
Table of Contents
Best Practices...1

Streamlining PBS Job File Transfers from Pleiades to Lou...1
Increasing File Transfer Rates...2
Choosing an MPI Library...4

Process Pinning...5
Process/Thread Pinning Overview..5
Using SGI's dplace Tool for Pinning..8
Using Intel OpenMP Thread Affinity for Pinning..14
Using SGI MPT Environment Variables for Pinning..20
Using SGI omplace for Pinning..23
Using the mbind Tool for Pinning...28
Instrumenting your Fortran Code to Check Process/Thread Placement...................34

Effective Use of Resources with PBS...37
Streamlining PBS Job File Transfers from Pleiades to Lou.......................................37
Avoiding Job Failure from Overfilling /PBS/spool..38
Running Multiple Serial Jobs to Reduce Wall-Time...40
Checking the Time Remaining in a PBS Job from a Fortran Code...........................43

Memory Usage on Pleiades...44
Memory Usage Overview..44
Checking memory usage of a batch job using qps..46
Checking memory usage of a batch job using qtop.pl...47
Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo".........48
Checking memory usage of a batch job using gm.x..49
Checking if a Job was Killed by the OOM Killer...51
How to Get More Memory for your Job..53

Lustre on Pleiades...56
Lustre Basics...56
Pleiades Lustre Filesystems..59
Lustre Best Practices...61
Lustre Filesystem Statistics in PBS Output File...67
Using 'mtar' to Create or Extract Tar Files on Lustre...68

Best Practices

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Best Practices 1

Increasing File Transfer Rates

Summary: If you are moving large files, use the bbftp or shiftc commands instead of
cp or scp. An online NAS service can help diagnose your remote network connection
issues, and our network experts can work with your specific file transfer problems.

For fastest file transfer between Pleiades /nobackup and Lou2, log into Lou and use
shiftc, cxfscp, cp, mcp, or tar.

Moving large amounts of data efficiently to or from NAS across the network can be
challenging. Often, minor system, software, or network configuration changes can increase
network performance an order of magnitude or more.

If you are experiencing slow transfer rates, try these quick tips:

Pleiades /nobackup are mounted on Lou2, enabling disk-to-disk copying, which
should give the highest transfer rates. You can use the shiftc, cp, or mcp
commands to copy files or even make tar files directly from Pleiades /nobackup to
your Lou home directory.

•

If using the scp command, make sure you are using OpenSSH version 5 or later.
Older versions of SSH have a hard limit on transfer rates and are not designed for
WAN transfers. You can check your version of SSH by running the command ssh
-V.

•

For large files that are a gigabyte or larger, we recommend using bbFTP. This
application allows for transferring simultaneous streams of data and doesn't have the
overhead associated with encrypting all the data (authentication is still encrypted).

•

Another reliable option for large file transfers is through the Shift client, which
includes options specific to the NAS environment, such as checking to see whether
files residing on Lou are also on tape.

•

Online Network Testing Tools

The NAS PerfSONAR Service provides a custom website that allows you to quickly
self-diagnose your remote network connection issues. It reports the maximum bandwidth
between sites, as well as any problems in the network path. Command-line tools are
available if your system does not have a web browser.

Test results are also sent to our network experts, who will analyze traffic flows, identify
problems, and work to resolve any bottlenecks that limit your network performance, whether
the problem is at NAS or at a remote site.

One-on-One Help

Increasing File Transfer Rates 2

https://npad.nas.nasa.gov/

If you would like further assistance, contact the NAS Control Room at
support@nas.nasa.gov, and a network expert will work with you or your local administrator
one-on-one to identify methods for increasing your transfer rates.

To learn about other network-related support areas see End-to-End Networking Services.

Increasing File Transfer Rates 3

mailto:support@nas.nasa.gov
http://www.nas.nasa.gov/hecc/services/networking_service.html

Choosing an MPI Library

Summary: Use an up-to-date version of SGI's MPT library (such as version 2.04). MPT is
generally more efficient on SGI systems than third-party MPI libraries, and versions 2.04
and later help system administrators identify issues with the InfiniBand interconnect more
quickly.

Message Passing Interface (MPI) is a standardized and portable message-passing library
specification. It is widely used for parallel programming across a network of computers.

Among the three MPI implementations available on Pleiades (Intel MPI, MVAPICH2, and
SGI MPT) and their installed versions, we recommend using SGI MPT version 2.04 --
specifically, the module mpi-sgi/mpt.2.04.10789 -- unless there is a strong reason for
using something else. You can get that library with the following:

%module load mpi-sgi/mpt.2.04.10789
Benefits of using SGI MPT instead of other MPI libraries:

SGI MPT contains MPI enhancements that are specific to SGI systems; in particular,
it offers multiple features for scaling applications to very large process counts

•

Use of MPT on Pleiades is supported by SGI; MPT bugs or issues encountered on
Pleiades are tracked closely by SGI to provide timely resolution

•

Benefits of using mpi-sgi/mpt.2.04.10789 instead of other MPT modules:

SGI MPT 2.04 is a full implementation of the MPI 2.2 specification•
The Lustre awareness feature of MPT 2.04 can improve MPI I/O performance on
Lustre filesystems (/nobackupp1-6)

•

On Pleiades, the environment variable MPI_IB_RAILS is set to 2 by default, in order
to make use of both InfiniBand (IB) fabrics for communications; this can increase
communication transfer rates in some cases

•

With mpi-sgi/mpt.2.04.10789, IB issues or failures may be recorded in system
logfiles, allowing system administrators to better track issues with the IB network

•

Detailed information about the enhancements and bug fixes/issues is found in sections 4
and 5, respectively, of the following document on Pleiades:
/nasa/sgi/mpt/2.04.10789/doc/README.relnotes.

See the article Porting with SGI MPT to learn more on using mpi-sgi/mpt.2.04.10789.

Choosing an MPI Library 4

Process Pinning

Process/Thread Pinning Overview

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code by increasing the percentage of local memory accesses.

Once your code runs and produces correct results on a system, the next concern is its
performance. For a code that uses multiple cores, the placement of processes and/or
threads can play a significant role in code performance.

Given a set of processor cores in a PBS job, the Linux kernel usually does a reasonably
good job of mapping processes/threads to physical cores (although the kernel may also
migrate processes/threads). Some OpenMP runtime libraries and MPI libraries may also
perform certain placements by default. In cases where the placements by the kernel or the
MPI or OpenMP libraries are suboptimal, you can try multiple methods to control the
placement in order to improve performance of your code. Using the same placement also
has the added benefit of reducing runtime variability from run to run.

You should pay attention to maximizing data locality while minimizing latency and resource
contention, and should have a clear understanding of the characteristics of your own code
and the machine that the code is running on.

Characteristics of NAS HECC Systems

Pleiades and Columbia are two distinctly different types of systems.

Pleiades

Pleiades is a cluster system consisting of four different processor types -- Harpertown,
Nehalem, Westmere, and Sandy Bridge, with a total of 11,776 nodes. On Pleiades, memory
on each node is accessible and shared only by processes/threads running on that node.

Process Pinning 5

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

A Harpertown node is a symmetric memory system where all 8 cores have equal access to
the memory on the node, so data locality is not an issue.

On the other hand, a Nehalem-EP, Westmere, or Sandy Bridge node contains two sockets.
Within each socket is a symmetric memory system. Accessing memory across the two
sockets is through the Quick Path Interconnect and these nodes are considered
non-uniform memory access (NUMA) systems. So,for optimal performance, data locality
should not be overlooked on these three processor types.

Overall, compared to a global shared-memory NUMA system such as Columbia, data
locality is less of a concern on Pleiades. Rather, minimizing latency and resource
contention will be the main focus when pinning processes/threads on Pleiades.

For more information on Pleiades and these processors, see Pleiades Configuration
Details, which has links to each of the processor types.

Columbia

Columbia comprises 4 hosts (C21-24). Each host is a NUMA system that contains
hundreds of nodes with memory located physically at various distances from the processors
accessing data on memory. A process/thread can access the local memory on its node, as
well as the remote memory across nodes through the NUMAlink, with varying latencies. So,
data locality is critical for getting good performance on Columbia.

One good practice to follow when developing an application is to initialize data in parallel,
such that each processor core initializes data that it is likely to access later for calculation.

For more information about Columbia, see Columbia Configuration Details.

Methods for Process/Thread Pinning

Several pinning approaches for OpenMP, MPI and MPI+OpenMP hybrid applications are
listed below. We recommend using the Intel compiler (and its runtime library) and the SGI
MPT software on NAS systems, so most of the approaches pertain specifically to them. On
the other hand, the mbind tool works for multiple OpenMP libraries and MPI environments.

OpenMP codes

Using Intel OpenMP Thread Affinity for Pinning♦

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

MPI codes•

Process/Thread Pinning Overview 6

Setting SGI MPT Environment Variables♦

Using SGI's omplace Tool for Pinniing♦
Using the mbind Tool for Pinning♦

MPI+OpenMP hybrid codes

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

Checking Process/Thread Placement

Each of the approaches listed above provides some verbose capability to print out the tool's
placement results. In addition, you can check the placement using the following
approaches:

ps Command

ps -C executable_name -L -opsr,comm,time,pid,ppid,lwp
In the output generated, use the core ID under the PSR column, the process ID under the
PID column, and the thread ID under the LWP column to see where the processes and/or
threads are placed on the cores.

Note that the ps command provides a snapshot of the placement at that specific time. You
may need to monitor the placement from time to time to make sure that the
processes/threads do not migrate.

Instrument your code to

Call the mpi_get_processor_name function, to get the name of the processor an
MPI process is running on

•

Call the Linux C function sched_getcpu() to get the processor number the
process or thread is running on

•

For more information, see Instrumenting your Fortran Code to Check Process/Thread
Placement.

Process/Thread Pinning Overview 7

Using SGI's dplace Tool for Pinning

Summary: The dplace tool binds processes/threads to specific processor cores to
improve your code performance. For an introduction to pinning at NAS, see Process/Thread
Pinning Overview.

The SGI dplace tool binds processes/threads to specific processor cores. Once pinned,
the processes/threads do not migrate. This can improve the performance of your code by
increasing the percentage of local memory accesses.

dplace invokes a kernel module to create a job placement container consisting of all (or a
subset of) the CPUs of the cpuset. In the current dplace version 2, an LD_PRELOAD
library (libdplace.so) is used to intercept calls to the functions fork(), exec(), and
pthread_create() to place tasks that are being created. Note that tasks created internal
to glib are not intercepted by the preload library. These tasks will not be placed. If no
placement file is being used, then the dplace process is placed in the job placement
container and (by default) is bound to the first CPU of the cpuset associated with the
container.

Syntax

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \
 [-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \
 command [command-args]
dplace [-p placement_file] [-o log_file] command [mpiexec -np4 a.out]
dplace [-q] [-qq] [-qqq]

As illustrated above, dplace "execs" command (in this case, without its mpiexec
arguments), which executes within this placement container and continues to be bound to
the first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If a placement file is being used, then the dplace process is not placed at the time the job
placement container is created. Instead, placement occurs as processes are forked and
executed.

Options for dplace

Explanations for some of the options are provided below. For additional information, see
man dplace on either Pleiades or Columbia.

Using SGI's dplace Tool for Pinning 8

-e and -c cpu_numbers

-e determines exact placement. As processes are created, they are bound to CPUs in the
exact order specified in the CPU list. CPU numbers may appear multiple times in the list.

A CPU value of "x" indicates that binding should not be done for that process. If the end of
the list is reached, binding starts over again at the beginning of the list.

-c cpu_numbers specifies a list of CPUs, optionally strided CPU ranges, or a striding
pattern. For example:

-c 1•
-c 2-4 (equivalent to -c 2,3,4)•
-c 12-8 (equivalent to -c 12,11,10,9,8)•
-c 1,4-8,3•
-c 2-8:3 (equivalent to -c 2,5,8)•
-c CS•
-c BT•

NOTE: CPU numbers are not physical CPU numbers. They are logical CPU numbers that
are relative to the CPUs that are in the allowed set, as specified by the current cpuset.

A CPU value of "x" (or *), in the argument list for the -c option, indicates that binding
should not be done for that process. The value "x" should be used only if the -e option is
also used.

Note that CPU numbers start at 0.

For striding patterns, any subset of the characters (B)lade, (S)ocket, (C)ore, (T)hread may
be used; their ordering specifies the nesting of the iteration. For example, SC means to
iterate all the cores in a socket before moving to the next CPU socket, while CB means to
pin to the first core of each blade, then the second core of every blade, and so on.

For best results, use the -e option when using stride patterns. If the -c option is not
specified, all CPUs of the current cpuset are available. The command itself (which is
"execed" by dplace) is the first process to be placed by the -c cpu_numbers.

Without the -e option, the order of numbers for the -c option is not important.

-x skip_mask

Provides the ability to skip placement of processes. The skip_mask argument is a
bitmask. If bit N of skip_mask is set, then the N+1th process that is forked is not placed.
For example, setting the mask to 6 prevents the second and third processes from being

Using SGI's dplace Tool for Pinning 9

placed. The first process (the process named by the command) will be assigned to the first
CPU. The second and third processes are not placed. The fourth process is assigned to the
second CPU, and so on. This option is useful for certain classes of threaded applications
that spawn a few helper processes that typically do not use much CPU time.

-s skip_count

Skips the first skip_count processes before starting to place processes onto CPUs. This
option is useful if the first skip_count processes are "shepherd" processes used only for
launching the application. If skip_count is not specified, a default value of 0 is used.

-q

Lists the global count of the number of active processes that have been placed (by
dplace) on each CPU in the current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers. If specified twice, lists the current
dplace jobs that are running. If specified three times, lists the current dplace jobs and the
tasks that are in each job.

-o log_file

Writes a trace file to log_file that describes the placement actions that were made for
each fork, exec, etc. Each line contains a time-stamp, process id:thread number, CPU that
task was executing on, taskname and placement action. Works with version 2 only.

Examples of dplace Usage

For OpenMP Codes

#PBS -lselect=1:ncpus=8

#With Intel compiler versions 10.1.015 and later,
#you need to set KMP_AFFINITY to disabled
#to avoid the interference between dplace and
#Intel's thread affinity interface.

setenv KMP_AFFINITY disabled

#The -x2 option provides a skip map of 010 (binary 2) to
#specify that the 2nd thread should not be bound. This is
#because under the new kernels (including the ones used on
#Pleiades and Columbia), the master thread (first thread)
#will fork off one monitor thread (2nd thread) which does
#not need to be pinned.

Using SGI's dplace Tool for Pinning 10

#On Pleiades, if the number of threads is less than
#the number of cores, choose how you want
#to place the threads carefully. For example,
#the following placement is good on Harpertown
#but not good on other Pleiades processor types:

dplace -x2 -c 2,1,4,5 ./a.out

To check the thread placement, you can add the -o option to create a log:

dplace -x2 -c 2,1,4,5 -o log_file ./a.out
Or use the following command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample Output of log_file

timestamp process:thread cpu taskname| placement action
15:32:42.196786 31044 1 dplace | exec ./openmp1, ncpu 1
15:32:42.210628 31044:0 1 a.out | load, cpu 1
15:32:42.211785 31044:0 1 a.out | pthread_create thread_number 1, ncpu -1
15:32:42.211850 31044:1 - a.out | new_thread
15:32:42.212223 31044:0 1 a.out | pthread_create thread_number 2, ncpu 2
15:32:42.212298 31044:2 2 a.out | new_thread
15:32:42.212630 31044:0 1 a.out | pthread_create thread_number 3, ncpu 4
15:32:42.212717 31044:3 4 a.out | new_thread
15:32:42.213082 31044:0 1 a.out | pthread_create thread_number 4, ncpu 5
15:32:42.213167 31044:4 5 a.out | new_thread
15:32:54.709509 31044:0 1 a.out | exit

Sample Output of placement.out

PSR COMMAND TIME PID PPID LWP
 1 a.out 00:00:02 31044 31039 31044
 0 a.out 00:00:00 31044 31039 31046
 2 a.out 00:00:02 31044 31039 31047
 4 a.out 00:00:01 31044 31039 31048
 5 a.out 00:00:01 31044 31039 31049

Note that Intel OpenMP jobs use an extra thread that is unknown to the user and it does not
need to be placed. In the above example, this extra thread (31046) is running on core
number 0.

For MPI Codes Built with SGI's MPT Library

Using SGI's dplace Tool for Pinning 11

With SGI's MPT, only 1 shepherd process is created for the entire pool of MPI processes,
and the proper way of pinning using dplace is to skip the shepherd process.

Here is an example for Columbia:

#PBS -l ncpus=8
....
 mpirun -np 8 dplace -s1 -c 0-7 ./a.out
or
 mpiexec -np 8 dplace -s1 -c 0-7 ./a.out

On Pleiades, if the number of processes in each node is less than the number of cores in
that node, choose how you want to place the processes carefully. For example, the
following placement works well on Harpertown nodes, but not on other Pleiades processor
types:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

To check the placement, you can set MPI_DSM_VERBOSE, which prints the placement in
the PBS stderr file:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
setenv MPI_DSM_VERBOSE
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

Output in PBS stderr File

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r75i2n13 1
 1 1 yes r75i2n13 2
 2 2 yes r75i2n13 4
 3 3 yes r75i2n13 5
 4 0 yes r87i2n6 1
 5 1 yes r87i2n6 2
 6 2 yes r87i2n6 4
 7 3 yes r87i2n6 5

If you use the -o log_file flag of dplace, the CPUs where the processes/threads are
placed will be printed, but the node names are not printed.

#PBS -l select=2:ncpus=8:mpiprocs=4
....
mpiexec -np 8 dplace -s1 -c 2,4,1,5 -o log_file ./a.out

Using SGI's dplace Tool for Pinning 12

Output in log_file

timestamp process:thread cpu taskname | placement action
15:16:35.848646 19807 - dplace | exec ./new_pi_mpt126, ncpu -1
15:16:35.877584 19807:0 - a.out | load, cpu -1
15:16:35.878256 19807:0 - a.out | fork -> pid 19810, ncpu 1
15:16:35.879496 19807:0 - a.out | fork -> pid 19811, ncpu 2
15:16:35.880053 22665:0 - a.out | fork -> pid 22672, ncpu 2
15:16:35.880628 19807:0 - a.out | fork -> pid 19812, ncpu 4
15:16:35.881283 22665:0 - a.out | fork -> pid 22673, ncpu 4
15:16:35.882536 22665:0 - a.out | fork -> pid 22674, ncpu 5
15:16:35.881960 19807:0 - a.out | fork -> pid 19813, ncpu 5
15:16:57.258113 19810:0 1 a.out | exit
15:16:57.258116 19813:0 5 a.out | exit
15:16:57.258215 19811:0 2 a.out | exit
15:16:57.258272 19812:0 4 a.out | exit
15:16:57.260458 22672:0 2 a.out | exit
15:16:57.260601 22673:0 4 a.out | exit
15:16:57.260680 22674:0 5 a.out | exit
15:16:57.260675 22671:0 1 a.out | exit

For MPI Codes Built with MVAPICH2 Library

With MVAPICH2, 1 shepherd process is created for each MPI process. You can use ps -L
-u your_userid on the running node to see these processes. To properly pin MPI
processes using dplace, you cannot skip the shepherd processes and must use the
following:

mpiexec -np 4 dplace -c2,4,1,5 ./a.out

Using SGI's dplace Tool for Pinning 13

Using Intel OpenMP Thread Affinity for Pinning

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: The Intel compiler's OpenMP runtime library has the ability to bind OpenMP
threads to physical processing units. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the code
performance. For most OpenMP codes, type=scatter would provide the best
performance, as it minimizes cache and memory bandwidth contention for Nehalem-EP,
Westmere, and Sandy Bridge. For Harpertown, using an explicit proclist should give the
best performance.

Recommended Approaches

Two approaches are recommended for using the Intel OpenMP thread affinity capability:

Use the KMP_AFFINITY Environment Variable

The thread affinity interface is controlled using the KMP_AFFINITY environment variable.

Syntax

For csh and tcsh:

setenv KMP_AFFINITY [<modifier>,...]<type>[,<permute>][,<offset>]
For sh, bash,and ksh:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Use the Compiler Flag -par-affinity Compiler Option

Starting with the Intel compiler version 11.1, thread affinity can also be specified through
the compiler option -par-affinity. The use of -openmp or -parallel is required in
order for this option to take effect. This option overrides the environment variable when both
are specified. See man ifort for more information.

Using Intel OpenMP Thread Affinity for Pinning 14

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Syntax

-par-affinity=[<modifier>,...]<type>[,<permute>][,<offset>]
For both of these approaches, type is the only required argument, and it indicates the type
of thread affinity to use. Descriptions of the arguments (type, modifier, permute, and
offset) can be found on Intel's Thread Affinity Interface web page.

Note: Intel compiler versions 11.1 and later are recommended, as some of the affinity
methods described below are not supported in earlier versions.

Possible Values of type

Possible values for type are:

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating
system supports affinity, the compiler still uses the OpenMP thread affinity interface to
determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine
topology map.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the
OpenMP runtime library to behave as if the affinity interface was not supported by the
operating system. This includes implementations of the low-level API interfaces such as
kmp_set_affinity and kmp_get_affinity that have no effect and will return a
nonzero error code.

Additional information from Intel:

"The thread affinity type of KMP_AFFINITY environment variable defaults to none
(KMP_AFFINITY=none). The behavior for KMP_AFFINITY=none was changed in 10.1.015
or later, and in all 11.x compilers, such that the initialization thread creates a "full mask" of
all the threads on the machine, and every thread binds to this mask at startup time. It was
subsequently found that this change may interfere with other platform affinity mechanism,
for example, dplace() on SGI Altix machines. To resolve this issue, a new affinity type
disabled was introduced in compiler 10.1.018, and in all 11.x compilers
(KMP_AFFINITY=disabled). Setting KMP_AFFINITY=disabled will prevent the runtime
library from making any affinity-related system calls."

Using Intel OpenMP Thread Affinity for Pinning 15

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

type = compact

Specifying compact causes the threads to be placed as close together as possible. For
example, in a topology map, the nearer a core is to the root, the more significance the core
has when sorting the threads.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=compact,verbose

for csh, tcsh
setenv KMP_AFFINITY compact,verbose

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system.
Scatter is the opposite of compact.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=scatter,verbose

for csh, tcsh
setenv KMP_AFFINITY scatter,verbose

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been
explicitly specified by using the proclist= modifier, which is required for this affinity type.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY="explicit,proclist=[0,1,4,5],verbose"

for csh, tcsh
setenv KMP_AFFINITY "explicit,proclist=[0,1,4,5],verbose"

For nodes that support hyper-threading (such as Nehalem-EP, Westmere, and Sandy Br),
you can use the granularity modifier to choose whether to pin OpenMP threads to
physical cores using granularity=core (the default) or pin to logical cores using

Using Intel OpenMP Thread Affinity for Pinning 16

granularity=fine or granularity=thread for the compact and scatter types.

For most OpenMP codes, type=scatter should provide the best performance, as it
minimizes cache and memory bandwidth contention for Nehalem-EP, Westmere, and
Sandy Bridge nodes. For Harpertown nodes, using an explicit proclist should give the
best performance.

Examples

The following examples illustrate the thread placement of an OpenMP job with four threads
on various platforms with different thread affinity methods. The variable
OMP_NUM_THREADS is set to 4:

for sh, ksh, bash
export OMP_NUM_THREADS=4

for csh, tcsh
setenv OMP_NUM_THREADS 4

The use of the verbose modifier is recommended, as it provides an output with the
placement.

Harpertown

Note that every two cores (indicated with same color) in Harpertown share L2 cache.

Four threads running on one node (eight physical cores) of Harpertown will get the
following thread placement:

setting of KMP_AFFINITY Processor id 0 2 4 6 1 3 5 7
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,1,4,5],verbose" thread id 0 2 1 3

Nehalem-EP

Note that four physical cores (indicated with same color) in Nehalem-EP share the same L3
cache.

Four threads running on one node (eight physical cores and 16 logical cores due to
hyper-threading) of Nehalem-EP will get the following thread placement:

setting of KMP_AFFINITY Processor id 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15

Using Intel OpenMP Thread Affinity for Pinning 17

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,2,4,6],verbose" thread id 0 1 2 3
Note that with granularity=core, an OpenMP thread is pinned to a physical core, and is
allowed to float between the two logical cores associated with the physical core. For
example, with granularity=core,compact, both threads 0 and 1 are pinned to the
logical core set {0,8}. If you use granularity=fine,compact instead, thread 0 is pinned
to logical core 0 and thread 1 is pinned to logical core 8, respectively.

Westmere

Note that six physical cores (indicated with same color) in Westmere share the same L3
cache.

Four threads running on 1 node (12 physical cores and 24 logical cores due to
hyper-threading) of Westmere will get the following thread placement:

setting of KMP_AFFINITY Processor
id 0,121,132,143,154,165,176,187,198,209,2110,2211,23

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,3,6,9],verbose"thread id 0 1 2 3

Sandy Bridge

As seen in the configuration diagram of a Sandy Bridge node, each set of eight physical
cores in a socket share the same L3 cache.

Four threads running on 1 node (16 physical cores and 32 logical cores due to
hyper-threading) of Sandy Bridge will get the following thread placement:

Columbia

Each Columbia host has hundreds of cores. Based on the number of cores requested by
the PBS job, a cpuset is created with the requested number of cores. Depending on
availability, PBS may not be able to allocate consecutive cores to a job.

There are two cores per node (indicated with same color, below) on Columbia21, while

Using Intel OpenMP Thread Affinity for Pinning 18

http://www.nas.nasa.gov/kb_upload/image/kb285_sandybridge_1030881.png

there are four cores per node on C22-24. In the following example, 8 consecutive cores
(cores 4-11) are allocated on Columbia21.

Four threads running on 8 cores of Columbia21 will get the following thread placement:

setting of KMP_AFFINITY Processor id 4 5 6 7 8 9 10 11
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 1 2 3
"explicit,proclist=[5,7,9,11],verbose" thread id 0 1 2 3

Using Intel OpenMP Thread Affinity for Pinning 19

Using SGI MPT Environment Variables for Pinning

Summary: For MPI codes built with SGI's MPT libraries, one way to control pinning is to set
certain MPT memory placement environment variables. For an introduction to pinning at
NAS, see Process/Thread Pinning Overview.

MPT Environment Variables

Here are the MPT memory placement environment variables:

MPI_DSM_VERBOSE

Directs MPI to display a synopsis of the NUMA and host placement options being used at
run time to the standard error file.

Default: not enabled

The setting of this environment variable is ignored if MPI_DSM_OFF is also set.

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process gets a
unique CPU and physical memory on the node with which that CPU is associated.
Currently, the CPUs are chosen by simply starting at relative CPU 0 and incrementing until
all MPI processes have been forked.

SGI defaults:

off for MPT.1.25•
on for MPT.1.26, MPT.2.0.1, MPT.2.0.4, MPT.2.0.6•

NAS local defaults:

off for PBS jobs using Harpertown nodes•
on for PBS jobs using Nehalem, Westmere, and Sandy Bridge nodes•
on for PBS jobs on Columbia•

WARNING: Under most situations, it is a bad practice to set this environment variable for
running on the Harpertown nodes. For the Nehalem and Westmere nodes, it is
recommended that you do not set this environment variable if the nodes are not fully
populated with MPI processes. This is because the CPUs are chosen sequentially from
relative CPU 0.

Using SGI MPT Environment Variables for Pinning 20

The setting of this environment variable is ignored if MPI_DSM_CPULIST is also set or if
dplace or omplace is used.

MPI_DSM_CPULIST

Specifies a list of CPUs on which to run an MPI application, excluding the shepherd
process(es) and mpirun. The number of CPUs specified should equal the number of MPI
processes (excluding the shepherd process) that will be used.

Syntax and examples for the list:

Use a comma and/or hyphen to provide a delineated list:

place MPI processes ranks 0-2 on CPUs 2-4
and ranks 3-5 on CPUs 6-8
setenv MPI_DSM_CPULIST "2-4,6-8"

•

Use a "/" and a stride length to specify CPU striding:

Place the MPI ranks 0 through 3 stridden
on CPUs 8, 10, 12, and 14
setenv MPI_DSM_CPULIST 8-15/2

•

Use a colon to separate CPU lists of multiple hosts:

Place the MPI processes 0 through 7 on the first host
on CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.
setenv MPI_DSM_CPULIST 8-15:16-23

•

Use a colon followed by allhosts to indicate that the prior list pattern applies to all
subsequent hosts/executables:

Place the MPI processes onto CPUs 0, 2, 4, 6 on all hosts
setenv MPI_DSM_CPULIST 0-7/2:allhosts

•

Examples

An MPI job requesting 2 nodes on Pleiades and running 4 MPI processes per node will get
the following placements, depending on the environment variables set:

#PBS -lselect=2:ncpus=8:mpiprocs=4
module load <a_mpt_module>
setenv
cd $PBS_O_WORKDIR
mpiexec -np 8 ./a.out

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_DISTRIBUTE

•

Using SGI MPT Environment Variables for Pinning 21

MPI: DSM information
MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r86i3n5 0
 1 1 yes r86i3n5 1
 2 2 yes r86i3n5 2
 3 3 yes r86i3n5 3
 4 0 yes r86i3n6 0
 5 1 yes r86i3n6 1
 6 2 yes r86i3n6 2
 7 3 yes r86i3n6 3

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6

MPI: WARNING MPI_DSM_CPULIST CPU placement spec list is too short.
MPI: MPI processes on host #1 and later will not be pinned.
MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r22i1n7 0
 1 1 yes r22i1n7 2
 2 2 yes r22i1n7 4
 3 3 yes r22i1n7 6
 4 0 no r22i1n8 0
 5 1 no r22i1n8 0
 6 2 no r22i1n8 0
 7 3 no r22i1n8 0

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:0,2,4,6

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:allhosts

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

Using SGI MPT Environment Variables for Pinning 22

Using SGI omplace for Pinning

Summary: The omplace wrapper script pins processes and threads for better
performance. It works with SGI MPT, Intel MPI, and hybrid MPI/OpenMP applications.

SGI's omplace is a wrapper script for dplace. It provides an easier syntax than dplace
for pinning processes and threads. omplace works with SGI MPT as well as with Intel MPI.
In addition to pinning pure MPI or pure OpenMP applications, omplace can also be used
for pinning hybrid MPI/OpenMP applications.

A few issues with omplace to keep in mind:

dplace and omplace do not work with Intel compiler versions 10.1.015 and
10.1.017. Use the Intel compiler version 11.1 or later, instead

•

To avoid interference between dplace/omplace and Intel's thread affinity
interface, set the environment variable KMP_AFFINITY to disabled or set
OMPLACE_AFFINITY_COMPAT to ON

•

The omplace script is part of SGI's MPT, and is located under the
/nasa/sgi/mpt/mpt_version_number/bin directory

•

Syntax

For OpenMP:
setenv OMP_NUM_THREADS nthreads
omplace [OPTIONS] program args...
or
omplace -nt nthreads [OPTIONS] program args...

For MPI:
mpiexec -np nranks omplace [OPTIONS] program args...

For MPI/OpenMP hybrid:
setenv OMP_NUM_THREADS nthreads
mpiexec -np nranks omplace [OPTIONS] program args...
or
mpiexec -np nranks omplace -nt nthreads [OPTIONS] program args...

Some useful omplace options are listed below:

-b basecpu
Specifies the starting CPU number for the effective CPU list.

-c cpulist
Specifies the effective CPU list. This is a comma-separated list of CPUs or CPU
ranges.

WARNING: For omplace, a blank space is required between -c and cpulist.
Without the space, the job will fail. This is different from dplace.

Using SGI omplace for Pinning 23

-nt nthreads
Specifies the number of threads per MPI process. If this option is unspecified, it
defaults to the value set for the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not set, then nthreads defaults to 1.

-v
Verbose option. Portions of the automatically generated placement file will be
displayed.

-vv
Very verbose option. The automatically generated placement file will be displayed in
its entirety.

For information about additional options, see man omplace.

Examples

For Pure OpenMP Codes Using the Intel OpenMP Library

Sample PBS script:

#PBS -lselect=1:ncpus=12:model=wes

module load comp-intel/11.1.072
setenv KMP_AFFINITY disabled

omplace -c 0,3,6,9 -vv ./a.out

Sample placement information for this script is given in the application's stout file:

omplace: placement file /tmp/omplace.file.21891
 firsttask cpu=0
 thread oncpu=0 cpu=3-9:3 noplace=1 exact

The above placement output may not be easy to understand. A better way to check the
placement is to run the ps command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out
Sample output of placement.out

PSR COMMAND TIME PID PPID LWP
 0 openmp1 00:00:02 31918 31855 31918
 19 openmp1 00:00:00 31918 31855 31919
 3 openmp1 00:00:02 31918 31855 31920
 6 openmp1 00:00:02 31918 31855 31921
 9 openmp1 00:00:02 31918 31855 31922

Note that Intel OpenMP jobs use an extra thread that is unknown to the user, and does not
need to be placed. In the above example, this extra thread is running on logical core
number 19.

Using SGI omplace for Pinning 24

For Pure MPI Codes Using SGI MPT

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#Setting MPI_DSM_VERBOSE allows the placement information
#to be printed to the PBS stderr file

setenv MPI_DSM_VERBOSE

mpiexec -np 8 omplace -c 0,3,6,9 ./a.out

Sample placement information for this script is shown in the PBS stderr file:

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r144i3n12 0
 1 1 yes r144i3n12 3
 2 2 yes r144i3n12 6
 3 3 yes r144i3n12 9
 4 0 yes r145i2n3 0
 5 1 yes r145i2n3 3
 6 2 yes r145i2n3 6
 7 3 yes r145i2n3 9

In this example, the four processes on each node are evenly distributed to the two sockets
(CPUs 0 and 3 are on the first socket while CPUs 6 and 9 on the second socket) to
minimize contention. If omplace had not been used, then placement would follow the rules
of the environment variable OMP_DSM_DISTRIBUTE, and all four processes would have
been placed on the first socket -- likely leading to more contention.

For MPI/OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Proper placement is more critical for MPI/OpenMP hybrid codes than for pure MPI or pure
OpenMP codes. The following example demonstrates the situation when no placement
instruction is provided and the OpenMP threads for each MPI process are stepping on one
another which likely would lead to very bad performance.

Sample PBS script without pinning:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

Using SGI omplace for Pinning 25

setenv OMP_NUM_THREADS 2

mpiexec -np 8 ./a.out

There are two problems with the resulting placement shown in the example above. First,
you can see that the first four MPI processes on each node are placed on four cores
(0,1,2,3) of the same socket, which will likely lead to more contention compared to when
they are distributed between the two sockets.

MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 1
 2 2 yes r212i0n10 2
 3 3 yes r212i0n10 3
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 1
 6 2 yes r212i0n11 2
 7 3 yes r212i0n11 3

The second problem is that, as demonstrated with the ps command below, the OpenMP
threads are also placed on the same core where the associated MPI process is running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:02 4098 4092 4098
 0 a.out 00:00:02 4098 4092 4108
 0 a.out 00:00:02 4098 4092 4110
 1 a.out 00:00:03 4099 4092 4099
 1 a.out 00:00:03 4099 4092 4106
 2 a.out 00:00:03 4100 4092 4100
 2 a.out 00:00:03 4100 4092 4109
 3 a.out 00:00:03 4101 4092 4101
 3 a.out 00:00:03 4101 4092 4107

Sample PBS script demonstrating proper placement:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load mpi-sgi/mpt.2.04.10789
module load comp-intel/11.1.072

setenv MPI_DSM_VERBOSE
setenv OMP_NUM_THREADS 2
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

#the following two lines will result in identical placement

mpiexec -np 8 omplace -nt 2 -c 0,1,3,4,6,7,9,10 -vv ./a.out
#mpiexec -np 8 omplace -nt 2 -c 0-10:bs=2+st=3 -vv ./a.out

Using SGI omplace for Pinning 26

Shown in the PBS stderr file, the 4 MPI processes on each node are properly distributed
on the two sockets with processes 0 and 1 on CPUs 0 and 3 (first socket) and processes 2
and 3 on CPUs 6 and 9 (second socket).

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 3
 2 2 yes r212i0n10 6
 3 3 yes r212i0n10 9
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 3
 6 2 yes r212i0n11 6
 7 3 yes r212i0n11 9

In the PBS stout file, it shows the placement of the two OpenMP threads for each MPI
process:

omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.6454
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact
omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.22771
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact

To get a better picture of how the OpenMP threads are placed, using the following ps
command:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:06 4436 4435 4436
 1 a.out 00:00:03 4436 4435 4447
 1 a.out 00:00:03 4436 4435 4448
 3 a.out 00:00:06 4437 4435 4437
 4 a.out 00:00:05 4437 4435 4446
 6 a.out 00:00:06 4438 4435 4438
 7 a.out 00:00:05 4438 4435 4444
 9 a.out 00:00:06 4439 4435 4439
 10 a.out 00:00:05 4439 4435 4445

Using SGI omplace for Pinning 27

Using the mbind Tool for Pinning

Summary: The mbind utility is a "one-stop" tool for binding processes and threads for MPI
and OpenMP, and hybrid applications.

The mbind utility, developed at NAS, is used for binding processes and threads to CPUs. It
works for MPI, OpenMP, or MPI+OpenMP hybrid applications, and is available under
/u/scicon/tools/bin on Pleiades.

One of the benefits of mbind is that it relieves users from the burden of learning the
complexity of each individual pinning approach for associated MPI or OpenMP libraries. It
providing a uniform usage model that works for multiple MPI and OpenMP environments.

Currently supported MPI and OpenMP libraries are listed below.

MPI:

SGI-MPT•
MVAPICH2•
INTEL-MPI•
OPEN-MPI•
MPICH2•

OpenMP:

Intel OpenMP runtime library•
GNU OpenMP library•
PGI runtime library•
Pathscale OpenMP runtime library•

Use of mbind is limited to cases where the same set of CPU lists is used for all processor
nodes, and the same number of threads is used for all processes.

WARNING: Be aware that mbind may have issues when used together with other
performance tools, such as PerfSuite.

Syntax
#For OpenMP:
mbind.x [-options] program [args]

#For MPI or MPI+OpenMP hybrid which supports mpiexec:
mpiexec -np nranks mbind.x [-options] program [args]

Information about all available options can be found in the text file
/u/scicon/tools/doc/mbind.txt on Pleiades.

Using the mbind Tool for Pinning 28

Here are a few recommended mbind options:

-cs, -cp, -cc; or -ccpulist
-cs for spread (default), -cp for compact, -cc for cyclic; -ccpulist for process
ranks (for example, -c0,3,6,9). CPU numbers in the cpulist are relative within a
cpuset if present.
Note that the -cs option will spread the processes and threads among the physical
cores to minimize various resource contentions, and is usually the best choice for
placement.

-nn
Number of processes per node.

-tn
Number of threads per process. The default value is given by the
OMP_NUM_THREADS environment variable.

-vn
Verbose flag; print some useful information. [n] controls the level of details. Default is
n=0 (OFF).

Examples

For Pure OpenMP Codes Using Intel OpenMP Library

Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes
#PBS -l walltime=0:5:0

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

mbind.x -cs -t4 -v ./a.out

The 4 OpenMP threads are spread (with the -cs option) among 4 physical cores in a node,
as shown in the application's stdout:

host: r211i0n5, ncpus 24, nthreads: 4, bound to cpus: {0,3,6,9}
The proper placement is further demonstrated in the output of the ps command below:

r211i0n5% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 9 a.out 00:02:06 849 711 849
3 a.out 00:00:00 849 711 850

 3 a.out 00:02:34 849 711 851
 0 a.out 00:01:47 849 711 852
 6 a.out 00:01:23 849 711 853

Using the mbind Tool for Pinning 29

Note that Intel OpenMP creates an extra thread, which is unknown to the user and does not
need to be placed. In this example, this extra thread (thread id 850) is running on the same
core (core 3) as thread 851. Since this extra thread does not do any work, it will not
interfere with the other threads.

For Pure MPI Codes Using SGI MPT

WARNING: mbind.x overwrites the placement initially performed by MPT's mpiexec. The
placement output from MPI_DSM_VERBOSE (if set) most likely is incorrect and should be
ignored.
Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -v ./a.out

On each of the two nodes, 4 MPI processes are spread among 4 physical cores (0,3,6,9),
as shown in the application's stdout:

host: r213i2n12, ncpus 24, process-rank: 0, bound to cpu: 0
host: r213i2n12, ncpus 24, process-rank: 1, bound to cpu: 3
host: r213i2n12, ncpus 24, process-rank: 3, bound to cpu: 9
host: r213i2n12, ncpus 24, process-rank: 2, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 4, bound to cpu: 0
host: r213i2n13, ncpus 24, process-rank: 5, bound to cpu: 3
host: r213i2n13, ncpus 24, process-rank: 6, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 7, bound to cpu: 9

For MPI+OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

Using the mbind Tool for Pinning 30

On each of the two nodes, the 4 MPI processes are spread among the physical cores. The
2 OpenMP threads of each MPI process run on adjacent physical cores as seen in the
application's stdout:

host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}

For MPI+OpenMP Hybrid Codes Using MVAPICH2 and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

#If you use mpirun_rsh instead of mpiexec
#use the following

mpirun_rsh -np 8 -hostfile $PBS_NODEFILE \
mbind.x -cs -n4 -t2 -v2 ./a.out

The application's stdout in this example is very similar to that in the previous MPT/Intel
OpenMP example.

For MPI+OpenMP Hybrid Codes Using Intel MPI and Intel OpenMP

The Intel MPI library automatically pins processes to CPUs to prevent unwanted process
migration. If you find that the placement done by the Intel MPI library is not optimal, you can
use mbind to do the pinning instead.

WARNING: Note that in order for mbind to work with the Intel MPI library, the internal
pinning mode of the library must be turned off explicitly by setting the environment variable
I_MPI_PIN to 0.
Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

Using the mbind Tool for Pinning 31

module load comp-intel/11.1.072
module load mpi-intel/4.0.2.003

setenv I_MPI_PIN 0

cd $PBS_O_WORKDIR

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE | \
 sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE` --rsh=ssh \
 --mpd=`which mpd` --ordered

mpiexec -ppn 4 -np 8 mbind.x -cs -n4 -t2 -v ./a.out

mpdallexit

For the above job, the following placement is seen in the application's stdout:

host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}

This can be confirmed by running the following ps command on the running nodes. For
clarity, the extra OpenMP threads created by the Intel OpenMP (which don't do any work)
are removed from the output.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 6 a.out 00:00:12 44698 44696 44698
 7 a.out 00:00:12 44698 44696 44715
 2 a.out 00:00:12 44699 44695 44699
 3 a.out 00:00:12 44699 44695 44711
 8 a.out 00:00:12 44700 44697 44700
 9 a.out 00:00:12 44700 44697 44713
 0 a.out 00:00:12 44701 44694 44701
 1 a.out 00:00:12 44701 44694 44717

If I_MPI_PIN is not set to 0 in the PBS script, then mbind.x prints out identical placement
results, as in the case where I_MPI_PIN is set to 0 but the ps command shows that some
OpenMP threads "step on" one another.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
3 a.out 00:00:12 44185 44182 44185

 3 a.out 00:00:12 44185 44182 44198
 6 a.out 00:00:19 44186 44183 44186
 7 a.out 00:00:12 44186 44183 44202
9 a.out 00:00:12 44187 44184 44187

 9 a.out 00:00:12 44187 44184 44200

Using the mbind Tool for Pinning 32

 0 a.out 00:00:19 44188 44181 44188
 1 a.out 00:00:12 44188 44181 44204

The mbind utility was created by NAS staff member Henry Jin.

Using the mbind Tool for Pinning 33

Instrumenting your Fortran Code to Check Process/Thread
Placement

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code. To check whether your Fortran code has been successfully
pinned, use the C code, mycpu.c, found below.

The MPI function mpi_get_processor_name and the Linux C function sched_getcpu
can be inserted into your source code to check process and/or thread placement.

The MPI function mpi_get_processor_name returns the hostname an MPI process is
running on (to be used for MPI and/or MPI+OpenMP codes only). The Linux C function
sched_getcpu returns the processor number the process/thread is running on.

If your source code is written in Fortran, you can use the C code, mycpu.c, below, which
allows your Fortran code to call sched_getcpu.

C Program mycpu.c

#include <utmpx.h>
int sched_getcpu();

int findmycpu_ ()
{
 int cpu;
 cpu = sched_getcpu();
 return cpu;
}

Compile mycpu.c as follows to produce the object file mycpu.o:

pfe20% module load comp-intel/2011.2
pfe20% icc -c mycpu.c

The example below demonstrates how to instrument an MPI+OpenMP source code with
the above functions. The added lines are shown in red.

 program your_program
 use omp_lib
...
 integer :: resultlen, tn, cpu
 integer, external :: findmycpu
 character (len=8) :: name

 call mpi_init(ierr)
 call mpi_comm_rank(mpi_comm_world, rank, ierr)
 call mpi_comm_size(mpi_comm_world, numprocs, ierr)

Instrumenting your Fortran Code to Check Process/Thread Placement 34

 call mpi_get_processor_name(name, resultlen, ierr)
!$omp parallel

 tn = omp_get_thread_num()
 cpu = findmycpu()
 write (6,*) 'rank ', rank, ' thread ', tn,
 & ' hostname ', name, ' cpu ', cpu
.....
!$omp end parallel
 call mpi_finalize(ierr)
 end

Compile your instrumented code as follows:

pfe20% module load comp-intel/2011.2
pfe20% module load mpi-sgi/mpt.2.06a67
pfe20% ifort -o a.out -openmp mycpu.o your_program.f -lmpi

Sample PBS script

The PBS script below shows an example for running the hybrid MPI+OPenMP code across
two nodes, with 2 MPI processes per node and 4 OpenMP threads per process, and using
mbind to pin the processes and threads.

#PBS -lselect=2:ncpus=12:mpiprocs=2:model=wes
#PBS -lwalltime=0:10:00

cd $PBS_O_WORKDIR

module load comp-intel/2011.2
module load mpi-sgi/mpt.2.06a67

mpiexec -np 4 mbind.x -cs -n2 -t4 -v ./a.out

Here is a sample output:

These 4 lines are generated by mbind only if you have included the -v option:
host: r212i1n8, ncpus 24, process-rank: 0, nthreads: 4, bound to cpus: {0-3}
host: r212i1n8, ncpus 24, process-rank: 1, nthreads: 4, bound to cpus: {6-9}
host: r212i1n9, ncpus 24, process-rank: 2, nthreads: 4, bound to cpus: {0-3}
host: r212i1n9, ncpus 24, process-rank: 3, nthreads: 4, bound to cpus: {6-9}

These lines are generated by your instrumented code:
rank 0 thread 0 hostname r212i1n8 cpu 0
rank 0 thread 1 hostname r212i1n8 cpu 1
rank 0 thread 2 hostname r212i1n8 cpu 2
rank 0 thread 3 hostname r212i1n8 cpu 3
rank 1 thread 0 hostname r212i1n8 cpu 6
rank 1 thread 1 hostname r212i1n8 cpu 7
rank 1 thread 2 hostname r212i1n8 cpu 8
rank 1 thread 3 hostname r212i1n8 cpu 9
rank 2 thread 0 hostname r212i1n9 cpu 0

Instrumenting your Fortran Code to Check Process/Thread Placement 35

rank 2 thread 1 hostname r212i1n9 cpu 1
rank 2 thread 2 hostname r212i1n9 cpu 2
rank 2 thread 3 hostname r212i1n9 cpu 3
rank 3 thread 0 hostname r212i1n9 cpu 6
rank 3 thread 1 hostname r212i1n9 cpu 7
rank 3 thread 2 hostname r212i1n9 cpu 8
rank 3 thread 3 hostname r212i1n9 cpu 9

Note that these lines in your output may be listed in a different order.

This approach was suggested by NAS SGI analyst Ken Taylor.

Instrumenting your Fortran Code to Check Process/Thread Placement 36

Effective Use of Resources with PBS

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Effective Use of Resources with PBS 37

Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool directory
of the first node of your job. However, the space under /PBS/spool is limited, and when it
fills up, any job that tries to write to /PBS/spool may die. This makes the node unusable by
jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined sizes of
error and output files produced by a job. If this policy goes into effect and a job exceeds that
limit, PBS will kill the job.

To prevent this from happening to your job, do not write large amounts of content in the
PBS output/error files. If your executable normally writes a lot of messages to either
standard out or standard error, you should redirect them in your PBS script. Below are a
few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1.

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2.

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3.

The files "output" and "error" are created under your own directory and you can view the
contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the script,
you can create unique filenames for each run. For example, you can add the PBS JOBID to
"output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server, such as

Avoiding Job Failure from Overfilling /PBS/spool 38

12345.pbspl1.nas.nasa.gov.

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a file, you
can see the contents of your PBS output/error files before your job completes by following
the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

2.

Avoiding Job Failure from Overfilling /PBS/spool 39

Running Multiple Serial Jobs to Reduce Wall-Time

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

Processor Types Cores/node Available Memory/node
Harpertown 8 7.6 GB
Nehalem-EP 8 22.5 GB
Westmere 12 22.5 GB
Sandy Bridge 16 ~31.0 GB
The examples below allow you to spawn serial jobs across nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel
module is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE
and places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of
the arguments -comm none for this version of mpiexec is essential for serial codes or
scripts. In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script wrapper.csh in which the input/output identifier (that is, ${rank}) is
calculated from the sum of $MPIEXEC_RANK and an argument provided as input by the
user.

Example 1

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh

Running Multiple Serial Jobs to Reduce Wall-Time 40

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (that is,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can
be modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you, and you have the current
directory included in your path.

Example 2

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of processors requested in a PBS job. Thus, the serial jobs
are divided into a few batches and the batches are processed sequentially. Again, the
wrapper script is used where multiple versions of the program a.out in a batch are run in
parallel.

serial2.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

The total number to run at once is automatically determined
at runtime by the number of CPUs available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. No changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

Running Multiple Serial Jobs to Reduce Wall-Time 41

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Wall-Time 42

Checking the Time Remaining in a PBS Job from a Fortran
Code

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example:

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable
external pbs_time_left
integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed
call pbs_time_left(seconds_left)
print*,"Seconds remaining in PBS job:",seconds_left

Note: The return value from pbs_time_left is only accurate to within a minute or
two.

2.

Compile your modified code and link with the above library using, for example:
LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 43

Memory Usage on Pleiades

Memory Usage Overview

Running jobs on cluster systems such as Pleiades requires more attention to the memory
usage of a job than on shared memory systems. Below are a few factors that limit the
amount of memory available to your running job:

The total physical memory of a Pleiades compute node varies from 8 GB to 32 GB. A
small amount of the physical memory is used by the system kernel; through PBS, a
job can access up to about 7.6 GB of an 8-GB node (Harpertown), about 22.5 GB of
a 24-GB node (Nehalem-EP and Westmere-EP), and about 31 GB of a 32-GB node
(Sandy Bridge)

•

The PBS prologue tries to clean up the memory used by the previous job that ran on
the nodes of your current running job; if there is a delay in flushing the previous job's
data from memory to disks (for example, due to Lustre issues), the actual amount of
free memory available to your job will be less

•

I/O uses buffer cache that also occupies memory; if your job does a large amount of
I/O, the amount of memory left for your running processes will be less

•

If your job uses more than one node, beware that the memory usage reported in the PBS
output file is not the total memory usage for your job: rather, it is the memory used in the
first node of your job. To help you get a more accurate picture of the memory usage of your
job, we provide a few in-house tools, listed below.

qtop.pl
Invokes top on the compute nodes of a job, and provides a snapshot of the amount
of used and free memory of the whole node and the amount used by each running
process.
For more information, read the article Checking Memory Usage of a Batch Job Using
qtop.pl.

qps
Invokes ps on the compute nodes of a job, and provides a snapshot of the %mem
used by its running processes.
For more information, read the article Checking Memory Usage of a Batch Job Using
qps.

qsh.pl
Can be used to invoke the command cat /proc/meminfo on the compute nodes
to provide a snapshot of the total and free memory in each node.
For more information, read the article Checking Memory Usage of a Batch Job Using
qsh.pl and "cat /proc/meminfo".

gm.x and gm_post.x
Provides the memory high-water mark for each process of your job when the job
finishes.

Memory Usage on Pleiades 44

For more information, read the article Checking Memory Usage of a Batch Job Using
qm.x.

These tools are installed under the directory /u/scicon/tools/bin. It is a good idea to
include this directory in your path by modifying your shell startup script so that you don't
have to provide the complete path name when using these tools. For example:

set path = ($path /u/scicon/tools/bin)

If your job runs out of memory and is killed by the kernel, this event was probably recorded
in system log files. Instructions on how to check whether this is the case are provided in the
article Checking if a Job was Killed by the OOM Killer.

If your job needs more memory, read the article How to Get More Memory for your Job for
possible approaches.

Memory Usage Overview 45

Checking memory usage of a batch job using qps

qps (available under /u/scicon/tools/bin) is a Perl script that securely connects via ssh into
each node of a running job and gets process status (ps) information on each node.

Syntax:

pfe20% qps jobid
Example:

pfe20% qps 26130

*** Job 26130, User abc, Procs 1
NODE TIME %MEM %CPU STAT TASK
r1i0n14 10:17:13 2.8 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:18 2.9 99.9 RL ./a.out
r1i0n14 10:16:34 2.9 99.8 RL ./a.out
r1i0n14 10:17:11 2.9 99.9 RL ./a.out
r1i0n14 10:17:13 2.9 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:15 2.9 99.9 RL ./a.out

Note: The percentage of memory usage by a process reported by this script is the
percentage of memory in the whole node.

Checking memory usage of a batch job using qps 46

Checking memory usage of a batch job using qtop.pl

A Perl script called qtop.pl (available under /u/scicon/tools/bin) was provided by
Bob Hood of the NAS staff. This script "ssh's" into the nodes of a PBS job and performs the
command top. The output of qtop.pl provides memory usage for the whole node and for
each process.

Syntax:

pfe1% qtop.pl [-b] [-p n] [-P s] [-h n] [-H s] [-t s] [-N s] PBSjobid
 -b : (for running in background or batch) don't run 'resize' command
 -p n : show at most n processes per host
 -P s : show only procs in s, a comma-separated list of ranges
 e.g. -P 1,8-9
 -h : don't show the column header line
 -H s : show only header lines in s, comma-separated ranges
 e.g. -H 1-2,7
 e.g. -H 0 (don't show any lines)
 -t s : pass string s (must be one argument) to top command
 -n s : show output only from nodes in s, comma-separated ranges
 e.g. -n 0,2-3 (relative node #'s)
 -N s : show output only from nodes in s, a comma-separated list
 e.g. -N r1i1n14,r1i1n15 (absolute node #'s)

Example: to skip the header and list 8 procs per host

pfe1% qtop.pl -H 0 -p 8 996093
all nodes in job 996093: r184i2n12
r184i2n12 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 20027 zsmith 25 0 23.8g 148m 5320 R 101 0.6 5172:37 a.out
 20028 zsmith 25 0 23.8g 140m 5140 R 101 0.6 5173:35 a.out
 20029 zsmith 25 0 23.9g 286m 6640 R 101 1.2 5172:23 a.out
 20030 zsmith 25 0 23.9g 245m 5040 R 101 1.0 5171:18 a.out
 20031 zsmith 25 0 23.9g 265m 6040 R 101 1.1 5171:46 a.out
 20032 zsmith 25 0 23.9g 246m 5300 R 101 1.0 5171:00 a.out
 20033 zsmith 25 0 23.8g 158m 5476 R 101 0.7 5172:41 a.out
 20034 zsmith 25 0 23.8g 148m 5280 R 101 0.6 5173:02 a.out

Checking memory usage of a batch job using qtop.pl 47

Checking memory usage of a batch job using qsh.pl and
"cat /proc/meminfo"

A Perl script called qsh.pl (available under /u/scicon/tools/bin) was provided by
NAS staff member Bob Hood. This script "ssh's" into all the nodes used by a PBS job and
runs a command that you supply.

Syntax:

pfe1% qsh.pl pbs_jobid your_command
One good use of this script is to check the amount of free memory in the nodes of your PBS
job.

Example:

pfe1% qsh.pl 30329 "cat /proc/meminfo"

running "cat /proc/meminfo" on: r56i2n14 r56i2n15
r56i2n14 :
 MemTotal: 8079728 kB
 MemFree: 857936 kB
 Buffers: 0 kB
 Cached: 3775472 kB
...
r56i2n15 :
 MemTotal: 8079728 kB
 MemFree: 5840920 kB
 Buffers: 0 kB
 Cached: 784280 kB
...

Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo" 48

Checking memory usage of a batch job using gm.x

NAS staff member Henry Jin created a tool called gm.x (available under
/u/scicon/tools/bin) that reports the memory usage at the end of a run from each
process.

TIP: Add /u/scicon/tools/bin to your $PATH so that you can invoke gm.x without the
full path.
Use the -h option to find out what types of memory usage can be reported:

pfe1%gm.x -h
gm - version 1.0
usage: gm.x [-opts] a.out [args]
 -hwm ; high water mark (VmHWM)
 -rss ; resident memory size (VmRSS)
 -wrss ; weighted memory size (WRSS)
 -v ; verbose flag
Default is by environment variable GM_TYPE (def=WRSS)

Note that the -rss option reports the last snapshot of resident set size usage captured by
the kernel. With the -wrss option, gm.x calls the system function
get_weighted_memory_size. More information about this function can be found from
the man page man get_weighted_memory_size.

gm.x can be used for either OpenMP or MPI applications (linked with either SGI's MPT,
MVAPICH or Intel MPI libraries) and you do not have to recompile your application for it. A
script called gm_post.x then takes the per process memory usage information and
computes the total memory used and the average memory used per process.

To use gm.x for an MPI code, add gm.x after the mpiexec options. For example:

mpiexec -np 4 gm.x ./a.out
Memory usage for (r1i1n0,pid=9767): 1.458 MB (rank=0)
Memory usage for (r1i1n0,pid=9768): 1.413 MB (rank=1)
Memory usage for (r1i1n0,pid=9770): 1.413 MB (rank=3)
Memory usage for (r1i1n0,pid=9769): 1.417 MB (rank=2)

mpiexec -np 4 gm.x ./a.out | gm_post.x
Number of nodes = 1
Number of processes = 4
Processes per node = 4
Total memory = 5.701 MB

Memory per node = 5.701 MB
Minimum node memory = 5.701 MB
Maximum node memory = 5.701 MB

Memory per process = 1.425 MB
Minimum proc memory = 1.413 MB
Maximum proc memory = 1.458 MB

Checking memory usage of a batch job using gm.x 49

If you use dplace to pin process, add gm.x after dplace:

mpiexec -np NN dplace -s1 gm.x ./a.out

Checking memory usage of a batch job using gm.x 50

Checking if a Job was Killed by the OOM Killer

If a PBS job runs out of memory and is killed by the Out-Of-Memory (OOM) killer of the
kernel, this event is likely (though not always) recorded in system log files. You can confirm
this event by checking some of the messages recorded in system log files, and then
increase your memory request in order to get your job running.

Follow the steps below to check whether your job has been killed by the OOM killer:

Find out when your job ran, what rack numbers were used by your job, and if the job
exited with the Exit_status=137 from the tracejob output of your job. For
example:

pfe[20-27]% ssh pbspl1
pbspl1% tracejob -n 3 140001

Where "3" indicates that you want to trace your job (PBS JOBID=140001), which ran
within the past 3 days.

1.

From the rack numbers (such as r2, r3, ...), you then grep messages that were
recorded in the messages file stored in the leader node of those racks for your
executable. For example, to look at messages for rack r2:

pfe[20-27]% grep abc.exe /net/r2lead/var/log/messages
Apr 21 00:32:50 r2i2n7 kernel: abc.exe invoked oom-killer:
gfp_mask=0x201d2, order=0, oomkilladj=-17

2.

Often, the Out-Of-Memory message doesn't make it into the messages file, but will
be recorded in a consoles file named by each individual node. For example, to look
for abc.exe invoking the OOM killer on node r2i2n7:

3.

pfe% grep abc.exe /net/r2lead/var/log/consoles/r2i2n7
abc.exe invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

Note that these messages do not have a timestamp associated with them, so you
will need to use an editor to view the file and look for the hourly time markers
bracketing when the job ran out of memory. An hourly time marker looks like this:

[-- MARK -- Thu Apr 21 00:00:00 2011]
It's also possible that a system process (such as, pbs_mom or ntpd) is listed as
invoking the OOM killer, but it is nevertheless direct evidence that the node had run
out of memory.

If you want to monitor the memory use of your job while it is running, you can use the tools
listed in the article Memory Usage Overview.

In addition, NAS provides a script called pbs_oom_check. This script does the steps
above and parses the /var/log/messages on all the nodes associated with pbs_jobid,
looking for an instance of OOM killer. The script is available under

Checking if a Job was Killed by the OOM Killer 51

/u/scicon/tools/bin and works best when run on the host pbspl1.

Checking if a Job was Killed by the OOM Killer 52

How to Get More Memory for your Job

If your job was terminated because it needed more memory than what was available in the
nodes that it ran on, consider the following examples.

Harpertown Nodes

Among the Harpertown nodes, the 64 nodes in rack 32 have 16 GB per node (GB/node)
instead of 8 GB/node. You can request running your job on rack 32 with the keyword
bigmem=true. For example, change:

#PBS -lselect=1:ncpus=8

to

#PBS -lselect=1:ncpus=8:bigmem=true

Instead of running your jobs on Harpertown nodes, run them on Nehalem-EP, Westmere, or
Sandy Bridge nodes. For example, change:

#PBS -lselect=1:ncpus=8:model=har

to

#PBS -lselect=1:ncpus=8:model=neh

or

#PBS -lselect=1:ncpus=8:model=wes

or

#PBS -lselect=1:ncpus=8:model=san

Westmere Nodes

Among the Westmere nodes, 17 nodes have 48 GB/node and 4 nodes have 94 GB/node
instead of 24 GB/node. You can request using some of these nodes with the keyword
bigmem=true and model=wes. For example, change:

#PBS -lselect=1:ncpus=12:model=wes

to

#PBS -lselect=1:ncpus=12:bigmem=true:model=wes

If you submit your resource request as shown above, your job will be assigned either a 48

How to Get More Memory for your Job 53

GB or a 94 GB bigmem node, depending on availability.

To explicitly request a bigmem node with 94 GB of memory, add the :mem attribute with a
memory size between 48 and 94 GB. For example:

 #PBS -l select=1:ncpus=12:bigmem=true:mem=90GB:model=wes

Please note that these Westmere bigmem nodes can be used for jobs requesting the
normal, long, debug, and low queues. They are not available for the devel or gpu
queues.

All Nodes

If all processes use about the same amount of memory and you cannot fit 8 processes per
node (for Harpertown or Nehalem-EP), 12 processes per node (for Westmere), or 16
processors per node (for Sandy Bridge), then reduce the number of processes per node
and request more nodes for your job. For example, change:

#PBS -lselect=3:ncpus=8:mpiprocs=8:model=neh

to

#PBS -lselect=6:ncpus=4:mpiprocs=4:model=neh

For a typical MPI job where rank 0 does the I/O and uses a lot of buffer cache, assign rank
0 to one node by itself. For example, if rank 0 needs up to 22.5 GB of memory by itself,
change:

#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes

to

#PBS -lselect=1:ncpus=1:mpiprocs=1:model=wes+1:ncpus=11:mpiprocs=11:model=wes

If rank 0 needs 22.5 - 48 GB of memory by itself, use:

#PBS -lselect=1:ncpus=1:mpiprocs=1:bigmem=true:model=wes+1:ncpus=11:mpiprocs=11:model=wes

Note that due to formatting issues, the above may appear as two lines; it should be entered
as a single line.

If you suspect that certain nodes which your job ran on had less total physical memory than
normal, report it to the NAS Contol Room. Those nodes can be "off-lined" and taken care of
by NAS staff. This prevents you and other users from using those nodes before they are
fixed.

How to Get More Memory for your Job 54

For certain pre- or post-processing work that needs more memory, you can use one of the
Westmere bigmem nodes in a PBS batch job or run the job interactively on the bridge
nodes (bridge[1-4]). Note that an interactive job cannot use more than 56 GB on bridge[1,2]
or 192 GB on bridge[3,4]. Also, MPI applications that use SGI's MPT library cannot run on
the bridge nodes.

For a multi-process or multi-thread job, if any of your processes/threads need more than 94
GB, the job won't run on Pleiades. Instead, run it on a shared-memory system such as
Columbia.

How to Get More Memory for your Job 55

Lustre on Pleiades

Lustre Basics

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput. On
Pleiades, the Lustre filesystems are named "/nobackupp."

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

•

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

•

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

•

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

•

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

•

File Striping

A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

Lustre on Pleiades 56

allows one to have a file size larger than the size of an OST•

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

•

Drawbacks of striping:

higher risk of file damage due to hardware malfunction•

increased overhead due to network operations and server contention•

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1.

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2.

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3.

Use the lfs setstripe command for setting the stripe parameters.

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe20% mkdir dir1
pfe20% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.•

Lustre Basics 57

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

•

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe20% lfs osts

•

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp1:
pfe20% lfs df -h
pfe20% lfs df -h /nobackupp1

•

To list inode usage for all filesystems or a specific one, for example, /nobackupp1:
pfe20% df -i
pfe20% df -i /nobackupp1

•

To create a new (empty) file or set directory default with specified stripe parameters

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

•

To list the striping information for a given file or directory

pfe20% lfs getstripe dir|filename

•

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp1):

pfe20% lfs quota -u username /nobackupp1

or

pfe20% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe20% lfs quota -v -u username /nobackup/username

•

See the lfs man page for more options and information.

Lustre Basics 58

Pleiades Lustre Filesystems

Summary: The Lustre filesystems on Pleiades are called "nobackup." As the name
suggests, these filesystems are for temporary use, and are not backed up. Lustre can
handle many large files, but you cannot store those files on Pleiades; if you want to save
them, move them to Lou.

Pleiades has several Lustre filesystems (/nobackupp[1-6]) that provide a total of about
6.795 petabytes of storage and serve thousands of cores. These filesystems are managed
under Lustre software version 1.8.6.

Lustre filesystem configurations are summarized at the end of this article.

WARNING: As the names suggest, these filesystems are not backed up, so any files that
are removed cannot be restored. Essential data should be stored on Lou[1-2] or on other,
more permanent storage.

Which /nobackup Should I Use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. Find out which Lustre filesystem you have been assigned to by typing
the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp2/username

In the above example, the symlink from /nobackup to /nobackupp2 shows that the
user's assigned nobackup system is /nobackupp2.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard quota limits for inodes are 75,000 and 100,000, respectively. Those for the disk
space are 500 gigabytes and 1 terabyte, respectively. To check your disk space and inodes
usage and quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid nnnn):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 530000000 1100000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent that lists
your current usage and remaining grace period. It is expected that users will occasionally
exceed their soft limit, as needed; however after 14 days, users who are still over their soft

Pleiades Lustre Filesystems 59

limit will have their batch queue access to Pleiades disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, the jobs writing to it will hang. A Lustre error
with code -28 in the system log file indicates that the filesystem is full. The NAS Control
Room staff normally will send out emails to those using the most space, asking them to
clean up their files.

Lustre File Systems Configurations

In the table below, /nobackupp[1-6] are abbreviated as nbp[1-6]. P=Petabytes; T=Terabytes

Pleiades Lustre Configurations
Filesystem nbp1 nbp2 nbp3 nbp4 nbp5 nbp6
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 0.9T 0.9T 0.6T 0.6T 0.8T 0.9T
of usable inodes
on MDTs ~256x10^6 ~256x10^6 ~173x10^6 ~173x10^6 ~512x10^6 ~256x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 120 60 60 120 120
size/OST 15T 15T 7.1T 7.1T 15T 7.1T
Total Space 1.7P 1.7P 424T 424T 1.7P 847T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1
NOTE: After January 13, 2011, directories without an explicit stripe count and/or stripe size
adopted the new stripe count of 1 and stripe size of 4MB. However, old files in that directory
retain their old default values. New files that you create in these directories will adopt the
new default values.

Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding the I/O operations of other users,
read the related articles listed below.

Pleiades Lustre Filesystems 60

mailto:support@nas.nasa.gov

Lustre Best Practices

Summary: At NAS, Lustre filesystems (/nobackup) are shared among many users and
many application processes, which causes contention for various Lustre resources. This
article explains how Lustre I/O works, and provides best practices for improving application
performance.

 How Does Lustre I/O Work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades contend for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs while working in our high-end
computing environment.

Best Practices

Avoid Using ls -l

The ls -l command displays information such as ownership, permission, and size of all
files and directories. The information on ownership and permission metadata is stored on
the MDTs. However, the file size metadata is only available from the OSTs. So, the ls -l
command issues RPCs to the MDS/MDT and OSSes/OSTs for every file/directory to be
listed. RPC requests to the OSSes/OSTs are very costly and can take a long time to
complete if there are many files and directories.

Use ls by itself if you just want to see if a file exists•
Use ls -l filename if you want the long listing of a specific file•

Lustre Best Practices 61

http://www.nas.nasa.gov/hecc/support/kb/Lustre_Basics_224.html#striping

Avoid Having a Large Number of Files in a Single Directory

Opening a file keeps a lock on the parent directory. When many files in the same directory
are to be opened, it creates contention. A better practice is to split a large number of files
(in the thousands or more) into multiple subdirectories to minimize contention.

Avoid Accessing Small Files on Lustre Filesystems

Accessing small files on the Lustre filesystem is not efficient. When possible, keep them on
an NFS-mounted filesystem (such as your home filesystem on Pleiades /u/username) or
copy them from Lustre to /tmp on each node at the beginning of the job, and then access
them from /tmp.

Use a Stripe Count of 1 for Directories with Many Small Files

If you must keep small files on Lustre, be aware that stat operations are more efficient if
each small file resides in one OST. Create a directory to keep small files, set the stripe
count to 1 so that only one OST will be needed for each file. This is useful when you extract
source and header files (which are usually very small files) from a tarfile. Use the Lustre
utility lfs to create a specific striping pattern, or find the striping pattern of existing files.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to stripe
across more than one OST. You can create a new directory with a larger stripe count and
copy the larger files to that directory. Note that moving files into that directory with the mv
command will not change the strip count of the files. Files must be created in or copied to a
directory to inherit the stripe count properties of a directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100 MB) and a few very large files
(greater than 1 GB), then it may be better to create a new subdirectory with a larger stripe
count. Store just the large files and create symbolic links to the large files using the symlink
command ln.

pfe1% mkdir bigstripe
pfe1% lfs setstripe -c 16 -s 4m bigstripe
pfe1% ln -s bigstripe/large_file large_file

Lustre Best Practices 62

Use mtar for Creating or Extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the number
of stripes is set to the number of gigabytes of the file.

Keep Copies of Your Source Code on the Pleiades Home Filesystem
and/or Lou

Be aware that files under /nobackup[p1-p6] are not backed up. Make sure that you have
copies of your source codes, makefiles, and any other important files saved on your
Pleiades home filesystem or on Lou, the NAS storage system.

Avoid Accessing Executables on Lustre Filesystems

There have been a few incidents on Pleiades where users' jobs encountered problems
while accessing their executables on the /nobackup filesystem. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on the
Lustre filesystem. This can cause a bus error when a job tries to bring the next set of
instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run executables
from your home filesystem on Pleiades. On rare occasions, running executables from the
Lustre filesystem can cause executables to be corrupted. Avoid copying new executables
over existing ones of the same name within the Lustre filesystem. The copy causes a
window of time (about 20 minutes) where the executable will not function. Instead, the
executable should be accessed from your home filesystem during runtime.

Increase the stripe_count for Parallel Writes to the Same File

When multiple processes are writing blocks of data to the same file in parallel, the I/O
performance for large files will improve when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the stripe
count is set to 1. While this default setting provides for efficient access of metadata--for
example to support the ls -l command--large files should use stripe counts of greater
than 1. This will increase the aggregate I/O bandwidth by using multiple OSTs in parallel
instead of just one. A rule of thumb is to use a stripe count approximately equal to the
number of gigabytes in the file.

Another good practice is to make the stripe count be an integral factor of the number of
processes performing the write in parallel, so that you achieve load balance among the

Lustre Best Practices 63

OSTs. For example, set the stripe count to 16 instead of 15 when you have 64 processes
performing the writes.

Limit the Number of Processes Performing Parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or fewer,
there will be contention if a large number of processes of an application are involved in
parallel I/O. Instead of allowing all processes to do the I/O, choose just a few processes to
do the work. For writes, these few processes should collect the data from other processes
before the writes. For reads, these few processes should read the data and then broadcast
the data to others.

Stripe Align I/O Requests to Minimize Contention

Stripe aligning means that the processes access files at offsets that correspond to stripe
boundaries. This helps to minimize the number of OSTs a process must communicate for
each I/O request. It also helps to decrease the probability that multiple processes accessing
the same file communicate with the same OST at the same time.

One way to stripe-align a file is to make the stripe size the same as the amount of data
in the write operations of the program.

Avoid Repetitive "stat" Operations

Some users have implemented logic in their scripts to test for the existence of certain files.
Such tests generate "stat" requests to the Lustre server. When the testing becomes
excessive, it creates a significant load on the filesystem. A workaround is to slow down the
testing process by adding sleep in the logic. For example, the following user script tests
the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their existence as
quickly as possible (on the order of 5,000 times per second). Adding sleep inside the loop

Lustre Best Practices 64

slows down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
sleep 15

 end

Avoid Having Multiple Processes Open the Same File(s) at the Same
Time

On Lustre filesystems, if multiple processes try to open the same file(s), some processes
will not able to find the file(s) and your job will fail.

The source code can be modified to call the sleep function between I/O operations. This will
reduce the occurrence of multiple, simultaneous access attempts to the same file from
different processes.

 100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

Avoid Repetitive Open/Close Operations

Opening files and closing files incur overhead and repetitive open/close should be avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the open
statement. If possible, read the files once each and save the results, instead of reading the
files repeatedly.

If you intend to write to a file many times during a run, open the file once at the beginning of
the run. When all writes are done, close the file at the end of the run.

Lustre Best Practices 65

See also: Lustre Basics

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlate issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 66

Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

Open/close of files on the Lustre file system•
Stat/statfs are query operations invoked by commands such as ls -l•
Read/write is the total volume of I/O in gigabytes•

The following is an example of this listing:

==
 LUSTRE Filesystem Statistics
--
nbp10 Metadata Operations
 open close stat statfs read(GB) write(GB)
 1057 1058 1394 0 2 14
Read 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 9 3 1 0 1 0 3 2 319
Write 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 138 13 1 11 36 9 21 37 12479
__
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

 CPU Time Used : 00:03:56
 Real Memory Used : 2464kb
 Walltime Used : 00:04:26
 Exit Status : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads occurred with block sizes between 4 KB and
8 KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

For tips for improving Lustre I/O, see Lustre Best Practices for multiple tips to improve the
Lustre I/O performance of your jobs.

Lustre Filesystem Statistics in PBS Output File 67

Using 'mtar' to Create or Extract Tar Files on Lustre

NAS's in-house developed mtar program is a modification of GNU tar version 1.25. It is
exactly equivalent to tar except that, if it detects a Lustre filesystem, then it restripes files
as they are "tarred" and/or "untarred" for better performance. Specifically:

The stripe count of files extracted on a Lustre filesystem will be dynamically selected
based on the original file size, so, small files will be extracted with small stripe counts
and large files will be extracted with large stripe counts

•

Tar files created on a Lustre file system will have a stripe count based on the sum of
the sizes of all component files

•

TIP: We recommend using mtar in place of tar when creating or extracting from a tar file
on Lustre.
Currently, the number of stripes set by mtar is essentially the number of gigabytes of that
file (for disk storage, 1 GB = 109 bytes), limited by the number of object storage targets in
that Lustre filesystem.

Tar files created with gzip (-z), bzip2 (-j), and arbitrary compression
(--use-compress-program) will preserve the striping of the uncompressed tar file.

Using mtar

mtar is available in /usr/local/bin on the Pleiades front-ends (pfe[20-27], bridge[1-4]).
Usage of mtar is exactly the same as tar and you don't have to know anything extra, as it
all happens automatically.

The following example demonstrates its usage and the comparison between mtar and
tar. Note that some output has been removed for clarity.

%ls -l *_file
-rw------- 1 zsmith s0101 16800000112 Aug 3 14:58 17g_file
-rw------- 1 zsmith s0101 1200000008 Aug 3 14:51 2g_file
-rw------- 1 zsmith s0101 1215 Aug 3 15:04 2k_file

%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

Notice that the default stripe count is 1 on all Pleiades Lustre filesystems.

Comparison of tar and mtar

Using 'mtar' to Create or Extract Tar Files on Lustre 68

tar mtar
%tar cvf tar.tar 17g_file 2g_file 2k_file
%lfs getstripe tar.tar
tar.tar
lmm_stripe_count: 1

%mtar cvf mtar.tar 17g_file 2g_file 2k_file
%lfs getstripe mtar.tar
mtar.tar
lmm_stripe_count: 19

%tar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar zcvf tar.tgz tar.tar
%lfs getstripe tar.tgz
tar.tgz
lmm_stripe_count: 1

%mtar zcvf mtar.tgz mtar.tar
%lfs getstripe mtar.tgz
mtar.tgz
lmm_stripe_count: 19

Notice that the tar-created archive has a default stripe count, while the mtar-created
archive has a stripe count based on the sizes of component files. In addition, tar-extracted
files all have a default stripe count, while mtar-extracted files have a variable stripe count
depending on size. Also notice that using mtar with compression preserves striping of the
uncompressed tar file.

The mtar script was created by NAS staff member Paul Kolano.

Using 'mtar' to Create or Extract Tar Files on Lustre 69

	Table of Contents
	Best Practices
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Increasing File Transfer Rates
	Choosing an MPI Library

	Process Pinning
	Process/Thread Pinning Overview
	Using SGI's dplace Tool for Pinning
	Using Intel OpenMP Thread Affinity for Pinning
	Using SGI MPT Environment Variables for Pinning
	Using SGI omplace for Pinning
	Using the mbind Tool for Pinning
	Instrumenting your Fortran Code to Check Process/Thread Placement

	Effective Use of Resources with PBS
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Wall-Time
	Checking the Time Remaining in a PBS Job from a Fortran Code

	Memory Usage on Pleiades
	Memory Usage Overview
	Checking memory usage of a batch job using qps
	Checking memory usage of a batch job using qtop.pl
	Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"
	Checking memory usage of a batch job using gm.x
	Checking if a Job was Killed by the OOM Killer
	How to Get More Memory for your Job

	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File
	Using 'mtar' to Create or Extract Tar Files on Lustre

