_localhost% mv sup ~/bin

1.

Authorize host for SUP operations (one time per host)

your_localhost% ssh pfe20
pfe20% touch ~/.meshrc

2.

Authorize directories for writes (one or more times per host)

your_localhost% ssh pfe20
pfe20% echo /tmp >>~/.meshrc

3.

Execute command (each time)

your_localhost% sup scp foobar pfe20:/tmp/c_foobar

4.

Examine expected output (as needed)5.

Troubleshoot problems (as needed)6.

 SUP Client

Using the Secure Unattended Proxy (SUP) 21

The SUP client performs all the steps needed to execute commands through the SUP as if
the SUP itself did not exist. Commands that are allowed to pass through the SUP can be
executed as if the remote host were directly connected by simply prepending the client
command sup. Besides executing remote commands, the client also includes an operating
system-independent virtual file system that allows files across all SUP-connected resources
to be accessed using standard filesystem commands.

Requirements

The client requires Perl version 5.6.1 or above to execute and has been tested
successfully on Linux, OS X, and Windows under Cygwin and coLinux. Only SSH is
required to use the SUP, however, so if these requirements cannot be met, it is
possible to use the SUP without the client.

Note for Windows users: even if the client is not used, scp and sftp require
functionality only found in the OpenSSH versions of these commands, so Cygwin or
coLinux will still be needed.

•

Installation

Download the client and save to a file called "sup"1.

Make the client executable using "chmod 700 sup"2.

Move the client to a location in your $PATH3.

•

SSH Configuration

If your local username differs from your NAS username, it is recommended that you
add the following to your ~/.ssh/config file, where "nas_username" should be
replaced with your NAS username:

Host sup.nas.nasa.gov sup-key.nas.nasa.gov
 User nas_username

NOTE: If you are using a config file based on the NAS config template, you do not
have to do this step.

Alternatively, the client's -u option can be used as described in the next section. If
your local username is the same as your NAS username, no additional configuration
or command-line options are required.

•

SUP Command-line Options

-b

Disable user interaction for use within scripts. Note that the client will fail if any
interaction is required - normally only needed when your SUP key has expired

♦

•

Using the Secure Unattended Proxy (SUP) 22

http://www.cygwin.com/
http://www.colinux.org
http://www.cygwin.com/
http://www.colinux.org
http://www.nas.nasa.gov/kb/download/9/
http://www.nas.nasa.gov/kb/file/3

or is otherwise unavailable.

-k

By default, the client leaves any SSH agents started on your behalf running
for future invocations after the client exits. This option forces spawned agents
to be killed before exiting. Note that -b automatically implies -k.

♦

-u user

Specify NAS username. Note that this option is required if your local
username differs from your NAS username and you have not modified your
SSH configuration appropriately.

♦

-v

Enable verbose output for debugging purposes.

♦

SUP Authorizations

The basic set of operations that may be performed using the SUP is specified by the
administrator. To protect accounts from malicious use of SUP keys, users must grant
execute and write permissions to SUP operations on each target system.

Execute Authorization

By default, even SUP operations permitted by site policy are not allowed to execute
on a given host. To enable SUP operations to a given host (currently, the Columbia
front-ends, Pleiades front-ends/bridge nodes, or Lou[1-2]), the file ~/.meshrc must
exist on that host, which can be created by invoking the following:

touch ~/.meshrc

Note that the Pleiades front-ends/bridge nodes share their home filesystems, so this
must only be done on one of these nodes. Similarly, the Columbia front-ends share
their home filesystems and the ~/.meshrc file only needs to be created on one of
the Columbia front-end nodes. Other systems must be authorized separately. Once
this file exists on a host, all operations permitted by site policy are allowed to execute
on that host.

1.

Write Authorization

By default, SUP operations are not allowed to write to the file system on a given
host. To enable writes to a given directory on a given host, that directory must be
added (on a separate line) to the ~/.meshrc file on that host. For example, the

2.

Using the Secure Unattended Proxy (SUP) 23

following lines in ~/.meshrc indicate that writes should be permitted to
/nobackupp4 and /tmp.

/nobackupp4
/tmp

Each directory is the root of allowed writes, so this configuration would allow writes
to all files and directories rooted at /nobackupp4 and /tmp (for example,
/nobackupp4/some/dir, /tmp/some/file).

Note that the root directory cannot be authorized. Also note that dot files (i.e. ~/.*) in
your home directory are never writable regardless of the contents of ~/.meshrc.

Executing Commands Through SUP

Usage example of each command that may be executed through the SUP are given below.
Note that SUP commands must be authorized for execution on each target host, and that
transfers to a given host must be authorized for writes. Before a given operation is
performed, the client may ask for certain information, including the existing or new
passphrase for ~/.ssh/id_rsa, the password + passcode for sup.nas.nasa.gov, and/or
the password + passcode for sup-key.nas.nasa.gov.

File Transfer Commands

bbftp (man page)

your_localhost% sup bbftp -e "put foobar /tmp/c_foobar"
pfe20.nas.nasa.gov

Note that you must use the fully qualified domain name of the target host (in this case,
pfe20.nas.nasa.gov) if you are not within the NAS domain.

bbscp (man page)

your_localhost% sup bbscp foobar pfe20.nas.nasa.gov:/tmp/c_foobar

Note that bbscp is just a client-side wrapper for bbftp, therefore, as with bbftp, you must
use the fully qualified domain name of the target host (in this case, pfe20.nas.nasa.gov) if
you are not within the NAS domain.

rsync (man page)

your_localhost% sup rsync foobar pfe20:/tmp/c_foobar

Using the Secure Unattended Proxy (SUP) 24

http://doc.in2p3.fr/bbftp/3.2.0.bbftp.html
http://www.samba.org/ftp/rsync/rsync.html

If you intend to transfer files to your home directory, note that even if your home directory
has been authorized for writes, rsync transfers to your home directory will fail unless the
-T or --temp-dir option is specified. This is because rsync uses temporary files starting
with "." during transfers, which cannot be written in your home directory. You can avoid this
problem by specifying an alternate temporary directory that is authorized for writes. For
example, the following example uses /tmp as the temporary directory when files are
transferred to the home directory. Make sure that the temporary directory specified has
enough space for the files being transferred.

your_localhost% sup rsync -T /tmp foobar pfe20:

scp (man page)

your_localhost% sup scp foobar pfe20:/tmp/c_foobar

sftp (man page)

your_localhost% sup sftp pfe20

File Monitoring Command

test (man page)

your_localhost% sup ssh pfe20 test -f /tmp/c_foobar

Job Monitoring Command

qstat (man page available on Pleiades and Columbia)

your_localhost% sup ssh pfe20 qstat @pbspl1

 SUP Expected Output

The following sequence shows the expected output for the command:

your_localhost% sup scp foobar pfe20:/tmp/c_foobar

for a user who has never used the SUP before.

The conditions under which each sub-sequence will be seen are indicated next to each
header. Most of the items will only be seen once or during key generation. A second
invocation will only show the command output portion.

Using the Secure Unattended Proxy (SUP) 25

http://www.openbsd.org/cgi-bin/man.cgi?query=scp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=test&sektion=1

Host key verification (seen once per client host)

No host key found for sup-key.nas.nasa.gov
...continue if fingerprint is
1b:9a:82:2b:b9:b0:7d:e5:08:50:1d:e8:14:76:a2:2e
The authenticity of host 'sup-key.nas.nasa.gov (129.99.242.7)'
can't be established.
RSA key fingerprint is
1b:9a:82:2b:b9:b0:7d:e5:08:50:1d:e8:14:76:a2:2e.
Are you sure you want to continue connecting (yes/no)? yes
No host key found for sup.nas.nasa.gov
...continue if fingerprint is
52:f3:61:9b:9c:73:79:4d:22:cb:f3:cd:9a:29:4e:fe
The authenticity of host 'sup.nas.nasa.gov (129.99.242.6)'
can't be established.
RSA key fingerprint is
52:f3:61:9b:9c:73:79:4d:22:cb:f3:cd:9a:29:4e:fe.
Are you sure you want to continue connecting (yes/no)? yes

1.

Identity creation (seen during key generation if no identity available)

Cannot find identity /home/user/.ssh/id_rsa
...do you wish to generate it? (y/n) y
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
a3:cf:e5:50:12:6f:14:b1:21:59:19:a8:33:aa:77:40 user@host

2.

Identity addition to agent (seen during key generation)

Adding identity /home/user/.ssh/id_rsa to agent
Enter passphrase for /home/user/.ssh/id_rsa:
Identity added: /home/user/.ssh/id_rsa
(/home/user/.ssh/id_rsa)

3.

Identity initialization (seen once per identity)

Initializing identity on sup-key.nas.nasa.gov (provide login
information)
Password:
Enter PASSCODE:
Key a3:cf:e5:50:12:6f:14:b1:21:59:19:a8:33:aa:77:40 uploaded
successfully

4.

Using the Secure Unattended Proxy (SUP) 26

SUP key generation (seen when no valid SUP keys available)

Generating key on sup.nas.nasa.gov (provide login information)
Password:
Enter PASSCODE:

5.

Client upgrade (seen during key generation when new client available)

A newer version of the client is available (0.39 vs. 0.37)
...do you wish to replace the current version? (y/n) y

6.

Command output (always seen)

foobar 100% 5 0.0KB/s 00:00

7.

 SUP Troubleshooting

The following error messages may be encountered during your SUP client usage. Note that
the -v option can be given to the SUP client to output additional debugging information.

"WARNING: Your password has expired"

This message indicates that your current password has expired and must be
changed. To change your password, you must log in to an LDAP host (for example,
Lou) through the SFEs and change your LDAP password. This change will be
automatically propagated to the SUP within a few minutes.

•

"Permission denied (~/.meshrc not found)"

This message indicates that you have not created a .meshrc file in your home
directory on the target host. SUP commands must be authorized for execution on
each target host.

•

"Permission denied (unauthorized command)"

This message indicates that you have attempted an operation that is not currently
authorized by the SUP. Check that the command line is valid and that the attempted
command is one of the authorized commands. Certain options to authorized
commands may also be disallowed, but these should never be needed in standard
usage scenarios.

•

"Permission denied during file access (various forms)"

These messages indicate that you attempted to read or write a file for which such
access is not allowed. The most common cause is forgetting to authorize directories

•

Using the Secure Unattended Proxy (SUP) 27

for writes. Reads and writes of ~/.* are never permitted.

"Permission denied (publickey)"

This message indicates that you may have improper permissions on your ~/.ssh
and/or home directory on the target host. Check to make sure that ~/.ssh is not
readable/writable by other users/groups and that your home directory is not writable
by other users/groups.

•

Using the Secure Unattended Proxy (SUP) 28

File Staging through DMZ File Servers

The NAS DMZ (Demilitarized Zone) file transfer servers, dmzfs1.nas.nasa.gov and
dmzfs2.nas.nasa.gov, are designed to help facilitate file transfers into and out of the NAS
enclave. All Lou users have an account on the DMZ file servers.

Design

Each DMZ server is independent; they do not share filesystems or data•
The DMZs do not support RSA SecurID authentication, so, the RSA key fob is not
needed, and setting up SSH passthrough is not required. Instead, a password or
public/private key pair should be used for authentication

•

SCP and bbFTP are supported file transfer protocols•
The HPN-SSH enabled SCP is supported by specifying the hostname dmzfs1-hpn
or dmzfs2-hpn, for getting better transfer performance over long distances

•

Setup

To set up public key authentication for the DMZs, copy the public key, which you have
likely already created on your localhost, to the authorized_keys file of dmzfs1 and/or
dmzfs2:

localhost% scp ~/.ssh/id_rsa.pub nas_username@dmzfs1.nas.nasa.gov:~/.ssh
localhost% ssh nas_username@dmzfs1.nas.nasa.gov
dmzfs1% cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Files should be pushed to or pulled from the DMZs.

Unattended file transfers via the DMZs can be done with public key authentication. Files
generated inside the NAS HECC Enclave can be pushed to the DMZ file servers under
script control (but not through PBS jobs). Likewise, remote systems can automatically push
files to the DMZ file servers. Then, scripts operating on Pleiades or Columbia can
periodically check for file availability on the DMZ file servers, and when available, will pull
the file into Pleiades or Columbia.

Restrictions

The user environments are jailed; executable commands are minimal•
Outbound connections are not allowed; file transfers via the DMZ file servers using
commands such as scp or bbftp must be initiated from your local host or NAS
systems (such as Pleiades, Columbia, Lou) not dmzfs1 or dmzfs2

•

Storage space is limited (users share 2.8 TB), and files are meant to be stored for
very short durations; every hour, files older than 24 hours are automatically removed

•

File Staging through DMZ File Servers 29

Examples

The following examples assume that: a) You want to push a file to dmzfs1 from your local
host and pull the file from pfe20; b) You have not set up public key authentication for the
DMZs. Thus, password authentication is used.

Using scp

Using scp, first copy the file to the DMZ:

localhost% scp foo dmzfs1.nas.nasa.gov:
Password: <-- type in your lou password
foo 100% 764 0.8KB/s 00:00

If your NAS username and local username are different:

localhost% scp foo nas_username@dmzfs1.nas.nasa.gov:
Password: <-- type in your lou password
foo 100% 764 0.8KB/s 00:00

Then, you can pull the file from the DMZ:

pfe20% scp dmzfs1:foo .
Password: <-- type in your lou password
foo 100% 764 0.8KB/s 00:00

If your local SCP client is built with the HPN patch, you can replace dmzfs1 (shown in the
above example) with dmzfs1-hpn, to get better performance.

Using bbftp

Using bbftp, first copy the file to the DMZ:

localhost% bbftp -s -e 'put foo' dmzfs1.nas.nasa.gov
Password: <-- type in your lou password
foo 100% 764 0.8KB/s 00:00

If your NAS username and local username are different:

localhost% bbftp -s -u nas_username -e 'put foo' dmzfs1.nas.nasa.gov
Password: <-- type in your lou password
put foo OK

Then, you can pull the file from the DMZ:

File Staging through DMZ File Servers 30

pfe20% bbftp -s -e 'get foo' dmzfs1
Password: <-- type in your lou password
get foo OK

See the article on bbFTP for more instructions.

File Staging through DMZ File Servers 31

bbftp

When and Why to Use bbFTP

If your data is being transferred to or from a NAS system over the wide area network, scp
will almost always be the limiting factor, due to the static TCP windowing defined in the
OpenSSH (versions older than 4.7) source code. The Bandwidth Delay Product (BDP)
states that the bandwidth of the pipe multiplied by the latency gives the optimal window size
for data transfer. With the window size statically defined for lower-speed networks, scp can
never properly utilize the bandwidth available. bbFTP has dynamically adjustable window
sizes (up to the maximum allowed by the system) and can also transmit multiple
simultaneous streams of data. We have found that this application provides the best
mechanism for making use of the bandwidth available between two sites.

Things to check:

Are you using scp to transfer files?•
Are you transferring files to an offsite location? (outside NAS or NASA Ames)•
Is the average delay between sites larger than 30 ms?•
Is the data being transferred in large files (1 GB+)?•

If the answer to all of these is 'Yes', then the bbFTP application will improve data transfer
rates. Please follow the guide below to get started.

Downloading bbFTP

bbFTP has been tested to work on many operating systems: Linux, IRIX, Solaris, BSD and
MacOSX. Other systems may also be supported.

If you intend to initiate bbFTP from your localhost, you will need to install the bbFTP client
on your localhost. If you intend to initiate bbFTP from a NAS host, you will need to install
the bbFTP server on your localhost.

bbFTP for Linux, IRIX, Solaris, and BSD

For Linux, IRIX, Solaris, and BSD systems, the bbFTP application can be
downloaded from its distribution site IN2P3 in France. For your convenience, the
latest version is available here:

Download latest client version - bbftp-client-3.2.0 (GZ compressed file - 232 KB)

Download latest server version - bbftp-server-3.2.0 (GZ compressed file - 220 KB)

•

bbFTP for MacOSX•

bbftp 32

http://doc.in2p3.fr/bbftp/
http://www.nas.nasa.gov/kb/file/10
http://www.nas.nasa.gov/kb/file/11

Download latest client version with fixes for MacOSX (binary - 252KB)

Download latest server version with fixes for MacOSX (binary - 192KB)

Installing bbFTP

If you download a source code distribution, follow the instruction below to build and install
bbFTP. This guide covers the client setup only. Installing the server version is similar.

your_localhost% tar -zxvf bbftp*
your_localhost% cd bbftp*/bbftpc (or bbftp*/bbftpd for the server version)
your_localhost% ./configure
your_localhost% make
your_localhost% make install (optional, requires root privileges to install)

By default, the application will install in /usr/local/bin. If you do not have admin privileges,
you may skip the last step and copy the bbFTP binary to your home directory, or run it from
the current location.

Using bbFTP

To write the version of bbFTP and default values to standard output:

bbftp -v
For example:

pfe20% bbftp -v
bbftp version 3.2.0
Compiled with : default port 5021
 compression with Zlib-1.2.3
 encryption with OpenSSL 0.9.8a 11 Oct 2005
 default ssh command = ssh -q
 default ssh remote command = bbftpd -s
 default number of tries = 5
 default sendwinsize = 256 Kbytes
 default recvwinsize = 256 Kbytes
 default number of stream = 1

To request the execution of commands contained in the control file ControlFile or the
ControlCommands using RemoteUsername on RemoteHost:

bbftp [Options] [-u RemoteUsername] -i ControlFile [RemoteHost]
bbftp [Options] [-u RemoteUsername] -e ControlCommands [RemoteHost]

Notice that -i or -e option are mandatory. The examples given in this article all use -e
ControlCommands.

bbftp 33

http://www.nas.nasa.gov/kb/file/12
http://www.nas.nasa.gov/kb/file/13

Available options are:

 [-b (background)]
 [-c (gzip compress)]
 [-D[min:max] (Domain of Ephemeral Ports)]
 [-f errorfile]
 [-E server command for ssh]
 [-I ssh identity file]
 [-L ssh command]
 [-s (use ssh)]
 [-S (use ssh in batch mode)]
 [-m (special output for statistics)]
 [-n (simulation mode: no data written)]
 [-o outputfile]
 [-p number of // streams]
 [-q (for QBSS on)]
 [-r number of tries]
 [-R .bbftprc filename]
 [-t (timestamp)]
 [-V (verbose)] will print out the transfer rate
 [-w controlport]
 [-W (print warning to stderr)]

For more information about each option, see man bbftp. Those used in the examples will
be briefly described.

Single stream vs multiple streams

Single stream:

Using single stream is the easiest, but may not provide optimal performance.

In the examples below, bbFTP is run from the current working directory. If it was installed in
a system path location, the "./" may be omitted.

The -s option says to use ssh to remotely start a bbftpd daemon. It usually starts the
binary bbftpd -s, but this can be changed through the -E option.

The first command is to pull a file from a remote host using get and the second command
is to push a file to the remote host using put.

./bbftp -s -u remote_username -e 'get filename' remotehost

./bbftp -s -u remote_username -e 'put filename' remotehost

Multiple streams:

For transfers between two NAS hosts, such as Pleiades and Lou, no more than 2 streams
should be used.

bbftp 34

For transfers between your site and NAS, more streams will probably help. In several tests,
using 8 streams gave the best performance.

If there is little increase in the transfer rate from single stream to multiple streams, a lower
number may be used. The value must be changed in both the control command -e and the
server command -E so that the server listens for the same number of streams as the client
requests.

In the examples below, -s is not used. Instead, -E 'bbftpd -s' is used to use ssh to
remotely start a bbftpd daemon.

./bbftp -u remote_username -e 'setnbstream 8; get filename'
 -E 'bbftpd -s -m 8' remotehost
./bbftp -u remote_username -e 'setnbstream 8; put filename'
 -E 'bbftpd -s -m 8' remotehost

Because of a formatting issue, each command above was broken into two lines. They
should be one line each.

File related commands

You may need to use the command cd to change directory on the remote host or
lcd to change directory on the host where bbftp is issued in order to get or put
files from/to the directory you intend to use. For the rules, please see the man page
of bbFTP. Here are some examples:

bbftp -s -u remote_username
 -e 'cd /u/username/abc; get filename' remotehost
bbftp -s -u remote_username
 -e 'cd /u/username/abc; lcd def; put filename' remotehost

Because of a formatting issue, each command above was broken into two lines.
They should be one line each.

•

Initiating bbFTP from a host outside of NAS domain

If you want to initiate bbFTP from a host that is not within the NAS domain to transfer
files to/from a NAS host (not including dmzfs1 and dmzfs2), you must do the
following:

Set up SSH passthrough.

In the .ssh/config file on your localhost, be sure to include entries with the
fully-qualified domain name. For example:

Host pfe20.nas.nasa.gov
ProxyCommand ssh sfe1.nas.nasa.gov /usr/local/bin/ssh-proxy pfe20.nas.nasa.gov

•

bbftp 35

In the bbftp command line, use the fully-qualified domain name (ex:
pfe20.nas.nasa.gov) of the NAS host. For example,

your_localhost% ./bbftp -s -u nas_username -e 'get filename'
pfe20.nas.nasa.gov

These two steps are needed due to the fact that bbFTP uses 'gethostbyname'
function to check a hostname for connection and then it uses ssh to connect to that
hostname. Thus a fully-qualified domain name in the ./ssh/config file is required.
If the fully-qualified domain name cannot be found in ./ssh/config, one will get
the error:

BBFTP-ERROR-00061 : Error waiting MSG_LOGGED_STDIN message

For Pleiades, one has to use pfe[20-27].nas.nasa.gov or bridge[1-4].nas.nasa.gov.
The front-end load balancer, pfe.nas.nasa.gov, does not work with bbFTP. For
example:

your_localhost% bbftp -s -u nas_username -e 'get filename' pfe.nas.nasa.gov
BBFTP-ERROR-00017 : Hostname no found (pfe.nas.nasa.gov)

On the other hand, for ssh or scp, one can use either the fully-qualified domain
name above or the abbreviated name below:

Host pfe20
ProxyCommand ssh sfe1.nas.nasa.gov /usr/local/bin/ssh-proxy pfe20.nas.nasa.gov

Specifying port range•

Performance Tuning

To find the transfer rate, turn on the -V option.

Performance of bbFTP is affected by the number of streams and the TCP window sizes.

The TCP window size determines the amount of outstanding data a transmitting end-host
can send on a particular connection before it gets acknowledgment back from the receiving
end-host. For optimal performance, the window size should be set to the value of the
Bandwidth Delay Product (i.e., the product of the bandwidth of the pipe and the latency).

bbFTP is compiled with a default send and receive TCP window size as can be seen with
the -v option and can dynamically adjust the window size (up to the maximum allowed by
the system) for better performance. However, a user can also choose a non-default
send/recv window size (in KB). For example:

bbftp -e 'setrecvwinsize 1024; setsendwinsize 1024; put filename'
 -E 'bbftpd -s' remotehost

bbftp 36

Because of a formatting issue, the command above was broken into two lines. It should be
one line.

For high-speed links where bbFTP is still not performing as well as expected, it may be due
to a system windowing limitation. Most operating systems have the maximum window size
set to a small value, such as 64 KB. As practice, NAS systems are set to a minimum of 512
KB.

If you are not receiving good performance, ask your local system administrator if
performance tuning is necessary for your localhost.

bbftp 37

The bbscp Script

Introduction

The bbSCP script is written in Perl by Greg Matthews at NAS. It is a bbFTP wrapper which
provides an scp-like command line interface; bbSCP only encrypts usernames and
passwords, it does not encrypt the data being transferred.

Downloading bbSCP

If you plan to initiate bbscp on your localhost, you have to download bbSCP version 1.0.6
(also attached at the end of this article) and download/install bbFTP client version 3.2.0 on
your localhost.

The bbSCP script has been installed on Pleiades (version 1.0.4), Columbia (version 1.0.4),
and Lou (version 1.0.6).

Using bbSCP

Note that bbSCP is just a client-side wrapper for bbFTP, so, as with bbFTP, you must use
the fully-qualified domain name of the target host (for example, pfe1.nas.nasa.gov) if you
are not within the NAS domain.

The bbSCP version 1.0.6 man page provides details on how to use it.

BBSCP(1) User Contributed Perl Documentation BBSCP(1)

NAME
 bbscp - bbftp wrapper, provides an scp-like commandline interface

SYNOPSIS
 bbscp [OPTIONS] [[user@]host1:]file_or_dir1 [...] [[user@]host2:]dir2

DESCRIPTION
 bbscp does unencrypted copies of files either from the localhost to a
 directory on a remote host, or from a remote host to a directory on
 the localhost (see the -N option for the only exception to this). It
 assembles the proper commandline for bbftp (designed and tested for
 bbftp version 3.2.0, see RESTRICTIONS) and then executes bbftp to
 perform the transfer(s).

 The "-s", "-p 2", and "-r 1" options for bbftp are set by default,
 along with the following options:

 setoption keepaccess
 setoption keepmode

The bbscp Script 38

http://www.nas.nasa.gov/kb/file/4

 setoption nocreatedir

 The options -p and -r can be overridden on the commandline.

 Note the following limitations and capabilities in different transfer
 scenarios:

 copying from localhost to remote host
 - regular files
 bbftp will overwrite a pre-existing file of the same name on
 the remote host without asking for confirmation.

 - directories
 This script recursively transfers entire directories (only for
 local-to-remote transfers!).

 - symbolic links (see RESTRICTIONS)
 Symlinks on the localhost are treated just like the thing they
 point to, and are ignored if they point to something that
 doesn't exist.

 copying from remote host to localhost
 - regular files
 bbftp will overwrite a pre-existing file of the same name on
 the localhost without asking for confirmation.

 - directories
 There is no way at this time to transfer entire directories
 from a remote host to the localhost.

 - symbolic links (see RESTRICTIONS)
 Symlinks on the remote host are treated just like the thing
 they point to (which means they are ignored if they point to
 a directory or to something that doesn't exist).

OUTPUT
 The default output mode of the script displays "OK" or "FAILURE" for
 each of the transfer operations that bbftp performs. This display
 occurs after bbftp has finished running, so it may be delayed for
 some time depending on the duration of the transfer(s).

 The script switches to more verbose output if the user provides 1 or
 more of the verbose output commandline options (-l, -t, -V, and -W).

OPTIONS
 -B name/location of bbftp executable. default is "bbftp"

 -d dry-run. script performs its duty but does not actually
 execute bbftp. the bbftp commandline is printed, along
 with the contents of the bbftp control-file

 -h minimal help text

 -k keep bbftp command file that this script creates

 -l long-winded (extra verbose) output from bbftp. uses

The bbscp Script 39

 undocumented bbftp option (-d)

 -N transfer a single file and rename it at the destination.
 both local-to-remote and remote-to-local transfer is
 supported. see RESTRICTIONS

 -v version of this script

 -X set the size of the TCP send window (in kilobytes). default
 is the bbftp default size

 -Y set the size of the TCP receive window (in kilobytes). default
 is the bbftp default size

 -z suppress the security disclaimer

 bbftp options that can be specified on the commandline of this script:

 -D[min_port:max_port] (e.g. "-D", "-D40000:40100")

 -E <Server command to run>

 -L <SSH command>

 -p <number of parallel streams>

 -R <bbftprc file>

 -r <number of tries>

 -t

 -V
 -W

RESTRICTIONS
 Version of bbftp
 It's very important to use bbftp version 3.2.0 with bbscp --
 there's at least 1 known issue with using bbftp 3.1.0.

 Possible shell issues
 bash and tcsh interpret commandline text in different ways, so you
 may need to use quotes or other delimiters to use bbscp. In
 particular, bash and tcsh are known to handle wildcards differently.

 Wildcards
 If the -N option is not in use, wildcards can be used in remote host
 file specifications, but only for the names of files, not for
 directories. So, for example, "user@host:/tmp/file*" is acceptable,
 but "user@host:/tm*/file*" is not.

 Symbolic links
 Symlinks are not bbftp's strong suit -- if you wish to transfer a
 collection of files that includes symlinks it is highly recommended
 that you first make a tar-file and then transfer the tar-file.

The bbscp Script 40

 Use of -N option
 Wildcards are not supported in remote host file specifications w/ -N.

 If the destination is a symlink it will be overwritten, regardless of
 what that symlink points to.

EXAMPLES
 Note: these examples have been tested with bash, changes may be needed for
 them to work in tcsh (see RESTRICTIONS).

 local file to remote directory (username must be the same on both machines)
 bbscp /u/username/data/file1 machine:target_dir

 local file to remote file w/ different name
 bbscp -N /u/username/data/file1 machine:file89

 multiple local files to remote directory
 bbscp /u/username1/data/*file username2@machine:/tmp

 local directory to remote home directory
 bbscp /u/username1/data username2@machine:

 remote file to local directory
 bbscp username1@machine:data/file5 /u/username2/source_dir

 remote file to local file w/ different name
 bbscp -N username1@machine:data/file5 /u/username2/source_dir/file93

 multiple remote files to local directory
 bbscp -V username1@machine:/u/username1/data/file* /tmp

 multiple remote files to local directory
 bbscp -V username1@machine:file1.txt username1@machine:stuff.dat /tmp

AUTHOR
 Greg Matthews gregory.matthews@nasa.gov

perl v5.8.8 2010-12-10 BBSCP(1)

Performance Tuning

To find the transfer rate, turn on -V option.

Like bbFTP, the number of streams and TCP send/recv window sizes affect performance.
Users can set the number of streams through the -p option. Starting with bbSCP version
1.0.6, the default is 2 streams. To set the window sizes in KB, use the -X option for send
window and -Y for receive window. The default is the bbFTP default send/recv window
size.

For more information concerning test and verification of bbSCP, see the Test and
Verification article.

The bbscp Script 41

Using bbscp for Test and Verification

The following examples provide test and verification data and sample commands for using
bbscp between two hosts (crow & cfe2.nas.nasa.gov or dmzfs1.nas.nasa.gov).

Straight File Transfer

This example demonstrates the transfer of a file named 100mb:

crow% bbscp -V 100mb user@cfe2.nas.nasa.gov:/nobackup1/user/

/home/user/bin/bbscp: will run commandline:
 bbftp -s -r 1 -V -p 8 -u user -i /tmp/bbscp.lKCrSUg cfe2.nas.nasa.gov

/home/user/bin/bbscp: begin output of bbftp:

--
WARNING! This is a US Government computer. This system is for
.....
--
Authenticated with partial success.

Plugin authentication

Enter PASSCODE:

>> COMMAND : setoption keepaccess
<< OK
>> COMMAND : setoption keepmode
<< OK
>> COMMAND : setoption nocreatedir
<< OK
>> COMMAND : put 100mb /nobackup1/user/100mb
<< OK
104857600 bytes send in 5.43 secs (1.89e+04 KB/sec or 147 Mb/s)

/home/user/bin/bbscp: end output of bbftp

Renaming File at Destination

Transfer a single file (named 100mb) and rename it (to crow-100mb) at the destination;
both local-to-remote and remote-to-local transfer is supported.

crow% bbscp -V -N 100mb user@cfe2.nas.nasa.gov:/nobackup1/user/crow-100mb

/home/user/bin/bbscp: will run commandline:
 bbftp -s -r 1 -V -p 8 -u user -i

/tmp/bbscp.5eUBcTX cfe2.nas.nasa.gov

Using bbscp for Test and Verification 42

/home/user/bin/bbscp: begin output of bbftp:

--

WARNING! This is a US Government computer. This system is for
.....
--

Authenticated with partial success.

Plugin authentication

Enter PASSCODE:

>> COMMAND : setoption keepaccess
<< OK
>> COMMAND : setoption keepmode
<< OK
>> COMMAND : setoption nocreatedir
<< OK
>> COMMAND : put 100mb /nobackup1/user/crow-100mb
<< OK
104857600 bytes send in 5.3 secs (1.93e+04 KB/sec or 151 Mb/s)

/home/user/bin/bbscp: end output of bbftp

Adjusting the TCP Window Size

This example demonstrates the use of -X and -Y options to set the TCP window size
(available in bbSCP version 1.0.2 and above):

crow% ./bbscp -V -N -X 2000 -Y 2000 1gig.dat user@dmzfs1.nas.nasa.gov:/home/user/garbage.dat

bbscp: will run commandline:
 bbftp -s -r 1 -V -p 8 -u kfreeman
 -i /tmp/bbscp.SNxL5RT dmzfs1.nas.nasa.gov

bbscp: begin output of bbftp:

user@dmzfs1.nas.nasa.gov's password:

>> COMMAND : setoption keepaccess
<< OK
>> COMMAND : setoption keepmode
<< OK
>> COMMAND : setoption nocreatedir
<< OK
>> COMMAND : setsendwinsize 2000
<< OK
>> COMMAND : setrecvwinsize 2000
<< OK
>> COMMAND : put 1gig.dat /home/kfreeman/garbage.dat
<< OK

Using bbscp for Test and Verification 43

1109393408 bytes send in 34.6 secs (3.13e+04 KB/sec or 244 Mb/s)

bbscp: end output of bbftp

Dry Run/Debugging

This example demonstrates the use of the -d option for dry run. In this case, the bbSCP
script performs its duty but does not actually execute bbFTP. The bbFTP command line is
printed, along with the contents of the bbFTP control-file.

cfe2.user% bbscp -d -V -N one-gig user@crow.eos.nasa.gov:/home/user/data/cfe2-one-gig
/usr/local/bin/bbscp: would have run commandline:
 bbftp -s -r 1 -V -p 8 -u user
 -i /tmp/bbscp.4PZYIuL crow.eos.nasa.gov

/usr/local/bin/bbscp: bbftp control-file (/tmp/bbscp.4PZYIuL) looks like:

setoption keepaccess
setoption keepmode
setoption nocreatedir
put one-gig /home/user/data/cfe2-one-gig

Using bbscp for Test and Verification 44

Using the SUP Virtual File System

Introduction

The SUP client includes a virtual file system (VFS) capability that allows files across all
SUP connected resources to be accessed using standard file system commands. For
example, the command:

ls pfe20:/tmp
would list the files in /tmp on pfe20. The command:

cp foobar pfe20:/tmp
would copy the file foobar from the current directory on the local host to /tmp on pfe20.

The set of supported commands includes cat, cd, chgrp, chmod, chown, cmp,
cp, df, diff, du, file, grep, head, less, ln, ls, mkdir, more, mv,
pwd, rm, rmdir, tail, tee, test, touch, and wc. Note that this functionality is
not a true file system since only these commands are supported and only when used from
within a shell. Unlike more general approaches such as FUSE, however, the SUP capability
is completely portable and can be enabled with no additional privileges or software.

Commands through the VFS functionality can act on any combination of local and remote
files, where remote files are prefixed with hostname:. For example, the command:

cat pfe20:/tmp/rfile ~/lfile
would print the file rfile in /tmp on pfe20 as well as the file lfile in the user's home directory
on the local host to the terminal. Any number of hosts can be included in any command. For
example, the command:

diff cfe2:/tmp/cfe_file pfe20:/tmp/pfe_file
would show the differences between the file cfe_file in /tmp on cfe2 and the file pfe_file in
/tmp on pfe20. The client determines if any remote access is needed based on the path(s)
given. If not, it will execute the command locally as given as rapidly as possible. Fully local
commands also support all options with the exception of options of the form "-f value" (that
is, single-dash options that take values).

VFS Activation

Requirements

Currently, SUP VFS functionality is only supported for bash, but csh support is planned for
the future. This functionality requires Perl version 5.8.5 (note that this is more recent than
version 5.6.1 required by the basic client functionality). It also requires the standard Unix

Using the SUP Virtual File System 45

http://fuse.sourceforge.net/

utilities cat, column, false, sort, and true and has been tested successfully on
Linux, OS X, and Windows under Cygwin and coLinux. Note that users of Windows under
Cygwin may need to install the coreutils and util-linux packages to obtain these utilities.

Activation/Deactivation

Install the SUP client if you have not already done so1.
Activate VFS functionality in a bash shell

eval `sup -s bash`
This will load aliases and functions used to intercept specific commands and replace
them with commands through the SUP client that perform the actions requested.

2.

Deactivate VFS functionality in a bash shell whenever desired

eval `sup -r bash`

3.

Command-line Options

The behavior of the virtual file system can be modified using various options at the time it is
activated.

-ocmd=opts
Specify default options for a given command since the VFS functionality overrides
any existing aliases for its supported set of commands.

-t transport
Change the file transport from its sftp default to transport. Currently, the only
additional transport available is bbftp. Note that using bbftp as the transport may
slow down certain operations on small files as bbftp has higher startup overhead.

-u user
Specify NAS user name. Note that this option is required if your local user name
differs from your NAS user name.

For example, the following invocation activates the client virtual file system using bbftp as
the transport mechanism, nasuser as the user and adds colorization of local file listings
using the Linux ls --color=always option.

eval `sup -s bash -t bbftp -u nasuser -ols=--color=always`

VFS Caveats

The VFS functionality is still somewhat experimental. In general, it works for the most
common usage scenarios with some caveats. In particular:

Using the SUP Virtual File System 46

http://www.cygwin.com
http://www.colinux.org/
http://www.cygwin.com

"Whole file" commands (that is, commands that must process the entire file),
including cat, cmp, diff, grep, wc (and currently more/less due to
implementation) retrieve files first before processing for efficiency. Thus, these
commands should not be executed on very large files.

•

There is a conflict between commands that take piped input and the custom globbing
of the client, thus these commands have portions of globbing support disabled.
These commands are grep, head, less, more, tail, tee, and wc. In these
cases, globbing will work for absolute prefixes, but not relative. For example, grep
foo pfe20:/tmp/* will work, but cd pfe20:/tmp; grep foo * will not.

•

Redirection to/from remote files doesn't work. The same effect can be achieved
using cat and tee (for example, grep localhost a would become cat
pfe20:/etc/hosts |grep localhost |tee a >/dev/null). Redirection
still works normally for local files.

•

The first time a command is run involving a particular host, a SFTP connection is
created to that host. When running ps, it may appear as if a zombie client process is
running.

•

VFS Commands

Currently supported commands and their currently supported options are below.
Unsupported options will simply be ignored except where noted. All commands are still
subject to SUP authorizations, thus something that cannot be executed or written normally
through the SUP cannot be executed or written through this functionality either.

cat (no options)•
cd (no options)

Note that when changing to remote directories, cd only changes $PWD so to make
changes visible, the working directory (that is, \w in bash) must be in your prompt.
For example, the following prompt:

export PS1="\h[\w]> "

would display the current host name followed by the current working directory.

•

chgrp (no options)

Groups may be specified either by number or by name. Names will be resolved on
the remote host.

•

chmod (no options)

Modes must be specified numerically (for example, 0700). Symbolic modes, such as
a+rX, are not currently supported.

•

chown (no options)•

Using the SUP Virtual File System 47

Users and groups may be specified either by number or by name. Names will be
resolved on the remote host.

cmp (all options)•
cp [-r]

Note that copies between two remote hosts transfer files to the local host first since
the SUP does not allow third party transfers. Thus, very large file transfers between
remote systems should be achieved using an alternate approach.

•

df [-i]

Note that 1024-byte blocks are used.

•

diff (all options)•
du [-a] [-b] [-s]

Note that 1024-byte blocks are used.

•

file (all options)•

grep (all options)•

head [-number]

Note that head does not support the form "-n number", so, for example, to display
the first 5 lines of a file, use "-5" and not "-n 5".

•

less (all options)•

ln [-s]

Note that hard links are not supported. Links from remote files to local files (for
example, ln -s pfe20:/foo /foo) will be dereferenced during certain
operations (for example, cat /foo will cat pfe20:/foo).

•

ls [-1] [-d] [-l]

For efficiency purposes, ls behaves slightly differently for remote commands than for
local. In particular ls -l will not show links by default and will show what is actually
linked instead of the link itself. Link details can be obtained using the -d option (for
example, ls -ld *).

Also for efficiency, ls processes remote files before local files, so output ordering
may be changed when remote and local files are interleaved on the ls command
line. For example, ls /foo/pfe20:/bar would show pfe20: first, then /foo, then

•

Using the SUP Virtual File System 48

/bar.
mkdir (no options)•

more (all options)•

mv (no options)•

pwd (no options)•

rm [-r]•

rmdir (no options)•

tail [-number]

Note that tail does not support the form "-n number", so, for example, to display the
last 5 lines of a file, use "-5" and not "-n 5".

•

tee [-a]•

test [-b] [-c] [-d] [-e] [-f] [-g] [-h] [-k] [-L] [-p] [-r] [-s] [-S] [-u] [-w]

Note that compound and string tests are not supported. Compound and string tests
can be achieved using multiple test commands separated by shell compound
operators. For example,

test -f pfe20:/foo -a "abc" != "123"

would become

test -f pfe20:/foo && test "abc" != "123"

Alternatively, the actual test command can be executed through the SUP:

sup ssh pfe20 test -f /foo -a "abc" != "123"

•

touch (no options)•

wc (all options)•

Using the SUP Virtual File System 49

Using the SUP without the SUP Client

Introduction

The SUP client is the recommended approach to using the SUP. The client requires Perl,
however, thus may not be suitable for all purposes. The only software actually required to
use the SUP is SSH. This page details the manual steps required to use the SUP with only
SSH. Users should still review the client instructions for a full overview of the SUP.

SUP Manual Usage Summary

The steps below demonstrate how to get up and running with the SUP without the client
using a bbftp transfer to cfe2 as an example. Consult the link in each step for full details (or
simply read this page to completion).

Initialize a long-term key on sup-key.nas.nasa.gov (one time)

 ssh -x -oPubkeyAuthentication=no sup-key.nas.nasa.gov \
 mesh-keygen --init <~/.ssh/authorized_keys

1.

Generate a SUP key (one time per week)

 eval `ssh-agent`
 ssh-add ~/.ssh/id_rsa
 ssh -A -oPubkeyAuthentication=no sup.nas.nasa.gov \
 mesh-keygen |tee ~/.ssh/supkey.`date +%Y%m%d.%H%M`
 ssh-agent -k

2.

Authorize host for SUP operations (one time per host)

 ssh cfe2
 touch ~/.meshrc

3.

Authorize directories for writes (one or more times per host)

 ssh cfe2
 echo /tmp >>~/.meshrc

4.

Prepare the SUP key for use (one time per session)

 eval `ssh-agent`
 ssh-add -t 1w ~/.ssh/supkey

5.

Execute command (each time)

 bbftp -L "ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q" \
 -e "put /foo/bar /tmp/c_foobar" cfe2.nas.nasa.gov

6.

Troubleshoot problems (as needed)7.

Using the SUP without the SUP Client 50

SUP Key Generation

On the very first use only, invoke the mesh-keygen command with the --init
option on sup-key.nas.nasa.gov to upload an SSH authorized_keys file (used
only during key generation and revocation). An authorized_keys file contains one
or more SSH public keys that allow the corresponding SSH private keys to be used
for authentication to a system. The uploaded authorized_keys file can be an
existing file (such as your ~/.ssh/authorized_keys file from any host) or one
created specifically for this purpose using a new SSH key pair generated with
ssh-keygen. The public keys in this file must be in OpenSSH format (that is, not
the format of the commercial SSH version used on the Secure Front-Ends [SFEs])
and must not contain any forced commands (that is, command=). For example, to
upload an existing authorized_keys file, the following can be invoked:

ssh -x -oPubkeyAuthentication=no sup-key.nas.nasa.gov \
 mesh-keygen --init <~/.ssh/authorized_keys

You will be prompted to authenticate using both a password (originally your Lou
password) and SecurID passcode (PIN + tokencode).

Users who have never connected to sup-key.nas.nasa.gov before may need to add
a -oStrictHostKeyChecking=ask option to the scp command line. (RSA key
fingerprint of sup-key.nas.nasa.gov is
1b:9a:82:2b:b9:b0:7d:e5:08:50:1d:e8:14:76:a2:2e)

Note that this is on sup-key only and that you must use the
-oPubkeyAuthentication=no option as shown. Users outside NAS may need to
add an appropriate SSH option to set their login name, such as -l username.

1.

Start an SSH agent (or use one currently running):

eval `ssh-agent -s` (if your shell is sh/bash)
or

eval `ssh-agent -c` (if your shell is csh/tcsh)

2.

Add a private key corresponding to one of the public keys in the authorized_keys
file of Step 1 to the agent (this is unnecessary if an agent is already running with the
key loaded). For example:

ssh-add ~/.ssh/id_rsa

3.

Invoke the mesh-keygen command on sup.nas.nasa.gov. You will be prompted to
authenticate using both password (originally your Lou password) and SecurID
passcode (PIN + tokencode). After successful authentication, the mesh-keygen
command prints a SUP key to your terminal, which should be saved to a file in a
directory that is readable only by you. This key can be saved to a file by
cut-and-paste, redirecting standard output, or using the tee command. For example,

4.

Using the SUP without the SUP Client 51

to generate a key and redirect it into a file starting with ~/.ssh/supkey and labeled
with the current time, the following can be invoked:

ssh -A -oPubkeyAuthentication=no sup.nas.nasa.gov \
 mesh-keygen |tee ~/.ssh/supkey.`date +%Y%m%d.%H%M`

Users who have never connected to sup.nas.nasa.gov before may need to add a
-oStrictHostKeyChecking=ask option to the SSH command line. (RSA key
fingerprint of sup.nas.nasa.gov is 52:f3:61:9b:9c:73:79:4d:22:cb:f3:cd:9a:29:4e:fe)

Note that you must use the -oPubkeyAuthentication=no option as shown.
Users outside NAS may need to add an appropriate SSH option to set their login
name, such as -l username.
Protect your keys. In order to perform unattended operations, SUP keys cannot be
encrypted, thus should always be protected with appropriate file system permissions
(that is, 400 or 600). Check the permissions of your key immediately after generation
and modify if necessary. You are responsible for the privacy of your keys.

5.

SUP Key Management

Each invocation of mesh-keygen creates a new SUP key that is valid for one week from
the time of generation. Users may have multiple keys at once that all expire at different
times. To facilitate the management of multiple SUP keys, the mesh-keytime and
mesh-keykill commands are available.

Mesh-keytime

To determine the expiration time of a SUP key stored in a file /key/file, the following
can be invoked:

ssh -xi /key/file -oIdentitiesOnly=yes -oBatchMode=yes \
 sup.nas.nasa.gov mesh-keytime

The key fingerprint and expiration time will be printed to your terminal.

Mesh-keykill

To invalidate a specific SUP key stored in a file /key/file before its expiration time has
passed, you must have an SSH agent running with the same key you use to generate SUP
keys as described in Steps 2 and 3 of the SUP Key Generation section. After which, the
following can be invoked:

ssh -Axi /key/file -oIdentitiesOnly=yes -oBatchMode=yes \

Using the SUP without the SUP Client 52

 sup.nas.nasa.gov mesh-keykill

To invalidate all currently valid SUP keys, the following can be invoked:

ssh -Ax -oPubkeyAuthentication=no sup.nas.nasa.gov mesh-keykill
--all
In this case, you will be prompted to authenticate using both password and SecurID
passcode.

SUP Key Preparation

Currently, the only operations allowed with a SUP key are scp, sftp, bbftp, qstat,
rsync, and test. For all operations, an SSH agent must be started with the SUP key
loaded, which can be scripted as needed, because the key is unencrypted.

Start an SSH agent:

eval `ssh-agent -s` (if your shell is sh/bash)
or

eval `ssh-agent -c` (if your shell is csh/tcsh)

1.

Add a SUP key to the agent (this is the only key required to perform unattended SUP
operations):

ssh-add /key/file
Since SUP keys have a lifetime of one week, the -t option may be used to
automatically remove the key from the agent after a week has elapsed:

ssh-add -t 1w /key/file
The will prevent a buildup of keys in the agent, which can cause login failure as
described in the SUP Troubleshooting section. Keys may be explicitly removed from
the agent using the following:

ssh-keygen -y -f /key/file >/key/file.pub
ssh-add -d /key/file

2.

Make sure agent forwarding and batch mode are enabled in your SSH client. The
examples below include the appropriate options to enable agent forwarding (-A) and
batch mode (-oBatchMode=yes).

3.

SUP Commands

Using the SUP without the SUP Client 53

Examples of the use of each command that may be executed through the SUP are given
below. Note that SUP commands must be authorized for execution on each target host and
transfers to a given host must be authorized for writes.

bbftp

(man page)

bbftp -L "ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q" \
 -e "put /foo/bar /tmp/c_foobar" cfe2.nas.nasa.gov

Note that you must use the fully-qualified domain name of the target host (in this case,
cfe2.nas.nasa.gov) if you are not within the NAS domain.

bbscp

(man page)

bbscp -L "ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q" \
foobar cfe2.nas.nasa.gov:/tmp/c_foobar

Note that bbscp is just a client-side wrapper for bbftp, thus like bbftp, you must use the
fully-qualified domain name of the target host (in this case, cfe2.nas.nasa.gov) if you are
not within the NAS domain.

qstat

(man page available on Pleiades and Columbia)

ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q cfe2 qstat @pbs1

rsync

(man page)

rsync -e "ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q" \
foobar cfe1:/tmp/c_foobar

Note that even if your home directory has been authorized for writes, rsync transfers to
your home directory will fail unless the -T or --temp-dir option is specified. This is
because rsync uses temporary files starting with "." during transfers, which cannot be
written in your home directory. By specifying an alternate temporary directory that is
authorized for writes, this problem can be avoided. For example, the following uses /tmp
as the temporary directory when files are transferred to the home directory. Make sure that

Using the SUP without the SUP Client 54

http://doc.in2p3.fr/bbftp/3.2.0.bbftp.html
http://www.samba.org/ftp/rsync/rsync.html

the temporary directory specified has enough space for the files being transferred.

rsync -T /tmp -e "ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q" \
foobar cfe2:

scp

(man page)

Create a file (for example, "supwrap") containing the following:

#!/bin/sh
exec ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q $@

1.

Make the created file executable:

chmod 700 supwrap

2.

Initiate the transfer. For example:

scp -S ./supwrap foobar cfe2:/tmp/c_foobar

3.

sftp

(man page)

Create a file (for example, "supwrap") containing the following:

#!/bin/sh
 exec ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q $@

Note that this file is identical to the one described for scp.

1.

Make the created file executable:

chmod 700 supwrap

2.

Initiate the transfer. For example:

sftp -S ./supwrap cfe2

3.

test

(man page)

ssh -Aqx -oBatchMode=yes sup.nas.nasa.gov ssh -q cfe2 test -f
/tmp/c_foobar

Using the SUP without the SUP Client 55

http://www.openbsd.org/cgi-bin/man.cgi?query=scp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=sftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=test&sektion=1

SUP Troubleshooting

The following error messages may be encountered during SUP usage:

"WARNING: Your password has expired"

This message indicates that your current password has expired and must be
changed. To change your password, you must log in to an LDAP host (for example,
Lou) through the SFEs and change your LDAP password. This change will be
automatically propagated to the SUP within a few minutes.

•

"Permission denied (~/.meshrc not found)"

This message indicates that you have not created a .meshrc file in your home
directory on the target host. SUP commands must be authorized for execution on
each target host.

•

"Permission denied (key expired)"

SUP keys are only valid for one week from the time of generation. This message
indicates that the SUP key used for authentication has expired and is no longer valid.
You must generate a new SUP key or use a different SUP key before attempting
another operation.

•

"Permission denied (publickey,keyboard-interactive)"

This message indicates that you have not provided the appropriate authentication
credentials to the SUP. There may be several causes:

If you are generating a SUP key and also receive an "Error copying key..."
message, you have not loaded a private key into your SSH agent
corresponding to one of the public keys in the authorized_keys file uploaded
to sup-key in Steps 1-3 of the SUP Key Generation section. You can verify
that the correct key is loaded by running ssh-keygen -l -f
uploaded_key_file and ssh-agent -l and checking that the fingerprint
of your uploaded key file has been loaded into your SSH agent.

♦

If you have specified -oBatchMode=yes on the command line, a valid SUP
key may not been loaded into your SSH agent. There may also be too many
keys loaded into your agent. SSH tries each key in the agent sequentially, so
a valid key may still fail if it was added to the agent after a number of invalid
keys greater than or equal to the login attempt limit. Check the number of
keys in the agent using ssh -l. The agent may be cleared of keys using
ssh-add -D.

♦

If you have specified -oPubkeyAuthentication=no, you have not
provided a valid password and/or a valid SecurID passcode.

♦

•

"Permission denied (unauthorized command)"•

Using the SUP without the SUP Client 56

This message indicates that you have attempted an operation that is not currently
authorized by the SUP. Check that the command line is valid and that the attempted
command is one of the authorized commands. Certain options to authorized
commands may also be disallowed, but these should never be needed in standard
usage scenarios.
"Permission denied during file access (various forms)"

These messages indicate that you attempted to read or write a file for which such
access is not allowed. The most common cause is forgetting to authorize directories
for writes. Reads and writes of ~/.* are never permitted.

•

"Permission denied (publickey)"

This message indicates that you may have improper permissions on your ~/.ssh
and/or home directory on the target host. Check to make sure that ~/.ssh is not
readable/writable by other users/groups and that your home directory is not writable
by other users/groups.

•

Using the SUP without the SUP Client 57

Using GPG to Encrypt Your Data

Summary: Use GPG with the cipher AES256, without the --armour option, and with
compression to encrypt your files during inter-host transfers.

GPG

Encryption helps protect your files during inter-host file transfers (for example, when using
scp, bbftp, or ftp). We recommend GPG (Gnu Privacy Guard), an Open Source
OpenPGP-compatible encryption system.

GPG has been installed on Pleiades, Columbia, and Lou at /usr/bin/gpg. If you do not
have GPG installed on the system(s) that you would like to use for transferring files, please
check out the GPG web site.

Choosing What Cipher to Use

We recommend using the cipher AES256, which uses a 256-bit Advanced Encryption
Standard (AES) key to encrypt the data. Information on AES can be found at the National
Institute of Standards and Technology's Computer Security Resource Center.

You can set your cipher in the following ways:

Add the following line to your ~/.gnupg/gpg.conf

cipher-algo AES256

•

Or add --cipher-algo AES256 in the command line to override the default
cipher, CAST5.

•

Examples

For any of the following simple examples, you can add --cipher-algo AES256 to
override the default cipher, CAST5, if you choose to not add the cipher-algo AES256 to
your personal gpg.conf file.

Creating an Encrypted File

Both commands below are identical. They encrypt the file test.out and produce the
encrypted version in test.gpg.

% gpg --output test.gpg --symmetric test.out

Using GPG to Encrypt Your Data 58

http://www.gnupg.org
http://csrc.nist.gov/CryptoToolkit/tkencryption.html

% gpg -o test.gpg -c test.out

You will be prompted for a passphrase, which will be used later to decrypt the file.

Decrypting a File

The following command decrypts the file test.gpg and produces the file test.out.

% gpg --output test.out -d test.gpg
You will be prompted for the passphrase that you used to encrypt the file. If you don't use
the --output option, output of the command goes to STDOUT. If you don't use any flags,
it will decrypt to a file without the .gpg suffix. That is:

% gpg test.gpg
results in the decrypted data in a file named "test".

Passphrase Selection

Your passphrase should have sufficient information entropy. We suggest that you include
five words of 5-10 letters in size, chosen at random, with spaces, special characters, and/or
numbers embedded into words.

You need to be able to recall the passphrase that was used to encrypt the file.

Factors that Affect Encrypt/Decrypt Speed on NAS Filesystems

We do not recommend using the --armour option for encrypting files that will be
transferred to/from NAS systems. This option is mainly to send binary data through email,
not via scp, bbftp, ftp, etc. The file size tends to be about 33% bigger than without this
option, and encrypting the data takes about 10-15% longer.

The level of compression used when encrypting/decrypting affects the time required to
complete the operation. There are three options for the compression algorithm: none, zip,
and zlib.

--compress-algo none or --compress-algo 0•
--compress-algo zip or --compress-algo 1•
--compress-algo zlib or --compress-algo 2•

For example:

% gpg --output test.gpg --compress-algo zlib --symmetric test.out

Using GPG to Encrypt Your Data 59

If your data is not compressible, --compress-algo 0 (aka none) gives you about a 50%
performance increase compared to --compress-algo 1 or --compress-algo 2.

If your data is highly compressible, choosing zlib or zip will not only give you a 20-50%
speed increase, but it also reduces the file size by up to 20x. For example, a 517 MB highly
compressible file was compressed to 30 MB on Columbia.

zlib is not compatible with PGP 6.x, but neither is the cipher algorithm AES256. zlib is
about 10% faster than zip on Columbia and compresses about 10% better than zip.

Random Benchmark Data

We tested the encryption/decryption speed of three different files (1 MB, 150 MB, 517 MB)
on Columbia. The file used for the 1 MB test was an rpm file, presumably already
compressed, since the resultant file sizes for the none/zip/zlib were within 1% of each
other. The 150 MB file was an ISO, also assumed to be a compressed binary file for the
same reasons. The 517 MB file is a text file. These runs were performed on a CXFS
filesystem when many other users' jobs were running. The performance reported here is for
reference only, and not the best or worst performance you can expect.

Using AES256 as the Cipher Algorithm

1 MB File 150 MB File 517 MB File

with --armour ~5.5 secs to
encrypt ~40 secs to encrypt

without --armour ~4 secs to
encrypt ~35 secs to encrypt

without --armour,
zlib compression

~33 secs to encrypt;
~28 secs to decrypt
to file

~33 secs, resultant file size
~30 MB; ~34 secs to
decrypt to file

without --armour, zip
compression

~36 secs to encrypt;
~31 secs to decrypt
to file

~38 secs, resultant file size
~33 MB; ~34 secs to
decrypt to file

without --armour, no
compression

~19 secs to encrypt;
~25 secs to decrypt
to file

~49 secs, resultant file size
~517 MB; ~75 secs to
decrypt to file

Using GPG to Encrypt Your Data 60

Checking File Integrity

Lou2 Note:

This article is currently being edited to reflect the changes to Lou2 which take effect on
December 6, 2012. A finalized version will be posted soon.

It is a good practice to check that your data are complete and accurate before and after a
file transfer. A common way for checking data integrity is to compute a checksum of the
data.

The easiest way to verify the integrity of file transfers is to use the NAS-developed Shift tool
for the transfer with the --verify option enabled. Shift will automatically checksum the
data at the source and destination to detect corruption as part of the transfer. If corruption is
detected, partial file transfers/checksums will be performed until the corruption is rectified.

For example:

pfe20% shiftc --verify $HOME/foo /nobackupp2/username
lou% shiftc --verify /nobackupp2/username/foo $HOME
your_localhost% sup shiftc --verify foo pfe:

Besides Shift, there are multiple algorithms and programs that one can use for computing a
checksum. A good checksum algorithm will yield a different result with high probability when
the data is accidentally corrupted. If the checksums obtained before and after the transfer
match, the data is almost certainly not corrupted.

On NAS HECC systems, the following programs are available:

sum
Computes a checksum using BSD sum or System V sum algorithm; also counts the
number of blocks (1 KB-block or 512 B-block) in a file

cksum
Computes a cyclic redundancy check (CRC) checksum; also counts the number of
bytes in a file

md5sum
Computes a 128-bit MD5 checksum which is represented by a 32-character
hexadecimal number

For example:

%ls -l foo
-rw------- 1 username groupid 67358 Nov 15 11:49 foo

%sum foo
50063 66

Checking File Integrity 61

http://www.nas.nasa.gov/hecc/support/kb/entry/371

%cksum foo
269056887 67358 foo

%md5sum foo
cfe0fc62607e9dc6ea0c231982316b75 foo

md5sum is more reliable than sum or cksum for detecting accidental file corruption, as the
chances of accidentally having two files with identical MD5 checksum are extremely small.
It is installed by default in most Unix, Linux, and Unix-like operating systems. Users are
recommended to compute the md5sum of a file before and after the transfer.

The following example shows that the file foo is complete and accurate after the transfer
based on its md5sum.

pfe20% md5sum foo
cfe0fc62607e9dc6ea0c231982316b75 foo

pfe20% scp foo local_username@your_localhost:

your_localhost%md5sum foo
cfe0fc62607e9dc6ea0c231982316b75 foo

See sum, cksum, msum, and md5sum man pages for more information.

See Using mtar to Create or Extract Tar Files on Lustre for more information on mtar.

Checking File Integrity 62

File Transfers Tips

Below are some quick and easy techniques that may improve your performance rates when
transferring files remotely to or from NAS.

Transfer files from the /nobackup file system, which is often faster than the locally
mounted disks.

•

If you are using scp, try adding the -C option to enable file compression, which can
sometimes double your performance rates:

% scp -C filename user@remotehost.com:

•

For SCP transfers, use a low process-overhead cipher such as arcfour:

% scp -carcfour filename user@remotehost.com:

•

This can increase your transfer rates by 5x, compared to older methods such as
3des.

If you are transferring from Lou, make sure your file is online first, not on archive
tape. If you use shiftc for the transfers it will automatically ensure that files on Lou
are online before transfer. If you are not using shiftc, use the following DMF
commands to determine/change the location of your files:

% dmls -al filename # show the status of your file.
% dmget filename # retrieve your file from tape prior to transferring.

Get the full list of DMF commands.

•

Use the bridge nodes to transfer files instead of using the Pleiades and Columbia
front ends (pfe[20-27], cfe2). The bridge nodes have 10-Gigabit interfaces and more
memory to handle multiple and large file transfers.

•

If you are transferring many small files, try using the tar command to compress
them into a single file prior to transfer. Copying one large file is faster than
transferring many small files.

•

For files larger than a gigabyte, we recommended using BBFTP software, which can
achieve much faster rates than single-stream applications such as scp or rsync.

•

To improve your performance by modifying your system, see TCP Performance Tuning for
WAN Transfers.

If you continue experiencing slow transfers and want to work with a network engineer to
help improve file transfers, please contact the NAS Control Room at
support@nas.nasa.gov.

File Transfers Tips 63

mailto:support@nas.nasa.gov

Use Shift for Reliable Local and Remote File Transfers

Shift is a tool for performing reliable local, enclave-to-enclave, and remote transfers. The
tool supports syntax identical to the commands cp and scp. Users can check the status of
transfers at any time and are notified of completion, errors, and warnings via email. Shift
provides several advanced features including:

File integrity verification and/or correction•
Automatic retrieval and release of files residing on DMF-managed file systems (for
example, Lou home directories)

•

Automatic many-to-many parallelization of transfers•

All functionality is accessed through the Shift client called shiftc.

Shift Usage Summary

Local transfers (for example /tmp/file1 to /tmp/dir1 on pfe20):

pfe20% shiftc /tmp/file1 /tmp/dir1
Enclave-to-enclave transfers (for example, /tmp/file1 on pfe20 to /tmp/dir2 on cfe2):

pfe20% shiftc /tmp/file1 cfe2:/tmp/dir2
Remote transfers via the Secure Unattended Proxy (for example, /tmp/file1 on your
localhost to home directory on pfe20):

your_localhost% sup shiftc /tmp/file1 pfe20.nas.nasa.gov:
Check transfer status from a NAS high-end computing (HEC) host (for example, pfe20):

pfe20% shiftc --status
Check transfer status from remote host (for example, your localhost):

your_localhost% sup shiftc --status

Remote Transfers

Transfers between a remote system and a system within the NAS HEC enclave (such as,
between your localhost and pfe20) must be carried out using the SUP). To use the SUP for
Shift transfers, you must: 1) download the SUP client, 2) authorize one or more hosts for
SUP operations, and 3) for transfers to NAS systems, authorize one or more directories for
writes. A brief summary of these steps is shown below. For a full overview, see Using the
Secure Unattended Proxy. For higher performance remote transfers, you may wish to
download and install bbFTP so that it is available for Shift to use.

Download and install SUP client (one time):1.

Use Shift for Reliable Local and Remote File Transfers 64

http://www.nas.nasa.gov/hecc/support/kb/entry/145#client

your_localhost% wget -O sup http://www.nas.nasa.gov/hecc/support/kb/file/9
your_localhost% chmod 700 sup
your_localhost% mv sup ~/bin

Authorize host for SUP operations (one time per host):

your_localhost% ssh pfe20
pfe20% touch ~/.meshrc

2.

Authorize directories for writes (one or more times per host)

your_localhost% ssh pfe20
pfe20% echo /tmp >>~/.meshrc
pfe20% echo /nobackup/$USER >>~/.meshrc
pfe20% echo /u/$USER >>~/.meshrc

3.

Download and install bbFTP (optional for higher performance):4.

Transfer Initialization

For transfers that are local to a single NAS HEC system (such as pfe20) or for transfers
between two systems within the NAS HEC enclave (for example, pfe20 to cfe2), usage is
nearly identical to the commands cp or scp:

shiftc [OPTION]... SOURCE DEST
shiftc [OPTION]... SOURCE... DIRECTORY

Local paths are specified normally. A path "PATH" on a remote host "HOST" is specified
using the scp-style "HOST:PATH". Note that transfers between two remote hosts are not
supported.

Usage is similar for transfers between a remote system outside the NAS HEC enclave and
a system within the NAS HEC enclave usage, except that 1) you must prepend sup (that is,
the SUP client) to each shiftc command and 2) you must use the fully qualified domain
name of the NAS HEC system if you are not within the NAS domain:

sup shiftc [OPTION]... SOURCE DEST
sup shiftc [OPTION]... SOURCE... DIRECTORY

For example, if the following enclave-to-enclave transfer:

shiftc /tmp/file1 cfe2:
was made into a remote transfer, it would become:

sup shiftc /tmp/file1 cfe2.nas.nasa.gov:
With the general case being that shiftc [args] becomes sup shiftc [args].

Note that remote Shift transfers must always be initiated from the system that is external to
the NAS HEC enclave, but files may be transferred in either direction.

Use Shift for Reliable Local and Remote File Transfers 65

http://www.nas.nasa.gov/hecc/support/kb/entry/145#execauth
http://www.nas.nasa.gov/hecc/support/kb/entry/145#writeauth
http://www.nas.nasa.gov/hecc/support/kb/entry/147#download_bbftp

Initialization Options

The most commonly used options during initialization are listed below. For a full summary
of options see man shiftc on any Pleiades front end (PFEs and bridge nodes), cfe2, or
Lou.

--encrypt
Encrypt data during remote transfers. Note that, in most case, this option will
decrease performance as it eliminates some higher performance transports.

--hosts=NUM
Parallelize the transfer by using additional clients on at most the given number of
hosts. If the number given is one, no additional client will be used. A number greater
than one enables automatic transfer parallelization where additional clients may be
invoked on additional hosts to increase transfer performance. Note that the actual
number of clients used will depend upon the number of hosts for which Shift has file
system information and the number of hosts that have equivalent access to the
source and/or destination file systems.

-L, --dereference
By default, symbolic links to files are followed, but symbolic links to directories are
not (identical to the default behavior of cp). This option specifies that symbolic links
to both files and directories should always be followed. Note that this can result in file
and directory duplication at the destination, as all symbolic links will become real files
and directories.

--no-offline
By default, files transferred to and from DMF-managed file systems will be released
offline as soon as the transfer is completed. This option specifies that files should
instead be kept online. Note that DMF may still choose to release a file even when
this option is enabled.

-P, --no-dereference
By default, symbolic links to files are followed but symbolic links to directories are not
(identical to the default behavior of cp). This option specifies that symbolic links to
both files and directories should never be followed. Note that this can result in
broken links at the destination, as files and directories referenced by symbolic links
that were not explicitly transferred or implicitly transferred using --recursive may
not exist on the target.

-p, --preserve
Preserve times, permissions, and ownership of the files and directories transferred.
Note that user ownership may only be preserved when invoked as root, and group
ownership may only be preserved when the invoking user is a member of the group
of the source file at the target. Also note that preservation occurs after all other
processing, so an error in any other stage of processing (such as directory creation,
file transfer, or file checksum) will abort preservation of the affected targets.

--quiet
Prevents sending of emails due to errors, warnings, or completion. This option may
be useful when performing a large number of scripted transfers. Note that equivalent

Use Shift for Reliable Local and Remote File Transfers 66

transfer status and history information can always be manually retrieved using
--status and --history, respectively.

-R, -r, --recursive
Transfer directories recursively. Note that any symbolic links pointing to directories
that are given on the command line will be followed during recursive transfers
(identical to the default behavior of cp).

--verify
Checksum files at the source and destination to verify that they have not been
corrupted. If corruption is detected in a file at the destination, the corrupted portion
will be automatically corrected using a partial transfer from the original source. Note
that this option will decrease the performance of transfers in proportion to the file
size as extra work must be done at the source and destination.

History, Management, and Status Options

Once one or more transfers have been initialized, the user may view transfer history,
stop/restart transfers, and/or check transfer status with the following options. For a full
summary of options see man shiftc on any Pleiades front-ends (PFEs and bridge nodes),
cfe2, or Lou.

--history
Show a brief history of all transfers including the transfer identifier, the origin host
and the original command. Note that transfer history is only stored for one week.

--id=NUM
Specify the transfer identifier to be used with management and status commands.

--restart
Restart the transfer associated with the given --id option that was stopped due to
unrecoverable errors or stopped explicitly via --stop. Note that transfers must be
restarted on the original client host or one that has equivalent file system access.

--search=REGEX
When --status and --id are specified, this option will show the full status of file
operations in the associated transfer whose source or destination file name match
the given regular expression. When --history is specified, this option will show a
brief history of the transfers in which the origin host or original command match the
given regular expression. Note that regular expressions must be given in Perl syntax
(for details, see perlre(1) on The Perl Foundation website).

--stop
Stop the transfer associated with the given --id. Note that transfer operations
currently in progress will run to completion but new operations will not be processed.
Stopped transfers may be restarted with --restart.

--state=STATE
When --status and --id options are specified, this option will show the full status
of file operations in the associated transfer that have the given state. Valid states are
done, error, queue, run, and warn.

--status

Use Shift for Reliable Local and Remote File Transfers 67

http://perldoc.perl.org/perlre.html

Show a brief status of all transfers including the transfer identifier, the current state,
the number of directories completed, the number of files transferred, the number of
files "checksummed," the number of attributes preserved, the amount of data
transferred, the amount of data checksummed, the time the transfer started, the
duration of the transfer, and the file transfer rate.
When --id is specified, this option will show the full status of every file operation in
the associated transfer. For each operation, this includes the state, the type, the tool
used for processing, the target path, associated error messages (if any), the size of
the file, the time processing started, and the rate of the operation. Note that not all of
these items will be applicable at all times (for example, the rate will be empty if the
state is "error"). Also note that operations are processed in batches, so the rate
shown for a single operation will depend on the other operations processed in the
same batch.

Examples

Copy local file "file1" in the current directory to existing local directory "/tmp/dir1":

pfe20% shiftc file1 /tmp/dir1

Directories/files found: 0/1
Shift id is 1

Copy local file "file1" in the current directory to the user's home directory on cfe2 while
preserving file attributes:

pfe20% shiftc -p file1 cfe2:

Directories/files found: 0/1
Shift id is 2

Recursively copy local directory "/tmp/dir1" on your localhost to directory "/tmp/dir2" on cfe2
and verify that the contents have not been corrupted during the transfer while fixing any
corruption detected:

your_localhost% sup shiftc -r --verify /tmp/dir1 cfe2.nas.nasa.gov:/tmp/dir2

Directories/files found: 1/2
Shift id is 3

Recursively copy remote directory "/tmp/dir2" on cfe2 to the current directory on your
localhost using an encrypted transport:

your_localhost% sup shiftc -r --encrypt cfe2.nas.nasa.gov:/tmp/dir2 .

Directories/files found: 1/2
Shift id is 4

Use Shift for Reliable Local and Remote File Transfers 68

Recursively copy local directory "/nobackup/user1/bigdir1" to local directory
"/nobackup/user1/bigdir2" using 4 client hosts to perform the transfer.

pfe20% shiftc -r --hosts=4 /nobackup/user1/bigdir1 /nobackup/user1/bigdir2

Directories/files found: 1/64
Shift id is 5

Show the status of all transfers:

pfe20% shiftc --status

id | state | dirs | files | file size | start | time | rate
 | | sums | attrs | sum size | | |
---+-------+------+-------+---------------+-------+------+---------
 1 | done | 0/0 | 1/1 | 92KB/92KB | 10/03 | 2s | 46KB/s
 | | 0/0 | 0/0 | 0.0B/0.0B | 17:06 | |
 2 | done | 0/0 | 1/1 | 92KB/92KB | 10/03 | 8s | 11.5KB/s
 | | 0/0 | 1/1 | 0.0B/0.0B | 17:06 | |
 3 | done | 1/1 | 2/2 | 99KB/99KB | 10/03 | 1s | 99KB/s
 | | 4/4 | 0/0 | 198KB/198KB | 17:07 | |
 4 | error | 1/1 | 1/2 | 92KB/99KB | 10/03 | 3s | 30.7KB/s
 | | 0/0 | 0/0 | 0.0B/0.0B | 17:08 | |
 5 | done | 1/1 | 64/64 | 65.5GB/65.5GB | 10/03 | 29s | 2.26GB/s
 | | 0/0 | 0/0 | 0.0B/0.0B | 17:09 | |

Show the detailed status of all operations in transfer #2 from your localhost:

your_localhost% sup shiftc --status --id=2

state | op | target | size | start | time | rate
 | tool | message | | | |
------+--------+---------------------+------+-------+------+-------
done | cp | cfe2:/u/user1/file1 | 92KB | 10/03 | 5s | 18KB/s
 | bbftp | - | | 17:06 | |
done | chattr | cfe2:/u/user1/file1 | - | 10/03 | 1s | -
 | sftp | - | | 17:06 | |

Show the detailed status of all operations in transfer #4 that have an error state:

pfe20% shiftc --status --id=4 --state=error

state | op | target | size | start | time | rate
 | tool | message | | | |
------+-------+--------------------+------+-------+------+-----
error | cp | /tmp/dir2/file2 | 7KB | - | - | -
 | rsync | rsync: send_files | | | |
 | | failed to open | | | |
 | | "/tmp/dir2/file2": | | | |
 | | Permission denied | | | |

Show the detailed status of all operations in transfer #3 that involve a file name containing
"file2":

Use Shift for Reliable Local and Remote File Transfers 69

pfe20% shiftc --status --id=1 --search=file2

state | op | target | size | start | time | rate
 | tool | message | | | |
------+-------+-----------------+------+-------+------+------
done | cp | /tmp/dir2/file2 | 7KB | 10/03 | 1s | 7KB/s
 | mcp | - | | 17:07 | |
done | cksum | /tmp/dir2/file2 | 7KB | 10/03 | 1s | 7KB/s
 | msum | - | | 17:07 | |

Show the history of all transfers:

pfe20% shiftc --history

id | origin | command
---+-------------------+--
 1 | pfe20.nas.nasa.gov | shiftc file1 /tmp/dir1
 2 | pfe20.nas.nasa.gov | shiftc -p file1 cfe2:
 3 | your_localhost | sup shiftc -r --verify /tmp/dir1 cfe2:/tmp/dir2
 4 | your_localhost | sup shiftc -r --encrypt cfe2:/tmp/dir2 .
 5 | pfe20.nas.nasa.gov | shiftc -r --hosts=4 /nobackup/user1/bigdir1 /nobackup/user1/bigdir2

Show the history of all transfers that involve a host or a command containing cfe2 from your
localhost:

your_localhost% sup shiftc --history --search=cfe2

id | origin | command
---+-------------------+-------------------------------------
 2 | pfe20.nas.nasa.gov | shiftc -p file1 cfe2:
 4 | your_localhost | shiftc -r --encrypt cfe2:/tmp/dir2 .

Use Shift for Reliable Local and Remote File Transfers 70

	Table of Contents
	File Transfers
	File Transfer: Overview
	Local File Transfer Commands
	Remote File Transfer Commands
	Outbound File Transfer Examples
	Inbound File Transfer through SFEs Examples
	Using the Secure Unattended Proxy (SUP)
	File Staging through DMZ File Servers
	bbftp
	The bbscp Script
	Using bbscp for Test and Verification
	Using the SUP Virtual File System
	Using the SUP without the SUP Client
	Using GPG to Encrypt Your Data
	Checking File Integrity
	File Transfers Tips
	Use Shift for Reliable Local and Remote File Transfers

