
Table of Contents
Computing at NAS..1

Computing Overview...1

Computing Hardware...2
Pleiades...2

Pleiades: Introduction...2
Pleiades Configuration Details...3
Harpertown Processors..6
Nehalem-EP Processors..8
Westmere Processors..11
Pleiades Home Filesystem...13
Pleiades Lustre Filesystems...15
Pleiades Front-End Usage Guidelines...17
Pleiades Interconnect...19
GPU Basics..21
Sandy Bridge Processors...23

Columbia..26
Columbia: Introduction...26
Columbia Hardware Overview..27
Columbia Configuration Details..29
Columbia Home Filesystems..34
Columbia CXFS Filesystems..36
Columbia Front-End Usage Guidelines..38

Porting & Developing Applications..39
Porting & Developing: Overview..39
Endian and Related Environment Variables or Compiler Options.............................40
OpenMP..43
Compilers...47

Intel Compiler...47
GNU Compiler Collection...49
PGI Compilers and Tools...50

MPI Libraries..53
SGI MPT...53
MVAPICH...54

Math & Scientific Libraries...55
MKL..55
SCSL..60
MKL FFTW Interface..61

Program Development Tools...63
Recommended Intel Compiler Debugging Options..63
Totalview..66
Totalview Debugging on Pleiades..67
Totalview Debugging on Columbia...69
IDB...71
GDB..72
Using pdsh_gdb for Debugging Pleiades PBS Jobs..73

Table of Contents
Porting & Developing Applications

Porting to Pleiades...74
Recommended Compiler Options..74
Porting with SGI MPT...76
With MVAPICH...81
With Intel-MPI...83
With OpenMP...85
With SGI's MPI and Intel OpenMP...87
With MVAPICH and Intel OpenMP...89

Porting to Columbia...90
Default or Recommended compiler version and options......................................90
Porting to Columbia: With SGI's MPT..91
Porting to Columbia: With OpenMP...93
Porting to Columbia: With MPI and OpenMP...94

Software Environment...95
Software: Overview..95
Operating Systems..96
Modules...97
Table of All Modules..99
Licensed Application Software...102

Licensed Application Software: Overview..102
Tecplot..103
IDL..104
Matlab...105
Gaussian..106
FieldView..107
Gridgen...108

Running Jobs with PBS...109
Portable Batch System (PBS): Overview...109
Job Accounting..111
Job Accounting Utilities..112
Multiple GIDs and Charging to a specific GID...114
Commonly Used PBS Commands...115
Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line...117
New Features in PBS..119
Checkpointing and Restart..121
PBS Environment Variables..122
PBS Scheduling Policy..123
PBS exit codes..126
Front-End Usage Guidelines...127

Pleiades Front-End Usage Guidelines...127
Columbia Front-End Usage Guidelines..129

PBS on Pleiades..130
Overview..130
Queue Structure...131

Table of Contents
Running Jobs with PBS

Mission Shares Policy on Pleiades..133
Resources Request Examples...135
Default Variables Set by PBS...138
Sample PBS Script for Pleiades...139
Pleiades devel Queue..140

PBS on Columbia..141
Overview..141
Resources Request Examples...142
Default Variables Set by PBS...144
Sample PBS Script for Columbia...145

Troubleshooting PBS Jobs..146
Common Reasons for Being Unable to Submit Jobs...146
Common Reasons Why Jobs Won't Start..148
Using pdsh_gdb for Debugging Pleiades PBS Jobs..152

Effective Use of PBS...153
Streamlining PBS Job File Transfers from Pleiades to Lou...............................153
Avoiding Job Failure from Overfilling /PBS/spool...154
Running Multiple Serial Jobs to Reduce Wall-Time...156
Checking the Time Remaining in a PBS Job from a Fortran Code....................159
Using GNU Parallel to Package Multiple Jobs in a Single PBS Job..................160

Best Practices...163
Streamlining PBS Job File Transfers from Pleiades to Lou.....................................163
Increasing File Transfer Rates...164
Choosing an MPI Library...166
Process Pinning...167

Process/Thread Pinning Overview...167
Using SGI's dplace Tool for Pinning...170
Using Intel OpenMP Thread Affinity for Pinning...176
Using SGI MPT Environment Variables for Pinning...182
Using SGI omplace for Pinning..185
Using the mbind Tool for Pinning...190
Instrumenting your Fortran Code to Check Process/Thread Placement............196

Effective Use of Resources with PBS..199
Streamlining PBS Job File Transfers from Pleiades to Lou...............................199
Avoiding Job Failure from Overfilling /PBS/spool...200
Running Multiple Serial Jobs to Reduce Wall-Time...202
Checking the Time Remaining in a PBS Job from a Fortran Code....................205

Memory Usage on Pleiades...206
Memory Usage Overview...206
Checking memory usage of a batch job using qps...208
Checking memory usage of a batch job using qtop.pl..209
Checking memory usage of a batch job using qsh.pl and "cat

 /proc/meminfo"...210
Checking memory usage of a batch job using gm.x...211
Checking if a Job was Killed by the OOM Killer...213

Table of Contents
Best Practices

How to Get More Memory for your Job..215
Lustre on Pleiades...218

Lustre Basics..218
Pleiades Lustre Filesystems...221
Lustre Best Practices...223
Lustre Filesystem Statistics in PBS Output File...229
Using 'mtar' to Create or Extract Tar Files on Lustre...230

Computing at NAS

Computing Overview

Once you have gone through the steps of getting an allocation and account, setting up your
environment on your local machine to securely connect to a NAS high-end computing
system; and customizing your NAS environment, then you are ready to utilize our
supercomputing resources for actual work.

Reading through the following articles will help you through the next steps:

Hardware Overviews: Pleiades and Columbia•
Software: Overview•
Porting and Developing: Overview•

Computing at NAS 1

Computing Hardware

Pleiades

Pleiades: Introduction

Pleiades is the primary supercomputer at NAS. Originally installed in 2008 with 51,200
cores, it has been further expanded at various stages. The following articles provide
hardware information at varying levels of detail:

Pleiades Hardware Overview - a high-level overview of the Pleiades system
architecture, including resource summaries of the compute and front-end nodes, the
interconnect, and the storage capacity.

•

Pleiades Configuration Details - focuses on the hardware hierarchy (from the
processors to the whole cluster) and provides more detailed configuration statistics
on the processors and their associated memory.

•

Harpertown Processors, Nehalem-EP Processors, Westmere Processors, and
Sandy Bridge Processors (four articles) - provide configuration diagrams and
additional information such as core labeling, instruction set, hyperthreading, and
Turbo Boost, for each of Pleiades' four processor types.

•

Pleiades Home Filesystem - information on quota and backup policies on the home
filesystem.

•

Pleiades Lustre Filesystems - details the configurations of the Lustre filesystems and
users' quotas on these filesystems.

•

Pleiades Interconnect - information on the topology, latency, and bandwidth of the
Pleiades InfiniBand fabric.

•

Pleiades Front-End Usage Guidelines - guidelines on using the front-end nodes and
bridge nodes.

•

Computing Hardware 2

http://www.nas.nasa.gov/hecc/resources/pleiades.html

Pleiades Configuration Details

Pleiades Hardware Summary

184 racks: 64 Harpertown, 20 Nehalem, 72 Westmere, 2 Westmere+GPU, and 26
Sandy Bridge

•

11,920 nodes•
129,024 CPU cores + 32,768 GPU cores•
237 TB total memory•
1.79 petaflops theoretical peak performance (CPU) + 43 teraflops (GPU)•

Hostnames

The hostname of each of the 11,920 Pleiades compute nodes (accessible only through
PBS jobs) is based on the physical rack and individual rack unit (IRU) it resides in and its
node position in the IRU. There are 4 IRUs in each rack. For Harpertown, Nehalem, and
Westmere, there are 16 nodes per IRU. For Sandy Bridge, there are 18 nodes per IRU.

For the Harpertown, Nehalem, and Westmere racks, each rack is controlled by a rack
leader, while for Sandy Bridge every two racks are controlled by a rack leader. The
hostnames of each group of 144 (2 racks x 4 IRUs x 18 nodes) Sandy Bridge nodes reflect
their control by the same rack leader.

The hostnames are:

Harpertown nodes - r[1-64]i[0-3]n[0-15]•
Nehalem nodes - r[161-170,177-186]i[0-3]n[0-15]•
Westmere nodes - r[129-160,171-176,187-218, 219, 221-222]i[0-3]n[0-15]•
Sandy Bridge nodes - r[3xx]i[0-7]n[0-17], where 3xx are odd numbers between
301-311 and 317-329.

•

Processor, Memory and Network Subsystems Statistics

Below are detailed configuration statistics for the processor and memory subsystems for all
Pleiades compute nodes:

Pleiades Processor, Memory, and Network Subsystems Statistics
Architecture ICE 8200EX ICE 8200EX ICE 8400EX ICE X

Processor
CPU Harpertown

Quad-Core
Xeon E5472

Nehalem-EP
Quad-Core
Xeon X5570

Westmere
6-Core
Xeon

Sandy Bridge
8-core
Xeon E5-2670

Pleiades Configuration Details 3

X5670/X5675
(r221-222)

Newest Instruction
Set SSE 4.1 SSE 4.2 SSE 4.2 AVX

Hyper-Threading N/A ON ON ON
TurboBoost N/A ON ON ON

CPU-Clock 3.00 GHz 2.93 GHz 2.93/3.06
(r221-222) GHz 2.6 GHz

Maximum Double
Precision Floating
Point Operations per
Cycle per Core

4 4 4 8

of Cores/node 8 8 12 16
Total # of Nodes 4,096 1,280 4,672 1,872
Total # of Cores 32,768 10,240 56,064 29,952
Total Double
Precision TFlops 393 120 658 623

Memory

L1 Cache

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
Associativity: 8 ;
Cache line size:
64 B

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
Associativity: 4
(Instruction) or 8
(Data);
Cache line size:
64 B

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
Associativity: 4
(Instruction) or 8
(Data);
Cache line size:
64 B

Local to each
core;
Instruction
cache: 32K
Data cache:
32K;
Associativity: 8;
Cache line size:
64 B

L2 Cache

12MB on-die for
the Quad-Core;
6MB per core
pair; shared by
the two cores.
L2 Cache
speed: 3 GHz
Associativity:
24;
Cache line size:
64 B

256 KB per
core;
Associativity: 8;
Cache line size:
64 B

256 KB per core
Associativity: 8;
Cache line size:
64 B

256 KB per
core;
Associativity: 8;
Cache line size:
64 B

L3 Cache N/A 8 MB shared by
the four cores;
Associativity:
16;

12 MB shared by
the six cores;
Associativity: 16;
Cache line size:

20 MB shared
by the eight
cores;
Associativity:

Pleiades Configuration Details 4

Cache line size:
64 B

64 B 20;
Cache line size:
64 B

TLB local to each
core

local to each
core

local to each
core

local to each
core

Default Page Size 4 KB 4 KB 4 KB 4 KB
Memory/Core 1 GB; DDR2 3 GB; DDR3 2 GB; DDR3 2 GB; DDR3

Total Memory/node 8 GB; nodes in
r32 at 16 GB 24 GB

24 GB; 17 nodes
at 48 GB; 4
nodes at 94 GB

32 GB

Memory Speed and
Bandwidth

1600 MHz;
25.6 GB/sec
read
12.8 GB/sec
write

1333 MHz; 3
channels; 32
GB/sec
read/write

1333 MHz; 3
channels; 32
GB/sec
read/write

1600 MHz; 4
channels; 51.2
GB/sec
read/write

QuickPath
Interconnect N/A 6.4 GT/s or 25.6

GB/sec
6.4 GT/s or 25.6
GB/sec

8.00 GT/s or 32
GB/sec

Inter-node Network

IB Device on node 4x DDR HCA;
20 Gbits/s

4x DDR HCA;
20 Gbits/s

4x QDR HCA;
40 Gbits/s

4x FDR
dual-port IB
Mezzanine card;
56 Gbits/s

IB Switches between
nodes

4x DDR;
20 Gbits/s

4x QDR;
40 Gbits/s

4x QDR;
40 Gbits/s

4x FDR;
56 Gbits/s

Pleiades Configuration Details 5

Harpertown Processors

Core Labeling

The core labeling as shown in this diagram is obtained from the command cat
/proc/cpuinfo. Note that in the first socket (that is, phyiscal id=0), the four cores are
labeled 0, 2, 4, and 6, and are not contiguous. Similarly, in the second socket (physical
id=1), they are labeled as 1, 3, 5, and 7. In addition, each core pair (0,2), (4,6), (1,3) and
(5,7) shares a 6 MB L2 cache.

For performance consideration, care must be taken if one tries to use tools such as dplace
to pin processes to specific processors. Be aware of the non-contiguous nature of the
labeling and the sharing of L2 cache per core pair. Also, when using the SGI MPT library,
the environment variable MPI_DSM_DISTRIBUTE has been set to OFF for the Harpertown
nodes since setting MPI_DSM_DISTRIBUTE to ON causes the processes to be pinned to
processors in a contiguous order. For example, MPI ranks 0-7 are pinned to processors
0-7, respectively. This results in bad performances for most applications.

Harpertown Processors 6

SSE4 Instruction Set

Intel's Streaming SIMD Extensions 4.1 (SSE4.1) instruction set is included in the
Harpertown processors.

Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on Harpertown, Nehalem-EP,
Westmere, or Sandy Bridge processors. An application which is compiled with -xSSE4.2
can run only on Nehalem-EP or Westmere processors. An application that is compiled with
-xAVX can run only on Sandy Bridge processors.

TIP: If you want to have a single executable that will run on any of the four Pleiades
processor types, with suitable optimization to be determined at runtime, you can compile
your application with -O3 -ipo -axAVX -xSSE4.1.

Hyperthreading

Not available.

Turbo Boost

Not available.

Front-Side Bus

The Harpertown (quad-core Intel Xeon E5472) processors use 1600 MHz Front-Side Bus
(FSB). The processor transfers data four times per bus clock (4x data transfer rate, as in
AGP 4x). Along with the 4x data bus, the address bus can deliver addresses two times per
bus clock and is referred to as a double-clocked or a 2x address bus. In addition, the
Request Phase completes in one clock cycle. Working together, the 4x data bus and 2x
address bus provide a data bus bandwidth of up to 12.8 GB per second. The FSB is also
used to deliver interrupts.

Harpertown Processors 7

Nehalem-EP Processors

The Nehalem-EP processors are part of the Pleiades compute subsystem, among the four
types of nodes on which you can execute jobs. When you run a job on Pleiades, you
choose which types of nodes to use; Nehalem ("nuh-HAY-lem") is one of your choices.

Core Labeling

Unlike the Harpertown nodes, the core labeling in Nehalem-EP (and Westmere) is
contiguous. That is, cores 0-3 are in the first socket and cores 4-7 are in the second socket.

When using the SGI MPT library, the environment variable MPI_DSM_DISTRIBUTE is by
default set to ON for the Nehalem-EP (and Westmere) nodes.

SSE4 Instruction Set

Nehalem-EP Processors 8

Intel's Streaming SIMD Extensions 4.2 (SSE4.2) instruction set is included in the
Nehalem-EP processors.

Since the instruction set is forward compatible, an application that is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on the Harpertown, Nehalem-EP,
Westmere, or Sandy Bridge processors. An application compiled with -xSSE4.2 can run
only on Nehalem-EP, Westmere, or Sandy Bridge processors, while an application
compiled with -xAVX can run only on Sandy Bridge processors.

TIP: If you want to have a single executable that will run on any of the four Pleiades
processor types, with suitable optimization to be determined at runtime, you can compile
your application with -O3 -ipo -axAVX -xSSE4.1.

Hyperthreading

On Nehalem-EP (and Westmere) nodes, hyperthreading is available by user request -- for
example, by asking for more than 8 MPI ranks per Nehalem-EP node.

When hyperthreading is requested, the OS views each physical core as two logical
processors and can assign two threads to it.

Preliminary benchmarking by NAS staff shows that many jobs would benefit from using
hyperthreading, so this feature is currently turned ON, meaning that it is available if a job
requests it.

Mapping of Physical Cores and Logical Processor
IDs

Physical id Core id
Processor id
Hyperthreading
OFF

Processor id
Hyperthreading
ON

0 0 0 0 ; 8
0 1 1 1 ; 9
0 2 2 2 ; 10
0 3 3 3 ; 11
1 4 4 4 ; 12
1 5 5 5 ; 13
1 6 6 6 ; 14
1 7 7 7 ; 15
With hyperthreading, you can run an MPI code with 16 processes per Nehalem-EP node,
instead of just 8. Each of the 16 processes will be assigned to run on one logical processor.
In reality, two processes are running on the same physical core. If one process does not
keep the functional units in the core busy at all time, and can share the resources in the
core with another process, then running in this mode will take less than two times the
wall-time compared to running only one process on the core. This can improve the overall

Nehalem-EP Processors 9

throughput, as demonstrated in the following example:

Consider the following scenario for a job that uses 16 MPI ranks. Without hyperthreading
we would use:

#PBS -lselect=2:ncpus=8:mpiprocs=8 -lplace=scatter:excl
and the job will use 2 nodes with 8 processes per node. Suppose the job takes 1,000
seconds when run this way. If we run the job with hyperthreading, for example:

#PBS -lselect=1:ncpus=16:mpiprocs=16 -lplace=scatter:excl
then the job will use 1 node with all 16 processes running on that node.

Now suppose this job takes 1,800 seconds to complete. Without hyperthreading, we used 2
nodes for 1,000 seconds (a total of 2,000 node-seconds); with hyperthreading we used 1
node for 1,800 seconds (1,800 node-seconds). Under these circumstances, if you were
interested in getting the best wall-clock performance for a single job, you would use two
nodes without hyperthreading. However, if you were interested in minimizing resource
usage, especially with multiple jobs running simultaneously, use of hyperthreading would
save you 10% utilization.

An added benefit of using fewer nodes with hyperthreading, is that when Pleiades is loaded
with many jobs, then asking for half as many nodes may allow your job to start running
sooner, with a resulting improvement in your job throughput.

Note that hyperthreading does not benefit all applications. Some applications may also
show improvement with some process counts but not with others. For example, a
256-process OVERFLOW job shows benefit with hyperthreading, while a 32-process
OVERFLOW job does not.

TIP: You may experience unforeseen issues with hyperthreading. We suggest testing your
applications with and without hyperthreading before making a choice for production runs. If
your application runs more than two times slower with hyperthreading, then it doesn't make
sense to use it.

Turbo Boost

Turbo Boost is available on Nehalem-EP nodes (and on Westmere and Sandy Bridge
nodes).

When Turbo Boost is enabled, idle cores are turned off and and power is channeled to the
cores that are active, making them faster. The net effect is that the active cores perform
above their nominal clock speed (this is known as overclocking).

Turbo Boost mode is set up in the system BIOS, and is currently set to ON.

Nehalem-EP Processors 10

Westmere Processors

Core Labeling

Unlike Harpertown, the core labeling in Westmere is contiguous. That is, cores 0-5 are in
the first socket and cores 6-11 are in the second socket.

When using the SGI MPT library, the environment variable MPI_DSM_DISTRIBUTE is set
to ON by default for the Westmere nodes.

SSE4 Instruction Set

Intel's Streaming SIMD Extensions 4.2 (SSE4.2) instruction set is included in the Westmere
processors.

Westmere Processors 11

Since the instruction set is upward compatible, an application that is compiled with
-xSSE4.1 (with Intel version 11 compiler) can run on Harpertown, Nehalem-EP,
Westmere, or Sandy Bridge processors. An application that is compiled with -xSSE4.2 can
run only on Nehalem-EP or Westmere processors. An application that is compiled with
-xAVX can run only on Sandy Bridge processors.

TIP: If you want to have a single executable that will run on any of the four Pleiades
processor types, with suitable optimization to be determined at runtime, you can compile
your application with -O3 -ipo -axAVX -xSSE4.1.

Hyperthreading

Hyperthreading is available by user request on the Westmere nodes (for example, by
asking for more than 12 ranks per node).

Turbo Boost

Turbo Boost is set to ON on the Westmere nodes.

Westmere Processors 12

Pleiades Home Filesystem

Summary: You automatically have a home directory on Pleiades, with a quota of 8-10 GB
of storage. For temporary storage of larger files, use the /nobackupp file systems. For
long-term storage, use the Lou mass storage systems.

The home filesystem on Pleiades is an SGI NEXIS 9000 filesystem. It is NFS-mounted on
all of the Pleiades front-end systems (PFEs), bridge[1-4], and compute nodes.

Once you are granted an account on Pleiades, your home directory is set up automatically
during your first login.

Quota Limits and Policy

Disk space quota limits are enforced on the home filesystem. By default, the soft limit is 8
GB and the hard limit is 10 GB. There are no inode limits on the home filesystem.

To check your quota and usage on your home filesystem, do the following:

%quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
saturn-ib1-0:/mnt/home2
 7380152 8000000 40000000 190950 0 0

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of the grace period remains. It is expected
that you will occasionally exceed your soft limit; however, after 14 days, users who are still
over their soft limit will have their batch queue access to Pleiades disabled. If you believe
that you have a long-term need for higher quota limits on Pleiades, send an email
justification to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager, Bill Thigpen, for approval.

NOTE: For temporary storage of larger files, or a large number of files, use your
/nobackupp directory. For normal long-term file storage, transfer your files to the Lou mass
storage systems.

See also: Quota Policy on Disk Space and Files.

TIP: If you receive the following error when logging into Pleiades...

/usr/X11R6/bin/xauth: error in locking authority file /u/username/.Xauthority

...you won't be able to run X applications. This error is most likely caused by your home
filesystem quota being exceeded and you will have to decrease your disk usage to

Pleiades Home Filesystem 13

mailto:support@nas.nasa.gov

eliminate this error.

Backup Schedule

Files on the home filesystem are backed up daily.

Pleiades Home Filesystem 14

Pleiades Lustre Filesystems

Summary: The Lustre filesystems on Pleiades are called "nobackup." As the name
suggests, these filesystems are for temporary use, and are not backed up. Lustre can
handle many large files, but you cannot store those files on Pleiades; if you want to save
them, move them to Lou.

Pleiades has several Lustre filesystems (/nobackupp[1-6]) that provide a total of about
6.795 petabytes of storage and serve thousands of cores. These filesystems are managed
under Lustre software version 1.8.6.

Lustre filesystem configurations are summarized at the end of this article.

WARNING: As the names suggest, these filesystems are not backed up, so any files that
are removed cannot be restored. Essential data should be stored on Lou[1-2] or on other,
more permanent storage.

Which /nobackup Should I Use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. Find out which Lustre filesystem you have been assigned to by typing
the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp2/username

In the above example, the symlink from /nobackup to /nobackupp2 shows that the
user's assigned nobackup system is /nobackupp2.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard quota limits for inodes are 75,000 and 100,000, respectively. Those for the disk
space are 500 gigabytes and 1 terabyte, respectively. To check your disk space and inodes
usage and quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid nnnn):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 530000000 1100000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent that lists
your current usage and remaining grace period. It is expected that users will occasionally
exceed their soft limit, as needed; however after 14 days, users who are still over their soft
limit will have their batch queue access to Pleiades disabled.

Pleiades Lustre Filesystems 15

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, the jobs writing to it will hang. A Lustre error
with code -28 in the system log file indicates that the filesystem is full. The NAS Control
Room staff normally will send out emails to those using the most space, asking them to
clean up their files.

Lustre File Systems Configurations

In the table below, /nobackupp[1-6] are abbreviated as nbp[1-6]. P=Petabytes; T=Terabytes

Pleiades Lustre Configurations
Filesystem nbp1 nbp2 nbp3 nbp4 nbp5 nbp6
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 0.9T 0.9T 0.6T 0.6T 0.8T 0.9T
of usable inodes
on MDTs ~256x10^6 ~256x10^6 ~173x10^6 ~173x10^6 ~512x10^6 ~256x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 120 60 60 120 120
size/OST 15T 15T 7.1T 7.1T 15T 7.1T
Total Space 1.7P 1.7P 424T 424T 1.7P 847T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1
NOTE: After January 13, 2011, directories without an explicit stripe count and/or stripe size
adopted the new stripe count of 1 and stripe size of 4MB. However, old files in that directory
retain their old default values. New files that you create in these directories will adopt the
new default values.

Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding the I/O operations of other users,
read the related articles listed below.

Pleiades Lustre Filesystems 16

mailto:support@nas.nasa.gov

Pleiades Front-End Usage Guidelines

Summary: Use the Pleiades front-end systems (PFEs) and the bridge nodes for file editing,
compiling, short debugging/testing sessions, and batch job submissions.

The PFEs and the bridge nodes are the front-end systems to Pleiades. They provide an
environment that allows you to get quick turnaround while performing file editing, file
transferring, compiling, short debugging/testing sessions, and batch job submission via
PBS to a subset of the Pleiades compute nodes.

WARNING: The new Pleiades front-ends (pfe[20-27]) use the Intel Sandy Bridge
processors. If you use a PGI compiler to build your executable, be aware that by default the
executable is optimized for Sandy Bridge and will not necessarily execute on Harpertown,
Nehalem-EP, or Westmere processors. To generate a single executable that will work on all
Pleiades processor types, use the option
-tp=penryn-64,nehalem-64,sandybridge-64 during compilation with PGI
compilers. See PGI Compilers and Tools for more information.
You cannot "ssh" to the compute nodes except for the subset of nodes your PBS job is
running on.

The bridge nodes are recommended for the following functions:

Pre- and/or Post-Processing

The large amount of memory on the bridge nodes allows pre- and post-processing
applications such as Tecplot, IDL, and Matlab to run faster than on the PFEs. Note that the
bridge nodes have the same software as the PFEs. For a list of available applications, run
the command module avail.

File Transfers Between Pleiades and Columbia

Both the Pleiades Lustre filesystems /nobackup and the Columbia CXFS filesystems
/nobackup are mounted on the bridge nodes. To copy files between the Pleiades Lustre
and Columbia CXFS filesystems, log into a bridge node and use the cp, mcp, or shiftc
command to perform the transfer.

File Transfers to Mass Storage

The Pleiades /nobackup filesystems are mounted on Lou2. Thus, the easiest way to
transfer files between Pleiades and Lou2 is to initiate a command such as cp, mcp, tar, or
shiftc on Lou2. For example:

Pleiades Front-End Usage Guidelines 17

lou% mcp /nobackup/username/foo $HOME
If you initiate the transfer on Pleiades, the commands scp, bbftp, bbscp, and shiftc are
available to do the transfers between a Pleiades front-end or bridge node and Lou. Since
bbscp uses almost the same syntax as scp, but performs faster than scp, we recommend
using bbscp in cases where you do not require the data to be encrypted. For very large file
transfers, we recommend the Shift utility, developed at NAS.

See also File Transfer Overview, and File Transfer Commands.

File transfers from the Pleiades compute nodes to Lou must go through one of the PFEs or
bridge nodes first. See Streamlining File Transfers from the Pleiades Compute Nodes to
Lou for more information.

When sending data to Lou, keep your largest individual file size under 1 TB, as large files
will occupy all of the tape drives, preventing other file restores and backups.

Additional Restrictions on Front-end Systems

No MPI (Message Passing Interface) jobs are allowed to run on the PFEs or the
bridge nodes

•

A job on bridge[1-2] should not use more than 56 GB; when it does, a courtesy email
is sent to the owner of the job

•

A job on bridge[3-4] should not use more than 192 GB; when it does, a courtesy
email is sent to the owner of the job

•

Before starting a large-memory session, it is a good idea to check to make sure there is
enough memory available. You can run the command top, hit "M", and check under the
"RES" column for other large memory applications that may be running.

Pleiades Front-End Usage Guidelines 18

http://www.nas.nasa.gov/hecc/support/kb/entry/264#FileTransferCommands

Pleiades Interconnect

Topology

InfiniBand (IB) is used for inter-node communication among all of the Pleiades nodes. A key
feature of InfiniBand permits remote direct memory access (RDMA) between processing
nodes, allowing direct access to other nodes' memory. This allows developers and
application owners to bypass the TCP/IP stack, accelerating the application performance.
Two devices are involved in the interconnect: the Mellanox ConnectX host channel adapter
chip (HCA) on the motherboard of each node and the Mellanox IB switches. There are two
IB switches per half- IRU (which includes 8 nodes). One of the switches is involved in the
ib0 fabric, which is used mainly for MPI communication. The other is involved in the ib1
fabric which is used mainly for I/O. InfiniBand uses subnet manager (SM) software to
manage the InfiniBand fabric and to monitor interconnect performance and health at the
fabric level.

The network topology of each IB fabric of Pleiades is a partial 11-D hypercube. In a 11-D
hypercube, each switch has 11 direct connections with 11 other specific switches in the
network.

The ib1 hypercube fabric is extended by a set of nine switches connected to the Lustre
servers (one for the MDSes, and eight for the OSSes). The plan is for each rack to connect
directly to one of the OSS switches and each group of eight racks to connect directly to the
MDS switch. Currently, most of the racks are connected this way, but some remain to be
connected.

Another set of nine switches on the ib1 fabric provides direct access between hyperwall
visualization nodes and Pleiades nodes and Lustre servers.

Latency

The shortest communication path in a Pleiades IB fabric will be for any two nodes located in
the same half-IRU of the same rack such that the communication only needs to go through
1 switch. For a fully populated 11-D hypercube, the optimum communication path between
any two nodes which are not in the same half-IRU varies from going through 2 to 12
switches, depending on which racks and half-IRUs the two nodes reside. Since the
Pleiades IB fabric is not a full 11-D hypercube, some connections are missing that would
facilitate the optimum path between some nodes, therefore, it is possible that some
communications may go over more than 12 switches.

MPI half Ping-Pong latency starts around 1000 to 1500 ns for communication going through
two switches. Each additional switch adds ~100 ns (QDR) to ~150 ns (DDR) to the latency.

Bandwidth

Pleiades Interconnect 19

The HCA on each node uses either 4x DDR (double data rate) links or 4x QDR (quad data
rate) links. Each link is bi-directional and contains 1 send channel and 1 receive channel.
For each direction, the raw data transfer rates for 4x DDR and 4x QDR are 20 Gb/s and 40
Gb/s, respectively. These links use 8b/10b encoding such that every 10 bits sent carry 8
bits of useful data. Thus, for each direction, the effective maximum bandwidth for each
node is 16 Gb/s (i.e, 2 GB/s) if 4x DDR HCA is used or 32 Gb/s (i.e. 4 GB/sec) if 4x QDR
HCA is used.

The IB switch which every 8 nodes in each half-IRU share through a single path also has
similar effective data transfer limits per port: 16 Gb/s for 4x DDR IB switches and 32 Gb/s
for 4x QDR IB switches.

The Harpertown and Nehalem-EP nodes use 4x-DDR HCAs while the Westmere nodes
use 4x-QDR HCAs. The Harpertown racks use 4x DDR IB switches while the Nehalem-EP
and Westmere racks use 4x QDR switches.

These limits also apply to each OSS in the Lustre filesystem. For /nobackupp20 and
/nobackupp50, QDR switches are used to connect to the IB fabric and DDR switches are
used to connect to the DDNs of the hard disks. For /nobackupp[10,30,40,60], DDR switches
are used to connect to both IB fabric and to the DDNs. With DDR switches, the theoretical
bandwidth of each OSS is 2 GB/s for each direction. With 8 OSSes per Lustre filesystem,
the theoretical peak aggregate bandwidth for each filesystem for each direction would be 16
GB/s. This bandwidth however is reduced to 10 GB/s due to bandwidth that the DDNs can
provide. The best benchmark performance obtained for each Pleiades Lustre filesystem is 8
- 10 GB/sec (all read or all write).

The actual I/O bandwidth a user's application experiences is far less than the theoretical
peak or even the benchmark data due to factors such as the I/O pattern the application is
doing (for example, serial or parallel; for parallel, if the I/O requests are from nodes of
different half-IRUs), the number of stripe count used (this affects the maximum aggregate
bandwidth provided by the OSSs), how busy the Lustre is handling requests from many
users, if there are bad links in the network, etc.

Follow the tips listed in Lustre Best Practices if you are not getting good performances out
of the Lustre filesystem.

Pleiades Interconnect 20

GPU Basics

A graphics processing unit (GPU) is a hardware device that may be able to accelerate an
algorithm or computer code. If you want general information on GPUs, you might start with
the Wikipedia article "GPGPU" and the GPGPU website, which has information for
developers.

If you have an application that can take advantage of GPU technology, you can use the
GPU nodes on Pleiades. Specifically, the 64 Pleiades Westmere nodes on rack 219
(r219i[0-3]n[0-15]) include one NVIDIA Tesla M2090 GPU per node. Each M2090
computing module comprises a computing subsystem with a Tesla 20-series GPU and high
speed memory, and is connected to the Westmere node via a PCI Express bus.

The NVIDIA Developer Zone has specific information about NVIDIA GPUs and the
programming model for them.

To use the Westmere+GPU nodes, specify the processor model type model=wes_gpu in
your PBS script:

#PBS -l select=xx:ncpus=yy:model=wes_gpu
Submit your PBS jobs to the gpu queue as follows:

% qsub -q gpu job_script
To check the status of your jobs submitted to the gpu queue:

% qstat gpu -u your_username
Get basic hardware information about the Pleiades GPUs, as follows:

pfe20% qsub -I -q gpu
r219i0n0% /usr/bin/nvidia-smi -q
and/or
r219i0n0% module load comp-pgi/11.6
r219i0n0% pgaccelinfo

The output from pgaccelinfo shows:

CUDA Driver Version: 4000
NVRM version: NVIDIA UNIX x86_64 Kernel Module 275.09.07 Wed Jun 8 14:16:46 PDT 2011

Device Number: 0
Device Name: Tesla M2090
Device Revision Number: 2.0
Global Memory Size: 5636554752
Number of Multiprocessors: 16
Number of Cores: 512
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 32768
Warp Size: 32

GPU Basics 21

http://en.wikipedia.org/wiki/GPGPU
http://gpgpu.org
http://developer.nvidia.com

Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 65535 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: 1301 MHz
Initialization time: 20609 microseconds
Current free memory: 5552726016
Upload time (4MB): 1547 microseconds (761 ms pinned)
Download time: 1113 microseconds (681 ms pinned)
Upload bandwidth: 2711 MB/sec (5511 MB/sec pinned)
Download bandwidth: 3768 MB/sec (6159 MB/sec pinned)

To use the Pleiades GPUs you have two possibilities:

The PGI accelerator model requires you to annotate your source code (Fortran or C)
with directives describing sections of your code that are to be executed on the GPU.
You need to use one of the PGI compiler modules (for example, module load
comp-pgi/11.6). Refer to the Portland Group website for information on their
accelerator compilers.

1.

You may write (or rewrite) portions of your code in CUDA (Compute Unified Device
Architecture; see the NVIDIA Developer Zone) or in CUDA Fortran. If you choose the
latter, you will need to use a PGI compiler module (such as module load
comp-pgi/11.6). If you select the former, you will need to load a cuda module
(such as module load cuda/4.0) and use the CUDA tools. You will also need to
determine how to link your new CUDA code with the rest of your program. If you
need assistance, contact the NAS Control Room, and our consultants will lend a
hand.

2.

Currently, no direct communication exists between a GPU on one node and a GPU on
another node. If such communication is required, the data must go via the PCI Express bus
from the GPU to the Westmere CPU and via MPI from one CPU to another.

If you delve into CUDA programming, the following book may be useful:

CUDA by Example: An Introduction to General-Purpose GPU Programming, Jason Sanders
and Edward Kandrot

GPU Basics 22

http://www.pgroup.com
http://developer.nvidia.com
mailto:support@nas.nasa.gov
http://www.amazon.com/CUDA-Example-Introduction-General-Purpose-Programming/dp/0131387685

Sandy Bridge Processors

Core Labeling

The core labeling in Sandy Bridge is contiguous. That is, cores 0-7 are in the first socket
and cores 8-15 are in the second socket.

When using the SGI MPT library, the environment variable MPI_DSM_DISTRIBUTE is set
to ON by default for the Sandy Bridge nodes.

Instruction Set

A Sandy Bridge processor's execution hardware contains the Advanced Vector Extensions
(AVX), a set of instructions for doing Single Instruction Multiple Data (SIMD) operations on
Intel architecture processors. These extensions widen the vector registers from 128 bits to
256 bits, so the floating-point hardware can sustain 16 single-precision and 8

Sandy Bridge Processors 23

double-precision floating point operations per cycle. As a result, even though the CPU clock
speed of the Sandy Bridge processor (2.6 GHz) is lower than that of the Harpertown (3.0
GHz), Nehalem-EP, and Westmere (2.93 GHz) processors, the floating-point performance
can be higher for some applications.

AVX is supported in Intel compilers starting with version 11.1. However, Intel version 12
compilers provide more optimizations for AVX and are recommended over version 11.1.

AVX is also supported in the GNU Compiler Collection starting with version 4.6. An
application that is compiled with -xAVX can run only on Sandy Bridge.

TIP: If you want to have a single executable that will run on any of the four Pleiades
processor types, with suitable optimization to be determined at run time, you can compile
your application with -O3 -ipo -axAVX -xSSE4.1.

Hyperthreading

Hyperthreading is turned ON.

Turbo Boost

Turbo Boost is turned ON.

Memory Subsystems

The memory hierarchy of Sandy Bridge is as follows:

L1 instruction cache: 32 KB, private to each core•
L1 data cache: 32 KB, private to each core•
L2 cache: 256 KB, private to each core•
L3 cache: 20 MB, shared by 8 cores in each socket•
Memory: 16 GB per socket, total of 32 GB per node•

There are four 1600-MHz memory channels per socket. Each channel can be connected
with up to two memory DIMMs. Of the eight memory DIMM slots for each socket, four are
populated with 4-GB Error Correcting Code (ECC) registered DDR3 memory, for a total of
16 GB per socket. With two sockets in a node, the total memory per node is 32 GB. If there
is a user requirement, some nodes could be configured with larger amounts of memory.

Connecting the two sockets are two Intel QPI links running at a speed of 8.0 Giga-transfers
(GT) per second. Each link contains separate lanes for the two directions. The total
bandwidth (2 links x 2 directions) is 32 GB/sec.

Sandy Bridge Processors 24

Network Subsystem

The Sandy Bridge nodes are connected to the two fabrics (ib0 and ib1) of the Pleiades
InfiniBand (IB) network via the dual-port, four-link fourteen data rate (4x FDR) IB Mezzanine
card on each node, as well as the Mellanox FDR IB switches in the SGI ICE X IB Premium
Blade. The FDR runs at 14 Gb/sec per lane. With four links, the total bandwidth is 56
Gb/sec or about 7 GB/sec.

On each node, the IB Mezzanine card sits on a sister board next to the mother board, which
contains the two processor sockets.

There are 18 nodes per Individual Rack Unit. These 18 nodes are connected to two
Mellanox FDR IB switches in an SGI ICE X IB Premium Blade to join the ib0 fabric. Another
set of connection between the 18 nodes and a second Premium Blade is established for
ib1.

Sandy Bridge Processors 25

Columbia

Columbia: Introduction

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Columbia, an SGI Altix supercomputer named to honor the crew of Space Shuttle Columbia
flight STS-107, has been in production since 2004. In March 2008, the system had 14,136
cores in 24 nodes (Columbia1-Columbia24). When the Pleiades system came into
production, the original 20 Columbia nodes (1-20) were retired. Columbia currently
comprises 1 front-end node (cfe2) and 4 compute nodes (Columbia21-Columbia24).

The following few articles provide Columbia hardware information at varying levels of detail:

Columbia Hardware Overview provides a high-level overview of the Columbia system
architecture, including resource summaries of the compute- and front-end nodes, the
interconnect, and storage capacity.

Columbia Configuration Details focuses on more detailed configuration statistics of the
processors and their associated memory.

The article Columbia Home Filesystem - provides information on the quota and backup
policies on the home filesystem.

The article Columbia CXFS Filesystems - details the configurations of the CXFS filesystems
and users' quotas on these filesystems.

In addition, the article Columbia Front-End Usage Guidelines provides guidelines on using
the front-end node (cfe2).

Columbia 26

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nasa.gov/columbia/home/index.html
http://www.nasa.gov/columbia/home/index.html

Columbia Hardware Overview

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

The Columbia supercluster, which ranked 2nd (51.87 teraflops) in the November 2004
TOP500 list, has been in service at NAS for many years. Most of the earlier Columbia
nodes (Columbia1 - Columbia20) have been retired. The remaining Columbia nodes
(Columbia21-24) continue to serve the NASA community to achieve breakthroughs in
science and engineering for the agency's missions and vision for Space Exploration.

Current Columbia System Facts

Manufacturer: SGI

List of nodes for Columbia system
Nodes Type Speed Cache
1 Altix 4700 (512 cores) Montecito 1.6 GHz 9MB
1 Altix 4700 (2048 cores) Montecito 1.6 GHz 9MB
2 Altix 4700 (1024 cores) Montvale 1.6 GHz 9MB
4 Total Compute Nodes (4,608 Total Cores)

System Architecture

40 compute node cabinets•
30 teraflops theoretical peak (original 10,240 system: 63 teraflops)•

Subsystems

1 front-end node•

Memory

Type - double data rate synchronous dynamic random access memory (DDR
SDRAM)

•

Per Processor (core) - 2GB•
Total Memory - 9TB•

Columbia Hardware Overview 27

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Interconnects

SGI NUMAlink interconnected single-system image compute nodes•
Internode

InfiniBand - 4x (Single Data Rate, Double Data Rate)♦
10Gb Ethernet LAN/WAN interconnect♦
1Gb Ethernet LAN/WAN interconnect♦

•

Storage

Online - DataDirect Networks & LSI RAID, 1PB (raw)
1 SGI CXFS domains♦
Local SGI XFS fileystems♦

•

Archival - Attached to high-end computing SGI CXFS SAN filesystem•

Operating Environment

Operating system - SUSE Linux Enterprise•
Job Scheduler - PBS•
Compilers - C, Intel Fortran, SGI MPT•

Columbia Hardware Overview 28

Columbia Configuration Details

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Current Columbia compute nodes, Columbia21-24, are SGI Altix 4700 systems. Detailed
information about the processor and memory subsystems of these compute nodes are
provided in this article.

Processor and Memory Subsystems Statistics

Below are configuration statistics for the processor and memory subsystems for
Columbia21-24:

Columbia Processor and Memory Subsystems Statistics
Hostname Columbia21 Columbia22 Columbia23-24
Function compute compute compute

Architecture Altix 4700 (bandwidth
configuration)

Altix 4700 (density
configuration)

Altix 4700 (density
configuration)

Dual-Core Processor

Processor Itanium2 9040
(Montecito)

Itanium2 9040
(Montecito)

Itanium2 9150M
(Montvale)

Core-Clock 1.6 GHz 1.6 GHz 1.67 GHz
of Cores/Node 2 4 4
Nodes/Blade 1 1 1
Total # of Blades 256 512 256
Total # of Cores 512 2048 1024

Memory
Local Memory/Node
(2 Cores for C21 and 4
Cores for C22, C23-24)

~3.8 GB ~7.6 GB ~7.6 GB

Total Memory ~ 1000 GB ~ 4000 GB ~ 2000 GB

L1 Cache Size/Core
32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

L1 Cache
Associativity 4-way 4-way 4-way

Columbia Configuration Details 29

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

L1 Cache Line Size 64 bytes 64 bytes 64 bytes

L2 Cache Size/Core 1MB: instructions
256KB: data

1MB: instructions
256KB: data

1MB: instructions
256KB: data

L2 Cache
Associativity 8-way 8-way 8-way

L2 Cache Line Size 128 bytes 128 bytes 128 bytes
L3 Cache Size/Core 9MB 9MB 9MB
L3 Cache
Associativity 9-way 9-way 9-way

Default Page Size 16 KB 64 KB 16 KB

Itanium-64 Processors Facts

The Itanium chip is based on the IA-64 (Intel Architecture, 64 bit) architecture that
implements the EPIC (Explicit Parallel Instruction set Computing) technology. With EPIC,
an Itanium processor family compiler turns sequential code into parallelized 128-bit bundles
that can be directly or explicitly processed by the CPU without having to interpret it further.
This explicit expression of parallelism allows the processor to concentrate on executing
parallel code as fast as possible, without further optimizations or interpretations. On the
contrary, a regular (non-Itanium's processor family) compiler takes a sequential code and
examines and optimizes it for parallelism, but then has to regenerate sequential code in a
such a way that the processor can re-extract the parallelization from it. The processor then
has to read this implied parallelism from the machine code, re-build it, and run it. The
parallelism is there, but it is not as obvious to the processor, and more work has to be done
by the hardware before it can be utilized.

Unlike the RISC processors (as used in the SGI Origins) that dedicate an enormous
amount of chip real estate and logic to hide cache misses (by allowing instructions to be
executed out of order, which works well when the ratio of CPU frequency to memory
frequency is relatively small), the EPIC processors rely on the software to make sure that
the data is in the proper cache at the proper time. Instructions are issued in order, so there
is no hardware mechanism to hide a cache miss.

The Itanium processors use long instruction words. Specifically, three instructions are
grouped into a 128-bit bundle. Each instruction is 41 bits wide. The least significant 5 bits
encode a bundle template. The template field encodes (1) the execution units (integer units
I, memory units M, floating point units F, and branch units B) needed by the three
instructions, and (2) which instructions can be executed in parallel. For the Itanium 2 chips,
two bundles can be executed per cycle.

Four memory-load operations per cycle can be delivered from the L2 cache to the
floating-point register file. This will completely support two floating-point operations per
cycle; this translates into 4 flops per cycle using the FMA operation.

Columbia Configuration Details 30

Branch Predication

Without predication, parallelism would be impossible. Instead of waiting for each section of
a complex calculation to finish, it is faster if the processor can predict the outcome and
proceed on the basis of that prediction. These prediction points are called branches, and
current processors try to guess which branch to take. If it predicts correctly, the whole
calculation is validated. If it predicts incorrectly, the string has to be thrown out and the
calculation starts over. The Itanium processor family architecture minimizes wasted
calculations by taking both possible paths to the next branch, where it follows both
branches again. When it comes to the correct result it drops the other branch path that it
doesn't need, keeps the branch that it does and it continues on with the calculation.

Speculative Loads

A processor needs to access the memory to get code to execute, but while it fetches this
code it is not executing instructions. A processor based on the Itanium processor family
architecture specification can look ahead at its instruction and load the required data from
the memory early; so, when those instructions begin to execute, they have the required
data, even if the loaded data changes.

Processor Details

128 integer registers; up to 96 rotating

Note: 32 registers are fixed and 96 are "stacked". A procedure call can allocate up to
96 of the stacked registers and still has access to the 32 common registers. Each
procedure has its own register frame, which is flexible in size. Since most procedure
calls will allocate only a few new registers, many calls can be made before the
physical limits of the register file are exceeded. A dedicated piece of hardware called
the Register Stack Engine (RSE) will quickly and automatically spill older registers to
free up space in the register stack for the new request. The RSE will also restore
spilled registers as needed.

•

128 floating-point registers; up to 96 rotating•
64 1-bit predicate registers; up to 48 rotating•
8 branch registers•
128 application registers (for example, loop or epilog counters for loop optimization)•
Performance Monitor Unit (PMU)•
Advanced Load Address Table (ALAT) ALAT keeps track of speculative, or advance
loads. However, an excessive number of ALAT comparisons that result in a failed
advance load will seriously degrade performance

•

3 predicated instructions in a single 128-bit bundle•
2 bundles (that is, 6 instructions) per clock cycle•
6 integer units•

Columbia Configuration Details 31

2 loads and 2 stores per clock cycle•
11 issue ports•

Main Memory - Global Shared Memory

SGI Altix systems dramatically reduce the time and resources required to run applications
by managing extremely large data sets in a single, system-wide, shared-memory space
called global shared memory. Global shared memory means that a single memory address
space is visible to all system resources, including microprocessors and I/O, across all
nodes. Systems with global shared memory allow access to all data in the system's
memory directly and efficiently, without having to move data through I/O or network
bottlenecks. On the contrary, clusters with multiple nodes without global shared memory
must pass copies of data, often in the form of messages, which can greatly complicate
programming and slow down performance by increasing the time processors must wait for
data.

If an Altix system is configured as a multi-partition cluster, global shared memory can be
achieved by using a sophisticated system memory interconnect like SGI's NUMAlink and
application libraries that enable shared-memory calls, such as MPT and XPMEM (a driver
which allows shared memory across partitions) from SGI.

To configure an Altix system as a single system image machine, special versions of a
scalable operation system from SGI is used and no XPMEM is needed. The current version
of the OS used is "2.6.16.60-0.42.9.1-nasa64k #1 SMP".

The SGI Altix systems use the non-uniform memory access (NUMA) model. Memory
subsystems from different nodes are connected through SHUB and NUMAlink
interconnects.

Latency

The local memory latency (within a node) is about 145 nanoseconds (ns). Latency from the
other node of the same C-brick is 290 ns. Each additional router hop adds 45 - 50 ns (for
NUMAlink 3 protocol). Each meter of NUMAlink cable adds 10 ns.

Maximum number of router hops:

16 CPUs - 3 hops•
32 CPUs - 4 hops•
64 CPUs - 5 hops•
128 CPUs - 5 hops•
256 CPUs - 7 hops•

Columbia Configuration Details 32

Bandwidth

The Altix memory subsystem uses PC-style double data rate (DDR) SDRAM DIMMs. Each
SHUB supports four DDR buses. Each DDR bus may contain up to four DIMMs. The four
memory buses are independent and can operate simultaneously to provide up to 12.8
GB/sec of memory bandwidth. (Local memory bandwidth for DIMM type PC2700 is 10.2
GB/sec; and for type PC3200, it is 12.8 GB/sec). While the local processor bus has a peak
bandwidth (between L3 cache and memory) of 6.4 GB per second, the local memory
subsystem has enough bandwidth to fully saturate the local processor demands while
leaving available bandwidth to service remote processor and I/O memory requests.

Columbia Configuration Details 33

Columbia Home Filesystems

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Columbia's home fileystem (/u/username) is NFS-mounted on the Columbia front-end
(cfe2) and compute nodes (Columbia21-24).

Once a user is granted an account on Columbia, the home directory is set up automatically
during his/her first login.

Quota and Policy

Disk space quota limits are enforced on the home filesystem. By default, the soft limit is 4
GB and the hard limit is 5 GB. There are no inode limits on the home filesystem.

To check your quota and usage on your home filesystem, do:

%quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
 ch-rg1:/home6 4888 4000000 5000000 294 0 0

The quota policy for NAS states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that a user will occasionally exceed their soft limit as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled. If you believe that you have a long-term need for higher quota limits, you should
send an email justification to support@nas.nasa.gov. This will be reviewed by the HECC
Deputy Project Manager, Bill Thigpen, for approval.

The quota policy for NAS can be found here.

WARNING: If you receive the following error when logging into Columbia:

/usr/X11R6/bin/xauth: error in locking authority file
/u/username/.Xauthority

you won't be able to run X applications. This error is most likely caused by your home
filesystem quota being exceeded and you will have to decrease your disk usage to
eliminate this error.

Columbia Home Filesystems 34

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
mailto:support@nas.nasa.gov

Backup Policy

Files on the home filesystem are backed up daily.

Columbia Home Filesystems 35

Columbia CXFS Filesystems

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Columbia CXFS filesystems (/nobackup[1-2][a-i]) are shared and accessible from
cfe2 and Columbia21-24. This allows user jobs to be load-balanced across Columbia's
systems without forcing users to move their data to a particular Columbia system.

Users will have a /nobackup directory on one of these shared file systems. To find out
where your /nobackup directory is, log in to the front-end node and type the following shell
command:

cfe2% ls -d /nobackup[1-2][a-i]/$USER
/nobackup1f/username/

In this example, the user is assigned to /nobackup1f.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the CXFS /nobackup[1-2][a-i]
filesystems. The default soft and hard limits for inodes are 25,000 and 50,000, respectively.
Those for disk space are 200GB and 400GB, respectively. To check your disk space and
inodes usage and quotas on your CXFS filesystem, do the following:

cfe2% quota -v
Disk quotas for user username (uid xxxx):
 Filesystem blocks quota limit grace files quota limit grace
/dev/cxvm/nobackup1f
 1673856 210000000 420000000 10973 25000 50000

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Columbia
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

Columbia CXFS Filesystems 36

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
mailto:support@nas.nasa.gov

WARNING: As the names suggest, these filesystems are not backed up, so any files that
are removed cannot be restored. Essential data should be stored on Lou1-2 or onto other
more permanent storage.

Columbia CXFS Filesystems 37

Columbia Front-End Usage Guidelines

The front-end system, cfe2, provide an environment that allows users to get quick
turnaround while performing the following: file editing, file management, short debugging
and testing sessions, and batch job submission to the compute systems.

Running long and/or large (in terms of memory and/or number of processors) debugging or
production jobs interactively or in the background of cfe2 is considered to be inconsiderate
behavior to the rest of the user community. If you need help submitting such jobs to the
batch systems, please contact a the Control Room at (650) 604-4444 or (800) 331-USER or
send e-mail to: support@nas.nasa.gov

Jobs that cause significant impact on the system load of the Columbia front-end machine
(cfe2) are candidates for removal in order to bring the front-end systems back to a normal
and smooth environment for all users. A cron job regularly monitors the system load and
determines if job removal is necessary. The criteria for job removal are described below.
Owners of any removed jobs will receive a notification e-mail.

To be eligible for removal, the number of processors a front-end interactive job uses
can be one (1) or more. Exceptions to this are those programs, utilities, etc. common
to users and/or NASA missions that are listed in an "exception file". Examples of
these would be: bash, cp, csh, emacs, gzip, rsync, scp, sftp, sh,
ssh, tar, and tcsh. Users can submit program names to be added to this
exception file by mailing requests to: support@nas.nasa.gov.

1.

For qualifying processes, the CPU time usage of each process in a job has, on the
average, exceeded a threshold defined as: (20 min x 8 / number of processes for the
job). That is, a baseline for removal is a job with 8 processors running for more than
20 minutes. The maximum amount of time allowed for each processor in a job is
scaled using the formula: 20 min x 8 cpu / number-of-processes. Therefore, the
following variations are possible:

160 minutes = (20 * 8) / 1 cpu♦
80 minutes = (20 * 8) / 2 cpu♦
40 minutes = (20 * 8) / 4 cpu♦
20 minutes = (20 * 8) / 8 cpu♦
10 minutes = (20 * 8) / 16 cpu♦
5 minutes = (20 * 8) / 32 cpu♦
2.5 minutes = (20 * 8) / 64 cpu♦

2.

The conditions of removal are subject to change, when necessary.

Columbia Front-End Usage Guidelines 38

Porting & Developing Applications

Porting & Developing: Overview

When you are in the process of developing a code or porting a code from another platform,
it is important that the code runs correctly and/or reproduces the results from another
platform.

These are some steps you can follow when developing or porting a code or when testing a
new version of a compiler.

General guidelines:

Start with small problem sizes and a few time steps/iterations so that you won't have
to wait in the queue for a long time just to check whether the program is running
correctly; setting up your PBS script, data files, and getting the program to run
correctly can often be done with 10 minute jobs

•

Use PBS' debug queue to get better turn-around time (q=debug)•
While porting, make the fewest changes possible in the code•
Use the same data sets to compare results on both old and new platforms•
Don't assume that an absence of error messages means the program is running
correctly on either the old or the new platforms

•

Be attentive to porting user data files: Fortran FORM='unformatted' files cannot be
assumed to be portable

•

Don't assume that the new platform is wrong and the old platform is right, both might
be wrong

•

Other useful information that helps you to port or develop a code on NAS HECC systems
can be found in subsequent articles.

Porting & Developing Applications 39

Endian and Related Environment Variables or Compiler
Options

Intel Fortran expects numeric data, both integer and floating-point data, to be in native little
endian order, in which the least-significant, right-most zero bit (bit 0) or byte has a lower
address than the most-significant, left-most bit (or byte).

If your program needs to read or write unformatted data files that are not in little endian
order, you can use one of the six methods (listed in the order of precedence) provided by
Intel below.

Method 1. Setting a Variable for a Specific Unit Number

Set an environment variable for a specific unit number before the file is opened. The
environment variable is named FORT_CONVERTn, where n is the unit number. For example:

setenv FORT_CONVERT28 BIG_ENDIAN
No source code modification or recompilation is needed.

Method 2. Setting A Variable for a Specific File Name

Set an environment variable for a specific file name extension before the file is opened. The
environment variable is named FORT_CONVERT.ext or FORT_CONVERT_ext, where "ext"
is the file name extension (suffix). The following example specifies that a file with an
extension of ".dat" is in big endian format:

setenv FORT_CONVERT.DAT BIG_ENDIAN
Some Linux command shells may not accept a dot (.) for environment variable names. In
that case, use FORT_CONVERT_ext instead.

No source code modification or recompilation is needed.

Method 3. Setting a Variable for a Set of Units

Set an environment variable for a set of units before any files are opened. The environment
variable is named F_UFMTENDIAN.

Syntax

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Endian and Related Environment Variables or Compiler Options 40

Sh : export F_UFMTENDIAN=MODE;EXCEPTION

MODE = big | little

EXCEPTION = big:ULIST | little:ULIST | ULIST

ULIST = U | ULIST,U

U = decimal | decimal-decimal

MODE defines the current format of the data, represented in the files; it can be omitted. The
keyword "little" means that the data has little-endian format and will not be converted. For
IA-32 systems, this keyword is a default. The keyword "big" means that the data has big
endian format and will be converted. This keyword may be omitted together with the colon.

EXCEPTION is intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTION keyword (little or big) defines data format in the files that are connected to the
units from the EXCEPTION list. This value overrides MODE value for the units listed.

Each list member U is a simple unit number or a number of units. The number of list
members is limited to 64. decimal is a non-negative decimal number less than 2**32.

The environment variable value should be enclosed in quotes if the semicolon is present.

Converted data should have basic data types, or arrays of basic data types. Derived data
types are disabled.

Examples

setenv F_UFMTENDIAN big
All input/output operations perform conversion from big-endian to little-endian on READ and
from little-endian to big-endian on WRITE.

setenv F_UFMTENDIAN "little;big:10,20"

or setenv F_UFMTENDIAN big:10,20

or setenv F_UFMTENDIAN 10,20

In this case, only on unit numbers 10 and 20 the input/output operations perform big-little
endian conversion.

setenv F_UFMTENDIAN "big;little:8"
In this case, on unit number 8 no conversion operation occurs. On all other units, the
input/output operations perform big-little endian conversion.

setenv F_UFMTENDIAN 10-20

Endian and Related Environment Variables or Compiler Options 41

Define 10, 11, 12, ...19, 20 units for conversion purposes; on these units, the input/output
operations perform big-little endian conversion.

Method 4. Using the CONVERT Keyword in the OPEN Statement

Specify the CONVERT keyword in the OPEN statement for a specific unit number. Note that
a hard-coded OPEN statement CONVERT keyword value cannot be changed after compile
time. The following OPEN statement specifies that the file graph3.dat is in VAXD
unformatted format:

OPEN (CONVERT='VAXD', FILE='graph3.dat', FORM='UNFORMATTED',
UNIT=15)

Method 5. Compiling with an OPTIONS Statement

Compile the program with an OPTIONS statement that specifies the CONVERT=keyword
qualifier. This method affects all unit numbers using unformatted data specified by the
program. For example, to use VAX F_floating and G_floating as the unformatted file
format, specify the following OPTIONS statement:

OPTIONS /CONVERT=VAXG

Method 6. Compiling with the -convert keyword Option

Compile the program with the command-line -convert keyword option, which affects all
unit numbers that use unformatted data specified by the program. For example, the
following command compiles program file.for to use VAXD floating-point data for all unit
numbers:

ifort file.for -o vconvert.exe -convert vaxd
In addition, if the record length of your unformatted data is in byte units (Intel Fortran default
is in word units), use the -assume byterecl compiler option when compiling your source
code.

Endian and Related Environment Variables or Compiler Options 42

OpenMP

OpenMP is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for various platforms.

Intel version 11.x compilers support OpenMP spec-3.0 while 10.x compilers support
spec-2.5.

Building OpenMP Applications

The following Intel compiler options can be used for building or analyzing OpenMP
applications:

-openmp

Enables the parallelizer to generate multithreaded code based on OpenMP
directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems. The -openmp option works with both -O0 (no optimization)
and any optimization level of -O. Specifying -O0 with -openmp helps to debug
OpenMP applications.

Note that setting -openmp also sets -automatic, which causes all local, non-SAVEd
variables to be allocated to the run-time stack, which may provide a performance
gain for your applications. However, if your program depends on variables having the
same value as the last time the routine was invoked, your program may not function
properly. If you want to cause variables to be placed in static memory, specify option
-save. If you want only scalar variables of certain intrinsic types (integer, real,
complex, logical) to be placed on the run-time stack, specify option -auto-scalar.

•

-assume cc_omp or -assume nocc_omp

-assume cc_omp enables conditional compilation as defined by the OpenMP Fortran
API. That is, when "!$space" appears in free-form source or "c$spaces" appears in
column 1 of fixed-form source, the rest of the line is accepted as a Fortran line.

-assume nocc_omp tells the compiler that conditional compilation as defined by the
OpenMP Fortran API is disabled unless option -openmp (Linux) or /Qopenmp
(Windows) is specified.

•

-openmp-lib legacy or -openmp-lib compat

Choosing -openmp-lib legacy tells the compiler to use the legacy OpenMP run-time
library (libguide). This setting does not provide compatibility with object files created
using other compilers. This is the default for Intel version 10.x compilers.

Choosing -openmp-lib compat tells the compiler to use the compatibility OpenMP
run-time library (libiomp). This is the default for Intel version 11.x compilers.

•

OpenMP 43

On Linux systems, the compatibility Intel OpenMP run-time library lets you combine
OpenMP object files compiled with the GNUgcc or gfortran compilers with similar
OpenMP object files compiled with the Intel C/C++ or Fortran compilers. The linking
phase results in a single, coherent copy of the run-time library.

You cannot link object files generated by the Intel Fortran compiler to object files
compiled by the GNU Fortran compiler, regardless of the presence or absence of the
-openmp (Linux) or /Qopenmp (Windows) compiler option. This is because the
Fortran run-time libraries are incompatible.

NOTE: The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

-openmp-link dynamic or -openmp-link static

Choosing -openmp-link dynamic tells the compiler to link to dynamic OpenMP
run-time libraries. This is the default for Intel version 11.x compilers.

Choosing -openmp-link static tells the compiler to link to static OpenMP run-time
libraries.

Note that the compiler options -static-intel and -shared-intel have no effect on which
OpenMP run-time library is linked.

Note that this option is only available for newer Intel compilers (version 11.x).

•

-openmp-profile

Enables analysis of OpenMP applications. To use this option, you must have Intel(R)
Thread Profiler installed, which is one of the Intel(R) Threading Tools. If this
threading tool is not installed, this option has no effect.

Note that Intel Thread Profiler is not installed on Pleiades.

•

-openmp-report[n]

Controls the level of diagnostic messages of the OpenMP parallelizer. n=0,1,or 2.

•

-openmp-stub

Enables compilation of OpenMP programs in sequential mode. The OpenMP
directives are ignored and a stub OpenMP library is linked.

•

OpenMP Environment Variables

There are a few OpenMP environment variables one can set. The most commonly used
are:

OpenMP 44

OMP_NUM_THREADS num

Sets number of threads for parallel regions. Default is 1 on Pleiades. Note that you
can use ompthreads in the PBS resource request to set values for
OMP_NUM_THREADS. For example:

%qsub -I -lselect=1:ncpus=4:ompthreads=4
Job 991014.pbspl1.nas.nasa.gov started on Sun Sep 12 11:33:06 PDT 2010
...
PBS r3i2n9> echo $OMP_NUM_THREADS
4
PBS r3i2n9>

•

OMP_SCHEDULE type[,chunk]

Sets the run-time schedule type and chunk size. Valid OpenMP schedule types are
static, dynamic, guided, or auto. Chunk is a positive integer.

•

OMP_DYNAMIC true or OMP_DYNAMIC false

Enables or disables dynamic adjustment of threads to use for parallel regions.

•

OMP_STACKSIZE size

Specifies size of stack for threads created by the OpenMP implementation. Valid
values for size (a positive integer) are size, sizeB, sizeK, sizeM, sizeG. If units B, K,
M or G are not specified, size is measured in kilobytes (K).

Note that this feature is included in OpenMP spec-3.0, but not in spec-2.5.

•

Note that Intel also provides a few additional environment variables. The most commonly
used are:

KMP_AFFINITY type

Binds OpenMP threads to physical processors. Avaiable type: compact, disabled,
explicit, none, scatter.

There is a conflict between KMP_AFFINITY in Intel 11.x runtime
library and dplace, causing all threads to be placed on a
single CPU when both are used. It is recommended that
KMP_AFFINITY be set to disabled when using dplace.

•

KMP_MONITOR_STACKSIZE

Sets stacksize in bytes for monitor thread.

•

OpenMP 45

KMP_STACKSIZE

Sets stacksize in bytes for each thread.

•

For more information, please see the official OpenMP web site.

OpenMP 46

http://openmp.org/wp/

Compilers

Intel Compiler

Intel compilers are recommended for building your applications on either Pleiades or
Columbia.

On Columbia, a system default version has been loaded automatically. On Pleiades, there
is no system default--you must load a specific module. Use the module avail command
on Pleiades to see what versions are available and load an Intel compiler module before
compiling. For example:

% module load comp-intel/11.1.072
Notice that when a compiler module is loaded, some environment variables, such as
FPATH, INCLUDE, LD_LIBRARY_PATH, etc., are set or modified to add the paths to certain
commands, include files, or libraries, to your environment. This helps to simplify the way
you do your work.

To check what environment variables will be modified for a module, for example:

% module show comp-intel/11.1.072

Intel Compilers for Columbia and Pleiades

On Columbia and Pleiades, there are Intel compilers for both Fortran and C/C++:

Intel Fortran Compiler: ifort (version 8 and above)

The ifort command invokes the Intel Fortran Compiler to preprocess, compile, assemble,
and link Fortran programs.

% ifort [options] file1 [file2 ...]
Read man ifort for all available compiler options. To see the compiler options by
categories, go to:

% ifort -help
fileN is a Fortran source (.f .for .ftn .f90 .fpp .F .FOR .F90 .i .i90), assembly (.s .S), object
(.o), static library (.a), or other linkable file.

Source Files Suffix Interpretation:

.f, .for, or .ftn: fixed-form source files•

.f90: free-form F95/F90 source files•

Compilers 47

.fpp, .F, .FOR, .FTN, or .FPP: fixed-form source files which must be preprocessed by
the fpp preprocessor before being compiled

•

.F90: free-form Fortran source files which must be preprocessed by the fpp
preprocessor before being compiled

•

Intel C/C++ compiler: icc and icpc (version 8 and above)

The Intel C++ Compiler is designed to process C and C++ programs on
Intel-architecture-based systems. You can preprocess, compile, assemble, and link these
programs.

% icc [options] file1 [file2 ...]
% icpc [options] file1 [file2 ...]

Read man icc for all available compiler options. To see the compiler options by categories,
go to:

% icc -help
The icpc command uses the same compiler options as the icc command. Invoking the
compiler using icpc compiles .c, and .i files as C++. Invoking the compiler using icc
compiles .c and .i files as C. Using icpc always links in C++ libraries. Using icc only links
in C++ libraries if C++ source is provided on the command line.

fileN represents a C/C++ source (.C .c .cc .cp .cpp .cxx .c++ .i), assembly (.s), object (.o),
static library (.a), or other linkable file.

Intel Compiler 48

GNU Compiler Collection

GCC stands for "GNU Compiler Collection". GCC is an integrated distribution of compilers
for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, and Ada.

The GNU C and C++ compiler (gcc and g++) and Fortran compiler (gfortran) through
the Linux OS distribution are available on Pleiades and Columbia. The current version
installed (under /usr/bin) can be found with the command gcc -v, for example:

 % gcc -v
... gcc version 4.3.4 [...] (SUSE Linux)

Newer versions of GNU compilers can be requested and installed as modules. Currently,
there are gcc/4.4.4, gcc/4.4.5, and gcc/4.7.0 modules, which includes gcc, g++, and
gfortran, available on Pleiades.

Read man gcc and man gfortran for more information.

GNU Compiler Collection 49

PGI Compilers and Tools

Summary: PGI compilers and tools are installed as modules under the system
directory /nasa on Pleiades. By default, the PGI compilers generate code that is optimized
for the compilation host.

PGI Compiling

As an option to using the Intel compilers, you can use the compilers and program
development tools from PGI (The Portland Group, Inc.) for Fortran, C, and C++. Several
versions of the PGI compilers and tools are installed under the system directory /nasa on
Pleiades as modules. To see what is available, do:

pfe20% module avail comp-pgi
comp-pgi/10.6 comp-pgi/11.0 comp-pgi/11.6
comp-pgi/12.3 comp-pgi/12.4 comp-pgi/12.5

The following command will load version 12.5:

pfe20% module load comp-pgi/12.5

Newer versions may be installed under /u/scicon/tools/modulefiles. Use the
following command to see what is available.

pfe20% cd /u/scicon/tools/modulefiles
pfe20% ls -1 /u/scicon/tools/modulefiles/pgi*
pgi_11.10
pgi_12.4
pgi_12.6
pgi_12.8

Follow the example below to load version 12.8:

pfe20% module load /u/scicon/tools/modulefiles/pgi_12.8

Several MVAPICH2 modules built with the PGI compilers are also available under
/u/scicon/tools/modulesfiles; some have MPI CUDA calls enabled and some do
not. Both will work with MPI codes with sections compiled to run on the GPU, but the
modules with _cuda_ in their names also allow some MPI calls to use the GPU memory.
See this MVAPICH web page for more information. At the time of publication the two latest
modules are:

mvapich2_1.8_pgi_12.8
mvapich2_1.8_pgi_12.8_cuda_4.1

Future versions will probably be installed under the system modules tree /nasa, but not
under the /u/scicon tree.

PGI Compilers and Tools 50

http://www.pgroup.com
http://www.nas.nasa.gov/hecc/support/kb/entry/298
http://mvapich.cse.ohio-state.edu/overview/mvapich2/features.shtml

Using the PGI Compilers

PGI provides various commands for different languages or functions, as shown in this table.

Command Language or Function

pgfortran PGI Fortran

pgf77 Fortran 77

pgf90 or pgf95 Fortran 90/95/F2003

pghpf High Performance Fortran

pgcc ANSI C99 and K&R (Kernighan and Ritchie) C

pgCC or pgcpp ANSI C++ with cfront features

pgdbg Source code debugger (supports OpenMP and MPI)

pgprof Performance profiler (supports OpenMP and MPI)

NOTE: By default, the PGI compilers generate code that is optimized for the type of
processor on which compilation is performed (the compilation host). Be aware that the
processors on Pleiades are forward-compatible, but not backward-compatible. Thus a code
compiled and optimized on a newer-generation processor, such as Sandy Bridge, will not
necessarily execute correctly on previous-generation processors, such as Harpertown,
Nehalem-EP, or Westmere. This could be an issue if you compile and optimize your code
on the new Pleiades Sandy Bridge front-end nodes (pfe[20-27]) or the Sandy Bridge
compute nodes (through a PBS session) and later want to use the same executable to run
on the Harpertown, Nehalem-EP, or Westmere nodes.

If you want to build an executable that targets a specific processor type on Pleiades, use
the -tp flag:

-tp= sandybridge-64 Intel SandyBridge architecture Core processor, 64-bit mode

-tp= nehalem-64 Intel Nehalem architecture Core processor, 64-bit mode
(including Nehalem-EP and Westmere)

-tp= penryn-64 Intel Penryn architecture Pentium processor, 64-bit mode
(including Harpertown)

TIP: Using the -tp=penryn-64,nehalem-64,sandybridge-64 option will generate a
single executable where the code is optimized for the Intel Penryn (Harpertown), Nehalem
(Nehalem-EP and Westmere), and Sandy Bridge architectures. The choice of which
optimized copy to execute is made at run time depending on the machine executing the
code.

PGI Compilers and Tools 51

PGI recommends that for best performance on processors which support SSE instructions
(including all Pleiades processor types), use pgfortran, even for FORTRAN 77 code, use
the -fastsse option.

For more information about the PGI compilers, see the pgfortran, pgcc, pgCC man pages
or use the command pgfortran -help, pgcc -help, or pgCC -help. Information about the
PGI debugger and performance analysis tool can be found in the pgdbg and pgprof man
pages.

PGI Compilers and Tools 52

MPI Libraries

SGI MPT

SGI's Message Passing Interface (MPI) is a component of the Message Passing Toolkit
(MPT), which is a software package that supports parallel programming across a network of
computer systems through a technique known as message passing. It requires the
presence of an Array Services daemon (arrayd) on each host to run MPI processes.

SGI's MPT 1.x versions support the MPI 1.2 standard and certain features of MPI-2. The
2.x versions will be fully MPI-2 compliant.

On Columbia, the current system default version is mpt.1.16. A 2.x version will be available
when the operating system is upgraded to SGI ProPack 7SP1.

On Pleiades, there is no default version. You can enable the recommended version,
mpt.2.06a67, by:

%module load mpi-sgi/mpt.2.06a67
Note that certain environment variables are set or modified when an MPT module is loaded.
To see what variables are set when a module is loaded (for example, mpi-sgi/mpt.2.06a67),
do:

%module show mpi-sgi/mpt.2.06a67
To build an MPI application using SGI's MPT, use a command such as one of the following:

%ifort -o executable_name prog.f -lmpi

%icc -o executable_name prog.c -lmpi

%icpc -o executable_name prog.cxx -lmpi++ -lmpi

%gfortran -I/nasa/sgi/mpt/2.06a67/include -o executable_name prog.f -lmpi

%gcc -o executable_name prog.c -lmpi

%g++ -o executable_name prog.cxx -lmpi++ -lmpi

TIP: Note that the Fortran 90 USE MPI feature is supported for the ifort command, but
not gfortran. Replace USE MPI with include "mpif.h" if you want to use gfortran
to compile your Fortran 90 code and link to an SGI MPT library.

MPI Libraries 53

MVAPICH

MVAPICH is open source software developed largely by the Network-Based Computing
Laboratory (NBCL) at Ohio State University. MVAPICH develops the Message Passing
Interface (MPI) style of process-to-process communications for computing systems
employing InfiniBand and other Remote Direct Memory Access (RDMA) interconnects.

MVAPICH software is typically used across the network of a cluster computer system for
improved performance and scalability of applications.

MVAPICH is an MPI-1 implementation while MVAPICH2 is an MPI-2 implementation
(conforming to MPI 2.2 standard) which includes all MPI-1 features.

MVAPICH1/MVAPICH2 are installed on Pleiades, but not Columbia. You must load in an
MVAPICH1 or MVAPICH2 module before using it. For example:

%module load mpi-mvapich2/1.4.1/intel
A variety of MPI compilers, such as mpicc, mpicxx, mpiCC, mpif77, or mpif90, are
provided in each MVAPICH/MVAPICH2 distribution. The correct compiler should be
selected depending on the programming language of your MPI application.

To build an MPI application using MVAPICH1/MVAPICH2:

%mpif90 -o executable_name prog.f
%mpicc -o executable_name prog.c

MVAPICH 54

Math & Scientific Libraries

MKL

The Intel Math Kernel Library (MKL) is composed of highly optimized mathematical
functions for engineering and scientific applications requiring high performance on Intel
platforms. The functional areas of the library include linear algebra consisting of LAPACK
and BLAS, fast Fourier transform (FFT), and vector transcendental functions.

MKL release 10.x is part of the Intel compiler 11.0 and 11.1 releases. Once you load in a
11.x compiler module, the path to the MKL library is automatically included in your default
path. If you choose to use Intel compiler 10.x or earlier versions, you have to load an MKL
module separately.

A Layered Model for MKL

Starting with MKL release 10.0, Intel employs a layered model for the MKL library. The
layers are the interface layer, the threading layer, and the computational layer.

Interface Layer

LP64 interface (uses 32-bit integer type) or ILP64 interface (uses 64-bit integer type).

SP2DP interface supports Cray-style naming in applications targeted for the Intel 64 or
IA-64 architecture and using the ILP64 interface. SP2DP interface provides a mapping
between single-precision names (for both real and complex types) in the application and
double-precision names in Intel MKL BLAS and LAPACK.

Threading Layer

Sequential

The sequential (non-threaded) mode requires no Compatibility OpenMP* or Legacy
OpenMP* run-time library, and does not respond to the environment variable
OMP_NUM_THREADS or its Intel MKL equivalents. In this mode, Intel MKL runs
unthreaded code. However, it is thread-safe, which means that you can use it in a parallel
region from your own OpenMP code. You should use the library in the sequential mode
only if you have a particular reason not to use Intel MKL threading. The sequential mode
may be helpful when using Intel MKL with programs threaded with some non-Intel
compilers or in other situations where you may, for various reasons, need a non-threaded
version of the library (for instance, in some MPI cases).

Math & Scientific Libraries 55

Note that the "sequential" library depends on the POSIX threads library (pthread), which
is used to make the Intel MKL software thread-safe and should be listed on the link line.

Threaded

The "threaded" library in MKL version 10.x supports the implementation of OpenMP that
many compilers (Intel, PGI, GNU) provide.

Computational Layer

For any given processor architecture (IA-32, IA-64, or Intel 64) and OS, this layer has only
one computational library to link with, regardless of the Interface and Threading layer.

Compiler Support Run-time Libraries

libiomp
IntelCompatibility OpenMP run-time library

libguide
Intel Legacy OpenMP run-time library

For example, to do a dynamic linking of myprog.f and parallel Intel MKL supporting LP64
interface, use:

ifort myprog.f -Wl,--start-group -lmkl_intel_lp64 \
-lmkl_intel_thread -lmkl_core -Wl,--end-group -openmp

If you are unsure of what MKL libraries to link with, use the suggestion provided in this Intel
web site by providing the proper OS (for example, Linux), processor architecture (such as,
Intel 64), compiler (Intel or Intel Compatible), dynamic or static linking, integer length,
sequential or multi-threaded, OpenMP library, cluster library (for example, BLACS,
ScaLAPACK), MPI library (Intel MPI, MPICH2, SGIMPT, etc.).

The -mkl Switch of Intel Compiler Version 11.1 and Above

Starting from Intel compiler version 11.1, an -mkl switch is provided to link to certain parts
of the MKL library.

-mkl[=]
 link to the Intel(R) Math Kernel Library (Intel(R) MKL) and
 bring in the associated headers
 parallel - link using the threaded Intel(R) MKL libraries.
 This is the default when -mkl is specified
 sequential - link using the non-threaded Intel(R) MKL libraries

MKL 56

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

 cluster - link using the Intel(R) MKL Cluster libraries plus
 the sequential Intel(R) MKL libraries

The libraries that are linked in for:

 * -mkl=parallel

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_intel_thread \
 -lmkl_core \
 -liomp5 \
 --end-group \

 * -mkl=sequential

 --start-group \
 -lmkl_solver_lp64_sequential \
 -lmkl_intel_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 --end-group \

 * -mkl=cluster

 --start-group \
 -lmkl_solver_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_cdft_core \
 -lmkl_scalapack_lp64 \
 -lmkl_blacs_lp64 \
 -lmkl_sequential \
 -lmkl_core \
 -liomp5 \
 --end-group \

Note that the use of --start-group and --end-group allows cycling through these 4
libraries until all their inter-references (if any) have been resolved.

Where to find more information about MKL

Man pages and two PDF files from Intel are available for each version of MKL.

Man Pages of Intel MKL

A collection of man pages of Intel MKL functions are available under the man3 subdirectory
(for example, /nasa/intel/Compiler/11.1/072/man/en_US/man3) of the MKL
installation. You will have to load an MKL module or an Intel compiler 11.x module before
you can see the man pages. For example:

MKL 57

% module load comp-intel/11.1.072
% man gemm

provides information about [s,d,c,z,sc,dz]gemm routines.

Unfortunately, there is not a "man mkl" page.

Intel MKL Reference Manual (mklman.pdf)

Contains detailed descriptions of the functions and interfaces for all library domains:

BLAS•
LAPACK•
ScaLAPACK•
Sparse Solver•
Interval Linear Solvers•
Vector Math Library (VML)•
Vector Statistical Library (VSL)•
Conventional DFTs and Cluster DFTs•
Partial Differential Equations support•
Optimization Solvers•

Intel MKL User's Guide (userguide.pdf)

Provides Intel MKL usage information in greater detail:

Getting started information•
Application compiling and linking depending on a particular platform and function
domain

•

Building custom DLLs•
Configuring the development environment•
Coding mixed-language calls•
Threading•
Memory management•
Ways to obtain best performance•

The two PDF files can be found in the doc or Documentation directory of the MKL
installation. For example, on Pleiades:

MKL version 10.0.011

/nasa/intel/mkl/10.0.011/doc

•

The version included in the Intel compiler module 11.1.072•

MKL 58

/nasa/intel/Compiler/11.1/072/Documentation/en_US/mkl

MKL 59

SCSL

SCSL is a comprehensive collection of scientific and mathematical functions that have been
optimized for use on the Altix systems such as Columbia. The libraries include optimization
of basic linear algebra subprograms (BLAS), a linear algebra package, signal processing
functions such as fast Fourier transforms (FFTs), and liner filtering operations and other
basic solver functions. More information can be found through man scsl.

WARNING: Starting with ProPack 5, SCSL is no longer supported by SGI. Although SCSL
is still available on Columbia (but not on Pleiades), users are recommended to use Intel
MKL instead.
SCSL version(s) available on Columbia systems:

scsl.1.5.0.0 (does not work properly with intel-comp.9.1.039)•
scsl.1.5.1.0•
scsl.1.5.1.1 (contains Scalapack in libsdsm.so)•
scsl.1.6.1.0•

To use SCSL, link one of the following libraries:

-lscs
-lscs_mp (for multi-threaded programs)
-lscs_i8
-lscs_i8_mp

SCSL 60

MKL FFTW Interface

FFTW is a free collection of C routines for computing the discrete Fourier Transform (DFT)
in one or more dimensions, and provides portability across platforms. The Intel Math Kernel
Library (MKL) offers FFTW2 (for version 2.x) and FFTW3 (for version 3.x) interfaces to the
Intel MKL Fast Fourier Transform and Trigonometric Transform functionality. These
interfaces enable applications using FFTW to gain performance with Intel MKL without
changing the application source code.

Some users have installed FFTW in their own directories (for example,
/u/username/fftw). If you choose to install these routines, you will link to the FFTW
library as follows:

ifort -O3 \
 -o fftw_example.exe fftw_example.f \
 -I/u/username/fftw/include \
 -L/u/username/fftw/lib \
 -lfftw2
or

ifort -O3 \
 -o fftw_example.exe fftw_example.f \
 -I/u/username/fftw/include \
 -L/u/username/fftw/lib \
 -lfftw3

Note that the application programming interface of FFTW 3.x is incompatible with that of
FFTW 2.x.

The MLK Interfaces

The MLK interfaces are available in the form of source files (under
/nasa/intel/Compiler/[Version]/mkl/interfaces), which can be built into
libraries and then linked when you compile your application.

Starting with Intel MKL release 10.2 (which was distributed in the Intel Compiler 11.1.x
package), the FFTW3 interfaces are integrated into the MKL main libraries for ease of use.
On Pleiades, if you load an Intel compiler module comp-intel/11.1.038 or newer, the
above example of linking to an FFTW3 library in a user's directory can be changed to, for
example:

module load comp-intel/11.1.038

ifort -O3 \
 -o fftw_example.exe fftw_example.f \
 -I/nasa/intel/Compiler/11.1/038/mkl/include/fftw \
 -mkl

MKL FFTW Interface 61

TIP: The FFTW3 interfaces do not support long double precision because Intel MKL FFT
functions operate only on single- and double-precision floating point data types. This means
that the functions with prefix fftwl_, supporting the long double data type, are not
provided. The interfaces have other limitations, as well. For more information, read "FFTW
Interface to Intel Math Kernel Library" in the Appendix section of the Intel Math Kernel
Library Reference Manual.
The older FFTW2 interfaces are not integrated into the MKL main libraries. For your
convenience, we have built four interface libraries for every version of the Intel compiler,
starting with comp-intel/11.1.038:

libfftw2xc_single_intel.a•
libfftw2xc_double_intel.a•
libfftw2xf_single_intel.a•
libfftw2xf_double_intel.a•

Here, "single" and "double" refer to floating point numbers. These four libraries were
built with Intel's default choice of 4-byte integer precision. So, the above example of linking
to an FFTW2 library in a user's directory can be changed to the following, assuming single
precision:

module load comp-intel/11.1.038

ifort -O3 \
 -o fftw_example.exe fftw_example.f \
 -I/nasa/intel/Compiler/11.1/038/mkl/include/fftw \
 -L/nasa/intel/Compiler/11.1/038/mkl/lib/em64t \
 -lfftw2xf_single_intel \
 -mkl

It is important to note that, starting with Intel compiler version 12.0 (that is, Pleiades module
comp-intel/2011.2), the em64t in the path must be replaced with intel64.

MKL FFTW Interface 62

http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-0191F247-778C-4C69-B54F-ABF951506FCD.htm
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-0191F247-778C-4C69-B54F-ABF951506FCD.htm

Program Development Tools

Recommended Intel Compiler Debugging Options

Commonly Used Options for Debugging

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide source
file traceback information when a severe error occurs at runtime.
Specifying -traceback will increase the size of the executable program, but has no
impact on runtime execution speeds.

-check all
Checks for all runtime failures.
Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform runtime checks on array subscript
and character substring expressions.
Fortran only.
Once the program is debugged, omit this option to reduce executable program size
and slightly improve runtime performance.

-check uninit
Checks for uninitialized scalar variables without the SAVE attribute.
Fortran only.

-check-uninit
Enables runtime checking for uninitialized variables. If a variable is read before it is
written, a runtime error routine will be called. Runtime checking of undefined
variables is only implemented on local, scalar variables. It is not implemented on
dynamically allocated variables, extern variables or static variables. It is not
implemented on structs, classes, unions or arrays.
C/C++ only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large integer or
an invalid address. References to these variables are then likely to cause run-time
errors that can help you detect coding errors. This option sets -g.

-debug all
Enables debug information and control output of enhanced debug information. To
use this option, you must also specify the -g option.

Program Development Tools 63

-gen-interfaces
-warn interfaces

Tells the compiler to generate an interface block for each routine in a source file; the
interface block is then checked with -warn interfaces.

Options for Handling Floating-Point Exceptions

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow, invalid
operation, underflow, denormalized number, positive infinity, negative infinity or a
NaN) handling for the main program at runtime.
Fortran only.
-fpe0: underflow gives 0.0; abort on other IEEE exceptions
-fpe3: produce NaN, signed infinities, and denormal results
Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler option that
enables flush-to-zero. Use of -fpe3 on IA-64 systems such as Columbia will slow
runtime performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in a
program at runtime. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3.
Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine entry
and restore them on routine exit. This option can slow runtime performance.
Fortran only.

-ftz
Flushes denormal results to zero when the application is in the gradual underflow
mode. This option has effect only when compiling the main program. It may improve
performance if the denormal values are not critical to your application's behavior. For
IA-64 systems (such as Columbia) -O3 sets -ftz. For Intel 64 systems (such as
Pleiades), every optimization option O level, except -O0, sets -ftz.

Options for Handling Floating-Point Precision

-mp
Enables improved floating-point consistency during calculations. This option limits
floating-point optimizations and maintains declared precision. -mp1 restricts
floating-point precision to be closer to declared precision. It has some impact on
speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations. It disables optimizations that can change the result of

Recommended Intel Compiler Debugging Options 64

floating-point calculations. These semantics ensure the accuracy of floating-point
computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations and enables floating-point exception semantics. This is the
strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the accuracy of
the significand, or fractional part of the floating-point value. For example, iterative
operations like division and finding the square root can run faster if you lower the
precision with the -pc[n] option. -pc64 sets internal FPU precision to 53-bit
significand. -pc80 is the default and it sets internal FPU precision to 64-bit
significand.

Recommended Intel Compiler Debugging Options 65

Totalview

TotalView is a GUI-based debugging tool that gives you control over processes and thread
execution and visibility into program state and variables for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks and race conditions, etc.

TotalView allows you to debug serial, OpenMP, or MPI codes.

TotalView is available on both Pleiades and Columbia. See TotalView Debugging on
Pleiades for some basic instructions on how to start using TotalView on Pleiades. See
TotalView Debugging on Columbia for some basic instructions on how to start using
Totalview on Columbia.

Totalview 66

Totalview Debugging on Pleiades

TotalView is an advanced debugger for complex and parallel codes. Its versions have been
installed as modules. To find out what versions of TotalView are available, use the module
avail command.

On Pleiades, our current licenses allow using TotalView up to a total of 256 processes. Use
the following command to find if there are unused licenses before you start TotalView:

pfe% /u/scicon/tools/bin/check_licenses -t
There are additional steps needed in order to start the TotalView GUI. You'll need to rely on
the ForwardX11 feature of your SSH. First, you'll have to make sure that your sysadmin
had turned on ForwardX11 when SSH was installed on your system or use the -X or -Y (if
available) options of ssh to enable X11 forwarding for your SSH session.

For Debugging on a Back-End Node

Step 1: Compile your code with -g

Step 2: Start a PBS session. For example:

% qsub -I -V -lselect=2:ncpus=8,walltime=1:00:00
Step 3: Test the X11 forwarding with xlock

% xclock
Step 4: Load the totalview module

% module load totalview/8.9.2-1
Step 5: Start TotalView Debugging

For Serial Applications

Simply start totalview with your application as an argument

% totalview ./a.out
If your application requires arguments:

% totalview ./a.out -a app_arg_1 app_arg_2

•

For MPI Applications Built with SGI's MPT

Make sure that you have loaded the latest MPT module:

% module load comp-intel/11.1.072
% module load mpi-sgi/mpt.2.04.10789

•

Totalview Debugging on Pleiades 67

Launch your program with the following:

% mpiexec_mpt -tv -np 16 ./a.out
For Applications Built with MVAPICH:

Load the appropriate modules:

% module load comp-intel/11.1.072
% module load mpi-mvapich2/1.4.1/intel

♦

Launch TotalView by typing "totalview" all by itself. Once the TotalView
windows pop up, you will see four tabs in the "New Program" window:
Program, Arguments, Standard I/O and Parallel.

♦

Fill in the executable name in the "Program" box or use the Browse button to
find the executable

♦

Give any arguments to your executable by clicking on the "Arguments" tab
and filling in what you need. If you need to redirect input from a file, do so by
clicking the "Standard I/O" tab and filling in what you need.

♦

In the "Parallel" tab, select the parallel system option MVAPICH2.♦
Enter in the number of processes in the "tasks" box; leave the "nodes" field 0.
For example, if you run your application with 2 nodes x 4 MPI processes/node
= 8 processes in total, fill in 8 in the "tasks" box and 0 in the "node" box.

♦

Then press "Go" to start. Note that it may initially dump you into the mpiexec
assembler source which is not your own code.

♦

Respond to the popup dialog box which says "Process xxx is a parallel job.
Do you want to stop the job now?" Choose "No" if you just want to run your
application. Choose "Yes" if you want to set breakpoint in your source code or
do other tasks before running.

♦

•

TIP: If you want to use the Replay Engine feature of TotalView, you need to set these two
environment variables:

setenv IBV_FORK_SAFE 1
setenv LD_PRELOAD /nasa/sles11/totalview/toolworks/totalview.8.9.2-1/
 linux-x86-64/lib/undodb_infiniband_preload_x64.so

Because of a formatting issue, the second variable may break across two lines. It should
only be one line.

More information about TotalView can be found at the TotalView online documentation
website.

Totalview Debugging on Pleiades 68

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

Totalview Debugging on Columbia

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

TotalView is an advanced debugger for complex and parallel codes. It has been installed as
modules. To find out what versions of TotalView are available, use the command module
avail totalview.

You'll need to rely on the ForwardX11 feature of your ssh. First, you'll have to make sure
that your sysadmin had turned on ForwardX11 when SSH was installed on your local
system or use the -X or -Y (if available) options of ssh to enable X11 forwarding for your
SSH session.

For Debugging on the Front-End cfe2

Login to the front-end cfe21.
Compile your code with -g2.
Make sure that X11 forwarding works and test it with xclock

cfe2%echo $DISPLAY
cfe2:xx.0
cfe2%xclock

3.

Load the totalview module

cfe2% module load totalview.8.9.0-1

4.

Start TotalView. For serial jobs:

cfe2% totalview a.out
For MPI jobs built with SGI's MPT library:

cfe2% totalview mpirun.real -a -np xxx a.out

5.

For Debugging on a Back-End Node

Compile your code with -g1.
Start a PBS session and pass in the environment variable DISPLAY. Assuming PBS
assign your job to run on Columbia21:

cfe2% qsub -I -v DISPLAY -lncpus=8,walltime=1:00:00

2.

Totalview Debugging on Columbia 69

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Test the X11 forwarding with xlock

PBS(8cpus)columbia21% xclock

3.

Load the totalview module

PBS(8cpus)columbia21% module load totalview.8.9.0-1

4.

Start TotalView. For serial jobs:

PBS(8cpus)columbia21% totalview a.out
For MPI jobs built with SGI's MPT library:

PBS(8cpus)columbia21% totalview mpirun.real -a -np xxx a.out

5.

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Columbia 70

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

IDB

The Intel Debugger is a symbolic source code debugger that debugs programs compiled by
the Intel Fortran and C/C++ Compiler, and the GNU compilers (gcc, g++).

IDB is included in the Intel compiler distribution. For IA-64 systems such as Columbia, both
the Intel 10.x and 11.x compiler distributions provide only an IDB command-line interface.
To use IDB on Columbia, load an Intel 10.x or 11.x compiler module. For example:

%module load intel-comp.11.1.072
%idb
(idb)

For Intel 64 systems such as Pleiades, a command-line interface is provided in the 10.x
distribution and is invoked with the command idb just like on Columbia. For the Intel 11.x
compilers, both a graphical user interface (GUI), which requires a Java Runtime, and a
command-line interface are provided. The command idb invokes the GUI interface by
default. To use the command-line interface under 11.x compilers, use the command idbc.
For example:

%module load comp-intel/11.1.072 jvm/jre1.6.0_20
%idb
.... This will bring up an IDB GUI

%module load comp-intel/11.1.072
%idbc
(idb)

Be sure to compile your code with the -g option for symbolic debugging.

Depending on the Intel compiler distributions, the Intel Debugger can operate in either the
gdb mode, dbx mode or idb mode. The available commands under these modes are
different.

For information on IDB in the 10.x distribution, read man idb.

For information on IDB in the 11.x distribution, read documentations under pfe or
cfe2:/nasa/intel/Compiler/11.1/072/Documentation/en_US/idb

IDB 71

GDB

The GNU Debugger, GDB, is available on both Pleiades and Columbia under /usr/bin. It
can be used to debug programs written in C, C++, Fortran, and Modula-a.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior•
Make your program stop on specified conditions•
Examine what has happened, when your program has stopped•
Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself
%gdb
(gdb)

•

Start the debugger and specify the executable
%gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file
%gdb your_executable core-file
(gdb)

•

Attach gdb to a running process
%gdb your_executable pid
(gdb)

•

At the prompt (gdb), type in commands such as break for setting a breakpoint, run for
starting to run your executable, step for stepping into next line, etc. Read man gdb to
learn more on using gdb.

GDB 72

Using pdsh_gdb for Debugging Pleiades PBS Jobs

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 73

Porting to Pleiades

Recommended Compiler Options

Intel compiler versions 10.0, 10.1, 11.0, 11.1, and 12.0 are available on Pleiades as
modules. Use the module avail command to find available versions. Since NAS does
not set a default version for users on Pleiades, be sure to use the module load ...
command to load the version you want to use.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn On Optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you
want more aggressive optimizations, you can use -O3. Note that using -O3 may not
improve performance for some programs.

Generate Optimized Code for a Processor Type: -xS, -xSSE4.1 or -xSSE4.2

Intel version 10.x, 11.x and 12.x compilers provide flags for generating optimized codes
specialized for various instruction sets used in specific processors or microarchitectures.

Processor Type Intel V10.x Intel V11.x and above
Harpertown -xS -xSSE4.1
Nehalem-EP

Westmere
N/A -xSSE4.2

Sandy Bridge N/A -axAVX
Since the instruction set is upward compatible, an application which is compiled with
-xSSE4.1 can run on Harpertown, Nehalem-EP, Westmere, or Sandy Bridge processors.
An application that is compiled with -xSSE4.2 can only run on Nehalem-EP or Westmere
processors. An application that is compiled with -axAVX can run only on Sandy Bridge
processors.

If your goal is to get the best performance out of the Nehalem-EP/Westmere processors, it
is recommended that you do the following:

Use either Intel 11.x or 12.x compilers as they are designed for
Nehalem-EP/Westmere-EP micro-architecture optimizations

•

Use the Nehalem-EP/Westmere-EP processor specific optimization flag -xSSE4.2•

WARNING: Running an executable built with the -xSSE4.2 flag on the Harpertown
processors will result in the following error:

Porting to Pleiades 74

Fatal Error: This program was not built to run on the processor in
your system. The allowed processors are: Intel(R) processors with
SSE4.2 and POPCNT instructions support.

If your goal is to have a portable executable that can run on Harpertown, Nehalem-EP,
Westmere, or Sandy Bridge you can choose one of the following approaches:

Use none of the above flags•
Use -xSSE4.1 (with 12.x compiler)•
Use -O3 -ipo -axSSE4.1,axAVX (with version 12.x compiler)•

This allows a single executable that will run on any of the four Pleiades processor types
with suitable optimization to be determined at run time.

Turn Inlining On: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One
of these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Use a Specific Memory Model: -mcmodel=medium and -shared-intel

Should you get a link time error relating to R_X86_64_PC32, add in the compiler option of
-mcmodel=medium and the link option of -shared-intel. This happens if a common
block is > 2gb in size.

Turn Off All Warning Messages: -w -vec-report0 -opt-report0

Use of -w disables all warnings; -vec-report0 disables printing of vectorizer diagnostic
information; and -opt-report0 disables printing of optimization reports.

Parallelize Your Code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc.

Recommended Compiler Options 75

Porting with SGI MPT

Among the many MPI libraries installed on Pleiades, it is recommended that you start with
SGI's MPT library.

The available SGI MPT modules are:

mpi/mpt.1.25•
mpi-sgi/mpt.1.26•
mpi-sgi/mpt.2.04.10789•

There is no default MPT version set, but you are recommended to start with the MPT
2.04.10789 version by loading the mpi-sgi/mpt.2.04.10789 module. You should load the
same module when you build your application on the front-end node and also inside your
PBS script for running on the back-end nodes.

Note:Pleiades uses an InfiniBand (IB) network for interprocess RDMA (remote direct
memory access) communications and there are two InfiniBand fabrics, designated as ib0
and ib1. In order to maximize performance, SGI advises that the ib0 fabric be used for all
MPI traffic. The ib1 fabric is reserved for storage related traffic. The default configuration for
MPI is to use only the ib0 fabric.

Environment Variables

When you load an MPT module, several paths (such as CPATH, C_INCLUDE_PATH,
LD_LIBRARY_PATH, etc.) and MPT or ARRAYD related variables are set or modified. For
example, with the mpi-sgi/mpt.2.04.10789 module, the following MPT and ARRAYD related
variables are reset to some non-default values:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_IB_TIMEOUT 20
setenv MPI_IB_RAILS 2
setenv MPI_DSM_DISTRIBUTE 0 (for Harpertown processors)
setenv MPI_DSM_DISTRIBUTE 1 (for Nehalem-EP, Westmere, and Sandy Bridge processors)
setenv ARRAYD_CONNECTTO 15
setenv ARRAYD_TIMEOUT 180

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (that is, the Pleiades node used in the run). These buffers are
used to send and receive long inter-host messages.
Default: 96 pages (1 page = 16KB)

MPI_IB_TIMEOUT

Porting with SGI MPT 76

When an IB card sends a packet it waits some amount of time for an ACK packet to
be returned by the receiving IB card. If it does not receive one it sends the packet
again. This variable controls that wait period. The time spent is equal to 4 * 2 ^
MPI_IB_TIMEOUT microseconds.
Default: 18

MPI_IB_RAILS

If the MPI library uses the IB driver as the inter-host interconnect it will by default use
a single IB fabric. If this is set to 2, the library will try to make use of multiple
available separate IB fabrics (ib0 and ib1) and split its traffic across them. If the
fabrics do not have unique subnet IDs then the rail-config utility is required to have
been run by the system administrator to enable the library to correctly use the
separate fabrics.
Default: 1

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.
Default: Enabled for MPT.1.26; Not Enabled for MPT.1.25

ARRAYD_CONNECTTO

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help to
prevent MPI start up problems due to connection time-out.
Default: 5 seconds

ARRAYD_TIMEOUT

Tuning this variable is useful when you want to run jobs through arrayd across a
large cluster, and there is network congestion. Setting this variable to a higher value
might slow down some array commands when a host is unavailable but it will help
to prevent MPI start up problems due to connection time-out.
Default: 45 seconds

For more MPT related variables, read man mpi after loading an MPT module. Some of
them may be useful for some applications or for debugging purposes on Pleiades. Here are
a few of them for you to consider:

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process (that is, the MPI rank). These buffers are used to send long
messages and intrahost messages.

Porting with SGI MPT 77

Default: 32 pages (1 page = 16KB)
MPI_IB_FAILOVER

When the MPI library uses IB and a connection error is detected, the library will
handle the error and restart the connection a number of times equal to the value of
this variable. Once there are no more failover attempts left and a connection error
occurs, the application will be aborted.
Default: 4

MPI_COREDUMP

Controls which ranks of an MPI job can dump core on receipt of a core-dumping
signal. Valid values are NONE, FIRST, ALL, or INHIBIT.
NONE means that no rank should dump core.
FIRST means that the first rank on each host to receive a core-dumping signal
should dump core.
ALL means that all ranks should dump core if they receive a core-dumping signal.
INHIBIT disables MPI signal-handler registration for core-dumping signals.
Default: FIRST

MPI_STATS (toggle)

Enables printing of MPI internal statistics. Each MPI process prints statistics about
the amount of data sent with MPI calls during the MPI_Finalize process.
Default: Not enabled

MPI_DISPLAY_SETTINGS

If set, MPT will display the default and current settings of the environmental variables
controlling it.
Default: Not enabled

MPI_VERBOSE

Setting this variable causes MPT to display information such as what interconnect
devices are being used and environmental variables have been set by the user to
non-default values. Setting this variable is equivalent to passing mpirun the -v
option.
Default: Not enabled

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

Porting with SGI MPT 78

MPI executables built with SGI's MPT are not allowed to run on the Pleiades front-end
nodes.

You can run your MPI job on the back-end nodes in an interactive PBS session or through
a PBS batch job. After loading an MPT module, use mpiexec, not mpirun, to start your
MPI processes. For example:

#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har
....
module load mpi-sgi/mpt.2.04.10789
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
product of the value specified for select and that specified for mpiprocs.

Performance Issues

On Nehalem-EP, Westmere, and Sandy Bridge nodes, if your MPI job uses all the
processors in each node (8 MPI processes/node for Nehalem-EP, 12 MPI processes/node
for Westmere, and 16 MPI processes/node for Sandy Bridge), pinning MPI processes
greatly helps the performance of the code. SGI's mpi-sgi/mpt.2.06r6 will pin processes by
default by setting the environment variable MPI_DSM_DISTRIBUTE to 1 (or true) when jobs
are run on the Nehalem-EP, Westmere, and Sandy Bridge nodes. On Harpertown nodes,
setting MPI_DSM_DISTRIBUTE to 1 is not recommended due to a processor labeling issue.

If your MPI job do not use all the processors in each node, it is recommended that you
disable MPI_DSM_DISTRIBUTE by:

setenv MPI_DSM_DISTRIBUTE 0
Then let the Linux kernel decide where to place your MPI processes. If you want to pin
processes explicitly, you can use dplace. Beware that with SGI's MPT, only one shepherd
process is created for the entire pool of MPI processes and the proper way of pinning using
dplace is to skip the shepherd process. In addition, knowledge of the processor labeling in
each processor type is essential when you use dplace. Below are the recommended ways
of pinning an 8 MPI process job with every 4 processes on 4 processor cores of a node,
using two nodes:

Harpertown
mpiexec -np 8 dplace -s1 -c2,3,6,7 ./your_executable

•

Nehalem-EP
mpiexec -np 8 dplace -s1 -c2,3,4,5 ./your_executable

•

Westmere
mpiexec -np 8 dplace -s1 -c4,5,6,7 ./your_executable

•

Porting with SGI MPT 79

Sandy Bridge
mpiexec -np 8 dplace -sl -c6,7,8,9 ./your_executable

•

Porting with SGI MPT 80

With MVAPICH

On Pleiades, there are multiple modules of MVAPICH2 built with either gcc or Intel
compilers.

mpi-mvapich2/1.2p1/gcc•
mpi-mvapich2/1.2p1/intel•
mpi-mvapich2/1.2p1/intel-PIC•
mpi-mvapich2/1.4.1/gcc•
mpi-mvapich2/1.4.1/intel•

You can get more information of what options were used to build each module as follows:

Load the desired MVAPICH2 module:
%module load mpi-mvapich2/1.4.1/intel

•

Use the mpiname utility provided with the module:
%mpiname -a
MVAPICH2 1.4.1 2010-03-12 ch3:mrail

Compilation
CC: icc -fpic -DNDEBUG -O2
CXX: icpc -DNDEBUG -O2
F77: ifort -fpic -DNDEBUG -O2
F90: ifort -DNDEBUG -O2

Configuration
--prefix=/nasa/mvapich2/1.4.1/intel.sles11 --enable-f77 --enable-f90 --enable-cxx --enable-romio --with-file-system=lustre+nfs --enable-threads=multiple --with-rdma=gen2 --with-pm=remshell

Because of a formatting issue, the "Configuration" above may appear as several
lines. It should only be one line.

•

Building Applications

Here is an example of how to build an MPI application with MVAPICH2:

%module load mpi-mvapich2/1.4.1/intel
%module load comp-intel/11.1.072
%mpif90 program.f90

Running Applications

To run your job, submit your job through PBS. Within the PBS script, there are two ways to
run MPI applications built with MVAPICH2.

#PBS ..
...

1.

With MVAPICH 81

module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpiexec -np TOTAL_CPUS your_executable

#PBS ..
...
module load mpi-mvapich2/1.4.1/intel
module load comp-intel/11.1.072

mpirun_rsh -np TOTAL_CPUS -hostfile $PBS_NODEFILE your_executable

2.

Performance Issues

To pin processes, the MVAPICH library uses the environment variable
VIADEV_USE_AFFINITY, which does something similar to SGI's
MPI_DSM_DISTRIBUTE. By default, VIADEV_USE_AFFINITY is set to 1.

If you wish to pin processes explicitly, beware that with MVAPICH, one shepherd process is
created for each MPI process. You can use the command to see these processes of your
running job:

/u/scicon/tools/bin/qsh.pl jobid

'ps -C executable -L -opsr,pid,ppid,lwp,time,comm'

To properly pin MPI processes using dplace, one cannot skip the shepherd processes. In
addition, knowledge of the processor labeling in each processor type is essential when you
use dplace. Below are the recommended ways of pinning an 8 MPI process job with every
4 processes on 4 processors of a node, using two nodes:

Harpertown
mpiexec -np 8 dplace -c2,3,6,7 ./your_executable

•

Nehalem-EP
mpiexec -np 8 dplace -c2,3,4,5 ./your_executable

•

Westmere
mpiexec -np 8 dplace -c4,5,6,7 ./your_executable

•

Sandy Bridge
mpiexec -np 8 dplace -c6,7,8,9 ./your_executable

•

Further information about pinning can be found here.

For more descriptions including the MVAPICH User Guide and other MVAPICH
publications, see http://mvapich.cse.ohio-state.edu.

With MVAPICH 82

http://mvapich.cse.ohio-state.edu

With Intel-MPI

Intel's MPI library is another alternative for building and running your MPI application. The
available Intel MPI modules are:

mpi-intel/3.1.038•
mpi-intel/3.1b•
mpi-intel/3.2.011•
mpi-intel/4.0.028•
mpi-intel/4.0.2.003•

To use Intel MPI, first create a file $HOME/.mpd.conf that has the single line:

MPD_SECRETWORD=sometext
'sometext' should be unique for each user. Change the permission of the file to read/write
by you only.

%chmod 600 $HOME/.mpd.conf

Building Applications

To compile, load an Intel compiler module and an Intel MPI module. Make sure that no
other MPI module is loaded (that is, MPT, MVAPICH or MVAPICH2):

%module load mpi-intel/4.0.2.003
%module load comp-intel/11.1.072

Use the mpiifort/mpiicc scripts which invoke the Intel ifort/icc compilers.

%mpiifort -o your_executable program.f

Running Applications

To run it, in your PBS script make sure the Intel MPI modules are loaded as above, start the
MPD daemon, use mpiexec, and terminate the daemon at the end. For example:

#PBS ..
..
module load mpi-intel/4.0.2.003
module load comp/intel/11.1.072

Note: The following three lines should really be in one line

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE |
sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE`
 --rsh=ssh --mpd=`which mpd` --ordered

CPUS_PER_NODE and TOTAL_CPUS below represent numerical numbers

With Intel-MPI 83

for the job at hand

mpiexec -ppn CPUS_PER_NODE -np TOTAL_CPUS ./your_executable

terminate the MPD daemon

mpdallexit

With Intel-MPI 84

With OpenMP

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%module load comp-intel/11.1.072
%ifort -o your_executable -openmp program.f

Running Applications

The maximum number of OpenMP threads an application can use on a Pleiades node
depends on (i) the number of physical processor cores in the node and (ii) if hyperthreading
is available and enabled. Hyperthreading technology is not available for the Harpertown
processor type. It is available and enabled at NAS for the Nehalem-EP, Westmere, and
Sandy Bridge processor types. With hyperthreading, the OS views each physical core as
two logical processors and can assign two threads to it. This is beneficial only when one
thread does not keep the functional units in the core busy all the time and can share the
resources in the core with another thread. Running in this mode may take less than 2 times
the walltime compared to running only one thread on the core.

Tip: Before running with hyperthreading for your production runs, it is recommended that
you experiment with it to see if it is beneficial for your application.

Maximum Threads

Processor Type Maximum Threads
without Hyperthreading

Maximum Threads
with Hyperthreading

Harpertown 8 N/A
Nehalem-EP 8 16
Westmere-EP 12 24
Sandy Bridge 16 32
Here is sample PBS script for running OpenMP applications on a Pleiades Nehalem-EP
node without hyperthreading:

#PBS -lselect=1:ncpus=8:ompthreads=8:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

Here is sample PBS script with hyperthreading:

With OpenMP 85

#PBS -lselect=1:ncpus=8:ompthreads=16:model=neh,walltime=1:00:00

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

./your_executable

With OpenMP 86

With SGI's MPI and Intel OpenMP

Building Applications

To build an MPI/OpenMP hybrid executable using SGI's MPT and Intel's OpenMP libraries,
your code needs to be compiled with the -openmp flag and linked with the -mpi flag.

%module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
%ifort -o your_executable prog.f -openmp -lmpi

Running Applications

Here is a sample PBS script for running MPI/OpenMP application on Pleiades using three
nodes and on each node, four MPI processes with two OpenMP threads per MPI process.

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789
setenv OMP_NUM_THREADS 2

cd $PBS_O_WORKDIR

mpiexec ./your_executable

You can specify the number of threads, ompthreads, on the PBS resource request line,
which will cause the PBS prologue to set the OMP_NUM_THREADS environment variable.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

cd $PBS_O_WORKDIR

mpiexec ./your_executable

Performance Issues

For pure MPI codes built with SGI's MPT library, performance on Nehalem-EP and
Westmere nodes improves by pinning the processes through setting
MPI_DSM_DISTRIBUTE environment variables to 1 (or true). However, for MPI/OpenMP
codes, all the OpenMP threads for the same MPI process have the same process ID and
setting this variable to 1 causes all OpenMP threads to be pinned on the same core and the
performance suffers.

With SGI's MPI and Intel OpenMP 87

It is recommended that MPI_DSM_DISTRIBUTE is set to 0 and omplace is to be used for
pinning instead.

If you use Intel version 10.1.015 or later, you should also set KMP_AFFINITY to disabled or
OMPLACE_AFFINITY_COMPAT to ON as Intel's thread affinity interface would interfere with
dplace and omplace.

#PBS -lselect=3:ncpus=8:mpiprocs=4:ompthreads=2:model=neh
#PBS -lwalltime=1:00:00

module load comp-intel/11.1.072 mpi-sgi/mpt.2.04.10789

setenv MPI_DSM_DISTRIBUTE 0
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

mpiexec -np 4 omplace ./your_executable

With SGI's MPI and Intel OpenMP 88

With MVAPICH and Intel OpenMP

Building Applications

To build an MPI/OpenMP hybrid executable using MVAPICH and Intel's OpenMP libraries,
use mpif90, mpicc, and mpicxx with the -openmp flag.

%module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel
%mpif90 -o your_executable prog.f90 -openmp

Running Applications

With MVAPICH, a user's environment variables (such as VIADEV_USE_AFFINITY and
OMP_NUM_THREADS) are not passed in to mpiexec, thus they need to be passed in
explicitly, such as with /usr/bin/env.

Here is an example on how to run a MVAPICH/OpenMP hybrid code with a total of 12 MPI
processes and 2 OpenMP threads per MPI process:

#PBS -lselect=3:ncpus=8:mpiprocs=4:model=neh

module load comp-intel/11.1.072 mpi-mvapich2/1.4.1/intel

mpiexec /usr/bin/env VIADEV_USE_AFFINITY=0 OMP_NUM_THREADS=2 ./your_executable

Performance Issues

Setting the environment variable VIADEV_USE_AFFINITY to 0 disables CPU affinity
because MVAPICH does its own pinning. Setting it to 1 actually causes multiple OpenMP
threads to be placed on a single processor.

With MVAPICH and Intel OpenMP 89

Porting to Columbia

Default or Recommended compiler version and options

Intel compiler versions 10.0, 10.1, 11.0 and 11.1 are available on Columbia as modules.
Use the module avail command to find available versions.

The current default compiler module on Columbia is intel-comp.10.1.013.

In addition to the few flags mentioned in the article Recommended Intel Compiler
Debugging Options, here are a few more to keep in mind:

Turn on optimization: -O3

If you do not specify an optimization level (-On, n=0,1,2,3), the default is -O2. If you want
more aggressive optimizations, you can use -O3. Note that using -O3 may not improve
performance for some programs.

Turn inlining on: -ip or -ipo

Use of -ip enables additional interprocedural optimizations for single file compilation. One
of these optimizations enables the compiler to perform inline function expansion for calls to
functions defined within the current source file.

Use of -ipo enables multifile interprocedural (IP) optimizations (between files). When you
specify this option, the compiler performs inline function expansion for calls to functions
defined in separate files.

Parallelize your code: -openmp or -parallel

-openmp handles OMP directives and -parallel looks for loops to parallelize.

For more compiler/linker options, read man ifort, man icc, or go to:

%ifort -help
%icc -help

Porting to Columbia 90

Porting to Columbia: With SGI's MPT

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

The available SGI MPT modules on Columbia are:

mpt.1.16.0.0•
mpt.1.18.0.0•
mpt.1.19.0.0•
mpt.1.22.0.0•
mpt.1.25•

The current default version is mpt.1.16.0.0.

Environment Variables

On Columbia, when you load any of the above MPT modules, several environment
variables such as CPATH, INCLUDE, LD_LIBRARY_PATH, etc., are modified by pre-pending
the appropriate MPT directories. Also, the following MPT-related environment variables are
modified from their default values for improved performance:

setenv MPI_BUFS_PER_HOST 256
setenv MPI_BUFS_PER_PROC 256
setenv MPI_DSM_DISTRIBUTE

The meanings of these variables and their default values are:

MPI_BUFS_PER_HOST

Determines the number of shared message buffers (16 KB each) that MPI is to
allocate for each host (that is, C21, C22, C23, C24). These buffers are used to send
and receive long inter-host messages.
Default: 32 pages (1 page = 16KB) for mpt.1.16, mpt.1.18, mpt.1.19, mpt.1.22
Default: 96 pages (a page = 16KB) for mpt.1.25

MPI_BUFS_PER_PROC

Determines the number of private message buffers (16 KB each) that MPI is to
allocate for each process. These buffers are used to send long messages and
intra-host messages.
Default: 32 pages (1 page = 16KB)

Porting to Columbia: With SGI's MPT 91

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

MPI_DSM_DISTRIBUTE (toggle)

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the host with which that CPU is
associated. This feature can also be overridden by using dplace or omplace. This
feature is most useful if running on a dedicated system or running within a cpuset.
Default: Not enabled

Building Applications

Building MPI applications with SGI's MPT library simply requires linking with -lmpi and/or
-lmpi++. See the article SGI MPT for some examples.

Running Applications

WARNING: MPI executables built with SGI's MPT are not allowed to run on the Columbia
front-end node.
You can run your MPI job on C21-C24 in an interactive PBS session or through a PBS
batch job. Use mpiexec (under /PBS/bin) or mpirun to start your MPI processes. For
example:

#PBS -lncpus=8
....
mpiexec -np N ./your_executable

The -np flag (with N MPI processes) can be omitted if the value of N is the same as the
value specified for ncpus.

Porting to Columbia: With SGI's MPT 92

Porting to Columbia: With OpenMP

Building Applications

To build an OpenMP application, you need to use the -openmp Intel compiler flag:

%ifort -o your_executable -openmp program.f
Note that if you are compiling separate files, then -openmp is required at the link step to
link in the OpenMP library.

Running Applications

Note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the number of
threads that you want.

Here is a sample PBS script for running OpenMP applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv OMP_NUM_THREADS 8

cd $PBS_O_WORKDIR

./your_executable

Porting to Columbia: With OpenMP 93

Porting to Columbia: With MPI and OpenMP

Building Applications

To build a hybrid MPI+OpenMP application, you need to compile your code with the
-openmp compiler flag and link in both the Intel OpenMP and the SGI MPT library:

%ifort -o your_executable -openmp program.f -lmpi

Running Applications

Process/thread placement is critical to the performance of MPI+OpenMP hybrid codes. Two
environment variables should be set to get the proper placement:

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process
gets a unique CPU and physical memory on the node with which that CPU is
associated. Currently, the CPUs are chosen by simply starting at relative CPU 0 and
incrementing until all MPI processes have been forked.

MPI_OPENMP_INTEROP

Setting this variable modifies the placement of MPI processes to better
accommodate the OpenMP threads associated with each process. For this variable
to take effect, you must also set MPI_DSM_DISTRIBUTE.

Also note that OMP_NUM_THREADS is set to 1 by default for PBS jobs. Reset it to the
number of threads that you want.

Here is a sample PBS script for running MPI+OpenMP hybrid (two MPI processes, four
OpenMP threads per MPI process) applications on Columbia:

#PBS -lncpus=8,walltime=1:00:00

setenv MPI_DSM_DISTRIBUTE
setenv MPI_OPENMP_INTEROP
setenv OMP_NUM_THREADS 4

cd $PBS_O_WORKDIR

mpirun -np 2 ./your_executable

Porting to Columbia: With MPI and OpenMP 94

Software Environment

Software: Overview

Software on the NAS HECC systems include the operating systems, programming
environments, licensed or open source software, etc. The following lists the few directories
where you can find most of the software you need.

/bin : essential user commands binaries, such as cp, ls, mv, vi, etc.•
/lib : essential shared libraries and kernel modules, such as libc, libm, etc.•
/usr/bin : most user commands, such as cat, diff, ldd, etc.•
/usr/lib : libraries for programming and packages, such as libstdc++, libGL,
etc.

•

/usr/include : system's general-use include files for the C programming
language

•

/usr/local/bin : binaries added for local use, such as acct_ytd, bbftp, etc.•
/usr/local/lib : shell start up files, such as glocal.cshrc for NAS systems•
/PBS : software for submitting, monitoring and managing PBS jobs•
/nasa : licensed or open source software modules•

Except for those under /nasa, the binaries, libraries and include files above should have
been included in your default search path.

Read the articles on Modules to learn how to use licensed or open source software
managed by modules.

In addition, on Pleiades there are some useful tools provided by members of the Application
Performance and Productivity Group. They are stored under the directory
/u/scicon/tools.

Software Environment 95

Operating Systems

All NAS HECC systems (including Pleiades and Columbia) are running SGI ProPack for
Linux which is designed to enhance the Linux experience for SGI systems.

To find the Linux kernel version number on a host, use:

%uname -r
To find the SGI release number on a host, use:

%cat /etc/sgi-release
All Pleiades front-ends and compute nodes are running with ProPack 7SP1.

All Columbia systems, including both front-ends and compute systems, are running with
ProPack 6SP5.

Operating Systems 96

Modules

A system called "modules" to centralize the location of licensed products from vendors or
software from public domain is installed on all NAS HECC systems.

To use the modules commands, you have to do either one of the following first:

Source the following files in your .cshrc or .profile

In .cshrc (for csh users):

source /usr/local/lib/global.cshrc
In .profile (for bash users):

source /usr/local/lib/global.profile

1.

In the shell that you want to use the module commands, do one of the following:

For csh users:

%source /usr/share/modules/init/csh
For bash users:

%. /usr/share/modules/init/bash

2.

The following are useful module commands to remember:

module avail

Used to find out what modules are available.•

module list

Used to list which modules are loaded in your environment.•

module purge

Used to unload all loaded modulefiles.•

module load module_name1 module_name2 ... module_nameN

Used to load the desired modules.•

module switch old_module_name new_module_name

Used to switch between two modules.•

Modules 97

module show module_name

Used to show changes to the environment that will happen if you load
module_name.

•

Modules 98

Table of All Modules

The table below shows the available software managed through modules on Pleiades
and/or Columbia. To request installation of a software as a module, please send an email to
support@nas.nasa.gov

Note that the name of a software module may contain:

software name•
vendor name•
version number•
varieties such as what compiler and/or what library is used to build the software•

For example:

comp-intel/11.1.072 represents the Intel Compiler version 11.1.072.•
mpi-sgi/mpt.2.04.10789 represents the SGI MPI library version
mpt.2.04.10789.

•

mpi-mvapich2/1.4.1/intel represents the MVAPICH2 MPI library version 1.4.1
built with an Intel compiler.

•

Use the module avail command to see all the available versions and provide the full
name of a module when you decide to load a module.

Available Modules (as of 30 August 2010)
Software Platforms Function
Intel compiler Pleiades/Columbia Compiler
Intel mkl Pleiades/Columbia Math/Scientific Library
Intel mpi Pleiades/Columbia MPI Library
SGI mpt Pleiades/Columbia MPI Library
SGI scsl Columbia Math/Scientific Library
automake Columbia Makefile Tool
boost Columbia C++ Library
cpan Pleiades Comprehensive Perl Archive Network
cscope Columbia Source Code Browsing Tool
drm Pleiades X Window Library Tool
eclipse Pleiades Software Development Environment
emacs Pleiades Text Editor
fieldview Pleiades/Columbia Data Visualization and Analysis Tool
flex Pleiades Text Scanner Generation Tool
fluent Pleiades CFD Modeling Application
gaussian Pleiades/Columbia Quantum Chemistry Application

Table of All Modules 99

mailto:support@nas.nasa.gov

gcc Pleiades/Columbia GNU C/C++ Compiler
gd Pleiades/Columbia Images Creation Library
git Pleiades/Columbia Version Control System
glib Pleiades/Columbia Low-level Core Library
gmp Pleiades/Columbia Math Library
gnuplot Pleiades/Columbia Data Visualization Tool
grace Pleiades/Columbia Data Visualization Tool
grads Pleiades/Columbia Data Visualization and Analysis Tool
gridgen Pleiades/Columbia CFD Grid Generation Tool
gsl Pleiades/Columbia GNU Scientific Library
hcss Pleiades/Columbia Herschel Common Science System
hdf4 Pleiades/Columbia I/O Library and Tools
hdf5 Pleiades/Columbia I/O Library and Tools
idl Pleiades/Columbia Data Visualization and Analysis Tool
idn Pleiades GNU Libidn
imagemagick Pleiades/Columbia Image Tool
java-sdk Columbia Programming Language
jpeg Columbia Image Tool
jvm Pleiades Java Virtual Machine
libxml Columbia C Parser and Toolkit
lsdyna3d Pleiades/Columbia Finite Element Application

matlab Pleiades/Columbia Numerical Computing Environment and Programming
Language

mlp Columbia Multi-Level Parallelism Library
mpfr Pleiades Multiple-Precision Floating-point Computations Library
mpich2 Columbia MPI Library
mvapich2 Pleiades MPI Library
ncarg Pleiades/Columbia Graphics Library for Scientifc Data
ncl Pleiades/Columbia NCAR Command Language
nco Pleiades/Columbia netCDF Operators
netcdf Pleiades/Columbia I/O Library
octave Pleiades/Columbia Numerical Computations Language
paraview Pleiades Data VIsualization and Analysis Tool
parmetis Pleiades/Columbia Math/Numerical Library
pdf Columbia PDF File Generation Library
perl Columbia Programming Language
petsc Columbia Math/Numerical Library
parallel netcdf Pleiades/Columbia Parallel I/O Library
png Columbia Portable Network Graphics Format

Table of All Modules 100

pyMPI Columbia MPI Program Development with Python
python Pleiades/Columbia Programming Language
ruby Pleiades Programming Language
svn Pleiades/Columbia Revision Control Application
swig Pleiades/Columbia Software Development Tool
tcl-tk Pleiades/Columbia Scripting Language
tecplot Pleiades/Columbia Data Visualization and Analysis Tool
texlive Pleiades TeX System Application
totalview Pleiades/Columbia Debugger
udunits Pleiades/Columbia Data Format Library
visit Pleiades/Columbia Data Visualization and Analysis Tool
xv Pleiades Images Display Application

xxdiff Pleiades Graphical File And Directories Comparator And Merge
Tool

yaml Pleiades/Columbia Human-Readable Data Serialization Format
zlib Columbia Data Compression Library

Table of All Modules 101

Licensed Application Software

Licensed Application Software: Overview

A few licensed applications from different vendors are installed on NAS HECC systems
under the /nasa directory. They are either purchased by NAS (with justification that many
users need it) or by users themselves. If you would like to use a licensed application which
is not yet available on NAS HECC systems, you may have to purchase the license yourself.

Licensed Application Software 102

Tecplot

Two Tecplot products are available on the HECC systems: Tecplot 360 and Tecplot
Chorus.

Tecplot 360

Tecplot 360 is a CFD and Numerical Simulation Visualization Software used in
post-processing simulation results. Common tasks associated with post-processing
analysis of flow solver (for example, Fluent, STAR-CD, OpenFOAM) can include such tasks
as:

Calculating grid quantities (for example, aspect ratios, skewness, orthogonality, and
stretch factors)

•

Normalizing data; Deriving flow field functions like pressure coefficient or vorticity
magnitude

•

Verifying solution convergence•
Estimating the order of accuracy of solutions•
Interactively exploring data through cut planes (a slice through a region),
iso-surfaces (3-D maps of concentrations), particle paths (dropping an object in the
"fluid" and watching where it goes).

•

As of Dec. 2008, the Tecplot 360 license at NAS no longer has restrictions on the number
of copies of Tecplot 360 that can be run concurrently.

Note: If you have set the stacksize with a command like limit stacksize unlimited,
you will have to reduce the stacksize for Tecplot to run. For example:

%limit stacksize 2000000

Tecplot Chorus

Tecplot Chorus is a new simulation analytics framework that unites physics visualization
with data management and analytics in a single environment.

Currently, one Tecplot Chorus license is available to use on Pleiades or NAS supported
desktop systems.

For more information on these versions of Tecplot, please visit Tecplot's documentation
page.

See also: http://en.wikipedia.org/wiki/Tecplot

Tecplot 103

http://www.tecplot.com/products/tecplot-360
http://www.tecplot.com/products/tecplot-chorus
http://www.tecplot.com/Support/Documentation.aspx
http://www.tecplot.com/Support/Documentation.aspx
http://en.wikipedia.org/wiki/Tecplot

IDL

IDL is a software for data analysis, visualization, and cross-platform application
development. IDL combines tools for any type of project, from "quick-look," interactive
analysis and display to large-scale commercial programming projects.

For more information, please visit the IDL home page.

Current licenses of IDL at NAS allow 10 users to use it at the same time. If you are not able
to use IDL because the licenses are being used, try using it at a later time, or load an IDL
module and issue the command lmstat -a to find out how many licenses are in use.

See also: http://en.wikipedia.org/wiki/IDL_(programming_language)

IDL 104

http://www.ittvis.com/ProductServices/IDL.aspx
http://en.wikipedia.org/wiki/IDL_(programming_language)

Matlab

Matlab is a numerical computing environment and programming language. Created by The
MathWorks, Matlab allows easy matrix manipulation, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with programs in
other languages. Although it specializes in numerical computing, an optional toolbox
interfaces with the Maple symbolic engine, allowing it to be part of a full computer algebra
system.

A total of 8 licenses are available to use on either Pleiades or Columbia or NAS supported
desktop systems. To find out how many licenses are currently in use, use:

%module load matlab/2010b
%matstat

For more information, please visit the Matlab web site at MathWorks.

Note: Our version of glibc has not been tested with Matlab 2010. Please proceed with this
in mind.

See also: http://en.wikipedia.org/wiki/Matlab

Matlab 105

http://www.mathworks.com/products/matlab/
http://en.wikipedia.org/wiki/Matlab

Gaussian

Gaussian 03 is a suite of electronic structure programs. It is used by chemists, chemical
engineers, biochemists, physicists and others for research in established and emerging
areas of chemical interest.

Starting from the basic laws of quantum mechanics, Gaussian predicts the energies,
molecular structures, and vibrational frequencies of molecular systems, along with
numerous molecular properties derived from these basic computation types. It can be used
to study molecules and reactions under a wide range of conditions, including both stable
species and compounds which are difficult or impossible to observe experimentally such as
short-lived intermediates and transition structures.

For more information, please see the Gaussian manual or the Gaussian web site.

Two versions (c.02 and e.01) of Gaussian 03 have been installed on Columbia systems. To
use the older c.02 version, do the following in your PBS script:

module load gaussian.03.c02
source $g03root/g03/bsd/g03.login

g03 input output

To use the newer e.01 version (built with intel-comp.10.0.023 and
intel-mkl.9.1.023), do:

module load gaussian.03.e.01
source $g03root/g03/bsd/g03.login

g03 input output

If you are a bash user, then do:

. /usr/share/modules/init/bash
module load gaussian.03.e.01
. $g03root/g03/bsd/g03.profile

g03 input output

See also: http://en.wikipedia.org/wiki/GAUSSIAN

Gaussian 106

http://www.gaussian.com/g_ur/g03mantop.htm
http://www.gaussian.com/
http://en.wikipedia.org/wiki/GAUSSIAN

FieldView

FieldView is Intelligent Light's CFD post-processing software to quickly identify important
flow features and characteristics in simulations. It allows interactive exploration for thorough
understanding of results. You can use it to examine and compare cases, extract critical
values, and make presentations.

Current license allows up to 4 concurrent uses.

For more information, see Intelligent Light's FieldView home page.

FieldView 107

http://www.ilight.com/fieldview.php

Gridgen

Gridgen is Pointwise's meshing software used by engineers and scientists to generate high
quality grids for engineering analysis.

For more information, please visit the Gridgen home page at the Pointwise web site.

Gridgen 108

http://www.pointwise.com/gridgen/

Running Jobs with PBS

Portable Batch System (PBS): Overview

All NAS facility supercomputers use the Portable Batch System (PBS) from Altair for batch
job submission, job monitoring, and job management. Note that different systems may use
different versions of PBS, so the available features may vary slightly from system to
system.

Batch Jobs

Batch jobs run on compute nodes, not the front-end nodes. A PBS scheduler allocates
blocks of compute nodes to jobs to provide exclusive access. You will submit batch jobs to
run on one or more compute nodes using the qsub command from an interactive session
on one of the front-end nodes (such as, pfe[20-27], bridge[1-4] for Pleiades or cfe2 for
Columbia).

Normal batch jobs are typically run by submitting a script. A "jobid" is assigned after
submission. When the resources you request become available, your job will execute on
the compute nodes. When the job is complete, the PBS standard output and standard error
of the job will be returned in files available to you.

Take careful note when porting job submission scripts from systems outside of the NAS
environment or between the Pleiades and Columbia supercomputers you may need to
make changes to your existing scripts to make them work properly on these systems.

Interactive Batch Mode

PBS also supports an interactive batch mode, using the qsub -I, where the input and
output is connected to the user's terminal, but the scheduling of the job is still under control
of the batch system.

Queues

The available queues on different systems vary, but all typically have constraints on
maximum wall-time and/or the number of CPUs allowed for a job. Some queues may also
have other constraints or be restricted to serving certain users or groups. In addition, to
ensure that each NASA mission directorate is granted their allocated share of resources at
any given time, mission directorate limits (called "shares") are also set on Pleiades and
Columbia.

Running Jobs with PBS 109

See man pbs for more information.

Portable Batch System (PBS): Overview 110

Job Accounting

Usage on the HECC machines at NAS, except for the front-end machines, is charged.

Starting May 1, 2011, the accounting unit is the Standard Billing Unit (SBU). The SBUs
charged to a PBS job running on the compute node(s) is:

SBU charged = Wall_Clock_Hours_Used * Number of MAUs * SBU Rate

where the MAU represents the minimum allocatable unit of resources available through
PBS. On Pleiades, an MAU is a node (with 8 cores for Harpertown and Nehalem-EP, 12
cores for Westmere, and 16 cores for Sandy Bridge in each node). On Columiba, an MAU
has 4 cores. Charging is based on the number of MAUs allocated to a job, not how many
cores are actually used during runtime. Once a user is allocated the resources, that user
has exclusive access to those resources until the user's job completes or exceeds its
requested wall-clock time.

The SBU rate for each of the NAS processors is outlined below:

Host SBU Rate (per MAU)
Pleiades Sandy Bridge nodes 1.82
Pleiades Westmere nodes 1.00
Pleiades Nehalem-EP nodes 0.80
Pleiades Harpertown nodes 0.45
Columbia Itanium-2 0.18

In addition, charges on Columbia apply both to jobs that run successfully and those that are
interrupted. Interrupted jobs are charged by taking the elapsed job time in hours,
subtracting 1 hour, multiplying that by the number of MAUs used, and then deducting the
resulting amount from the allocation. Users are encouraged to have their applications
checkpoint roughly every hour.

In the near future, interruptions on Pleiades will be handled in a similar manner. For
example:

You have a 24-hour job on Columbia that requires 16 MAUs (that is, 64 cores) that has run
for 12 hours and then the system crashes. The accounting system will take the 12 hours,
subtract 1 hour, and compute the SBUs (11 hours X 16 MAUs x 0.18 = 31.68 SBUs), which
will then be subtracted from your allocation for your GID.

Job Accounting 111

Job Accounting Utilities

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

The job accounting utilities acct_ytd and acct_query can be used to obtain resource
usage and charging information about your account, the accounts of other users on your
project, and the project as a whole. Daily usage totals for each account are available for the
current operational period.

acct_ytd

The acct_ytd command provides a year-to-date summary of accounting information for
groups to which a user belongs. It will normally be accurate as of midnight the previous
night, when accounting was last run.

A number of parameters can be used, but the simplest way is to type acct_ytd on a host
without any parameters. This produces a line of output for each project you have access to
on that host.

%acct_ytd
You can also specify the host group and/or a specific GID (for example, a0800):

%acct_ytd -cpleiades a0800 %acct_ytd -ccolumbia a0800
To find the allocations and usages of all your GIDs on all hosts, use the -call flag.

%acct_ytd -call
See man acct_ytd on Pleiades and Columbia for more information.

acct_query

The acct_query command searches and displays process-level billing records. This
means that while totals over a period or for each day in a period are possible, you can also
obtain detailed billing records for each process run in a period.

For example, to see all the SBU usage, beginning June 1, 2010, ending July 1, 2010, for all
projects and on all hosts by user zsmith:

%acct_query -b06/01/10 -e07/01/10 -pall -call -uzsmith

Job Accounting Utilities 112

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

To see the current SBU usage for the operational year 2010 (defined as May 1, 2010 to
May 1, 2011 for most mission directorates) for all projects and on all hosts by user zsmith:

%acct_query -y10 -pall -call -uzsmith
Eligible hostnames include:

columbia21•
columbia22•
columbia23•
columbia24•
pbs1•
pleiades (for Harpertown nodes)•
pleiades_N (for Nehalem nodes)•
pleiades_W (for Westmere nodes)•
pleiades_S (for Sandy Bridge nodes)•

See man acct_query on Pleiades and Columbia for more information.

Job Accounting Utilities 113

Multiple GIDs and Charging to a specific GID

Each approved project is assigned a project ID (GID). Members of a GID are authorized to
use the resources allocated to that GID. For those users who have access to multiple GIDs,
be aware that only one of those GIDs is considered your default.

Use the groups command to find which GIDs you are a member of. The following example
shows that user zsmith is a member of the groups a0800, a0907, all, and e0720.

%groups zsmith
zsmith : a0800 a0907 all e0720

The first GID from the "groups" list should be your default GID. This can be verified through
the /etc/passwd file. For example, the /etc/passwd file has an entry for user zsmith
with the GID 20800 (which is the same as a0800, his default GID).

%grep zsmith /etc/passwd
zsmith:x:6666:20800:Z. Smith,,650-604-4444,:/u/zsmith:/bin/csh

When you use resources on the compute nodes through PBS jobs, SBUs are deducted
from your default GID unless you specify otherwise. To charge resource usage to an
alternative GID for a batch job, you can use the PBS flag -W group_list=account
either in your script or on the qsub command line. For example:

#PBS -W group_list=a0907
or

%qsub -W group_list=a0907

Multiple GIDs and Charging to a specific GID 114

Commonly Used PBS Commands

man pbs provides a list of all PBS commands. The four most commonly used PBS
commands, qsub, qstat, qdel, and qhold, are briefly described below.

qsub

To submit a batch job to the specified queue using a script:

%qsub -q queue_name job_script
Common possibilities for queue_name at NAS include normal, debug, long, devel, and low.
When queue_name is omitted, the job is routed to the default queue, which is the normal
queue.

To submit an interactive PBS job:

%qsub -I -q queue_name -lresource_list
No job_script should be included when submitting an interactive PBS job.

The resource_list typically specifies the number of nodes, CPUs, amount of memory and
walltime needed for this job. The following example shows a request for Pleiades with 2
nodes, 8 CPUs per node, and a walltime limit of 3 hours.

%qsub -I -lselect=2:ncpus=8,walltime=3:00:00
See man pbs_resources for more information on what resources can be specified. If
-lresource_list is omitted, the default resources for the specified queue is used. When
queue_name is omitted, the job is routed to the default queue, which is the normal queue.

qstat

To display queue information:

%qstat -Q queue_name
%qstat -q queue_name
$qstat -fQ queue_name

These commands display in different formats all the queue available on the systems, their
constraints and status. The queue_name is optional.

To display job status using qstat -:

-a
Display all jobs in any status (running, queued, held)

-r

Commonly Used PBS Commands 115

Display all running or suspended jobs
-n

Display the execution hosts of the running jobs
-i

Display all queued, held or waiting jobs
-u user_name

Display jobs that belong to the specified user
-s

Display any comment added by the administrator or scheduler. This option is
typically used to find clues of why a job has not started running.

-f job_id
Display detailed information about a specific job

-xf job_id, -xu user_id
Display status informaton for finished jobs (within the past 7 days). This option is
only available in newer version of PBS, which has been installed on Pleiades, but not
on Columbia.

TIP: Some of these flags can be combined when checking the job status.

qdel

To delete a job:

%qdel job_id

qhold

To hold a job:

%qhold job_id
Only the job owner or a system administrator with "su" or "root" privilege can place a hold
on a job. The hold can be released using the qrls command.

For more detailed information on each command, see their corresponding man pages.

Commonly Used PBS Commands 116

Commonly Used QSUB Options in PBS Scripts or in the
QSUB Command Line

The qsub options can be read from the PBS directives of a PBS job_script or from the
qsub command line. For a complete list of available options, see man qsub. The more
commonly used ones are listed below.

-S shell_name
Specifies the shell that interprets the job script

-V
Declares that all environment variables in the qsub command's environment are to
be exported to the batch job

-v variable_list
Lists environment variables to be exported to the job

-q queue_name
Defines the destination of the job. The common possibilities for queue_name on
Pleides and Columbia include normal, debug, long, and low. In addition, there is a
devel queue on Pleiades for development work.

-l resouce_list
Specifies the resources that are required by the job and establishes a limit to the
amount of resources that can be consumed. Commonly used resource items are
select, ncpus, walltime, and memory. See man pbs_resources for a complete list of
available resources.

-e path
Directs the standard error output produced by the request to the stated file path

-o path
Directs the standard output produced by the request to the stated file path.

-j join
Declares that the standard output and error streams of the job should be merged
(joined). The values for join can be:
oe: standard output and error streams are merged in the standard output file
eo: standard error and output streams are merged in the standard error file

-m mail_options
Defines the set of conditions under which the execution server will send mail
message about the job. See man qsub for a list of mail_options.

-N name
Declares a name for the job

-W addl_attributes
Allows for the specification of additional job attributes. The most common ones are:
-W group_list=g_list specifies the group the job runs under
-W depend=afterany:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with any exit status
-W depend=afterok:job_ID.server_name.nas.nasa.gov (for example,
12345.pbspl1.nas.nasa.gov) submits a job which is to be executed after job_ID has
finished with no errors

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 117

-r y|n
Declares whether the job is rerunnable

The top of a PBS job_script contains PBS directives, each of which begins with the string
#PBS. Here is an example for use on Pleiades.

#PBS -S /bin/csh
#PBS -V
#PBS -q long
#PBS -lselect=2:ncpus=8:mpiprocs=4:model=har,walltime=24:00:00
#PBS -j oe
#PBS -o /nobackup/zsmith/my_pbs_output
#PBS -N my_job_name
#PBS -m e
#PBS -W group_list=a0907
#PBS -r n

The resources and/or attributes set using options to the qsub command line override those
set in the directives in the PBS job_script.

Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line 118

New Features in PBS

Some of the new features relevant to users are listed below:

Use of the Shrink-to-Fit Feature (version 11.3)

The shrink-to-fit (STF) feature allows a user to specify a range of acceptable walltimes for a
job, so that PBS can run the job sooner than it might otherwise. This feature is particularly
helpful when scheduling jobs before an upcoming dedicated time.

For example, suppose your typical job requires 5 days of walltime. If there were less than 5
days left before the start of dedicated time, the job wouldn't run until after dedicated time.
However, if you know that your job can do enough useful work running for 3 days or longer,
you can submit it in the following way:

% qsub -l min_walltime=72:00:00,max_walltime=120:00:00 job_script
When PBS attempts to run your job it will initially look for a time slot of 5 days; but when no
such time slot is found between now and the dedicated time, it will look for smaller and
smaller time slots, down to the min_walltime of 3 days.

If you have an existing job that is still queued, you can use the qalter command to add
these min_walltime and max_walltime attributes:

% qalter -l min_walltime=hh:mm:ss,max_walltime=hh:mm:ss jobid
Or change the walltime with the command:

% qalter -l walltime=hh:mm:ss jobid

Show the Processor Model (version 10.4)

Processor model (for example, Harpertown, Nehalem-EP, Westmere, and Sandy Bridge)
can be displayed with:

%qstat -W o=+model

Show Job History (version 10.1)

Use the PBS -x option to obtain job history information, including the submission
parameters, start/end time, resources used, etc., for jobs that finished execution, were
deleted or are still running.

The job history for finished jobs is preserved for a specific duration. After the duration has
expired, PBS deletes the job history information and it is no longer available. Currently, the
duration is set to be 7 days on Pleiades.

New Features in PBS 119

%qstat -fx job_id

Advance and Standing Reservations (version 9.2)

An advance reservation can be made for a set of resources for a specified time. The
reservation is only available to a specific user or group of users.

A standing reservation is an advance reservation which recurs at specified times. For
example, the user can reserve 8 nodes every Wednesday from 5pm to 8pm, for the next
month.

The reservation is made using the pbs_rsub command. PBS either confirms that the
reservation can be made, or rejects the request. Once he reservation is confirmed, PBS
creates a queue for the reservation's jobs. Jobs are then submitted to this queue.

The following example shows the creation of an advance reservation asking for 1 node with
8 CPUs, a start time of 11:30 and a duration of 30 minutes.

%pbs_rsub -R 1130 -D 00:30:00 -l select=1:ncpus=8
A reservation can be deleted using the pbs_rdel command.

For more information, see man pbs_rsub and man pbs_rdel.

WARNING: Requests to use advance and standing reservations must be approved by NAS
management. Only staff with special privilege can create the reservations for users.

New Features in PBS 120

Checkpointing and Restart

None of the NAS HEC systems has an automatic checkpoint capability made available by
the operating system. For jobs that need lots of resources and/or long walltime, you should
have a checkpoint/restart capability implemented in the source code or job script.

PBS automatically restarts unfinished jobs after system crashes. If you do not want PBS to
restart your job, make sure to add the following in your PBS script:

#PBS -r n

Checkpointing and Restart 121

PBS Environment Variables

There are a number of environment variables provided to the PBS job. Some are taken
from the user's environment and carried with the job. Others are created by PBS. Still
others can be explicitly created by the user for exclusive use by PBS jobs. All PBS-provided
environment variable names start with the characters "PBS_". Some are then followed by a
capital O ("PBS_O_") indicating that the variable is from the job's originating environment
(that is, the user's).

The following lists a few useful PBS environment variables:

PBS_O_WORKDIR
Contains the name of the directory from which the user submitted the PBS job

PBS_O_PATH
Value of PATH from submission environment

PBS_JOBID
Contains the PBS job identifier

PBS_JOBDIR
Pathname of job-specific staging and execution directory

PBS_NODEFILE
Contains a list of vnodes assigned to the job

TMPDIR
The job-specific temporary directory for this job. Defaults to /tmp/pbs.job_id on
the vnodes.

PBS Environment Variables 122

PBS Scheduling Policy

This article gives a simplified explanation of the PBS scheduling policy on Pleiades and
Columbia.

PBS scheduling policies change frequently, in response to varying demands and
workloads. The current policy (March 1, 2011), simplified, states that jobs are sorted in the
following order: current mission directorate CPU use, job priority, queue priority, and job
size (wide jobs first).

In each scheduling cycle, PBS examines the jobs in sorted order, starting a job if it can. If
the job cannot be started immediately, it is either scheduled around or simply bypassed for
this cycle.

There are numerous reasons why jobs won't start, such as:

The queue is at its running job limit•
You are at your running job limit•
The queue is at its CPU limit•
The mission directorate is at its CPU share limit and the job cannot borrow from
another mission

•

Not enough CPUs are available•

Notice that a high-priority job might be blocked by some limit, while a lower priority job, from
a different user or asking for fewer resources, might not be blocked.

If your job is waiting in the queue, use the following commands to get some information
about why it has not started running.

pfe20% qstat -s jobid
or
pfe20% qstat -f jobid | grep -i comment

On Pleiades, output from the following command shows the amount of resources (broken
down into Harpertown, Nehalem, Westmere, and Sandy Bridge processors) used and
borrowed by each mission directorate, and the resources each mission is waiting for:

pfe20% /u/scicon/tools/bin/qs
The following command provides the order of jobs that PBS schedules to start at the
current scheduling cycle. It also provides information regarding processor type(s), mission,
and job priority:

pfe20% qstat -W o=+model,mission,pri -i
The policy described above could result in a large, high-priority job being blocked forever by
a steady stream of smaller, low-priority jobs. To prevent jobs from languishing in the queues
for an indefinite time, PBS reserves resources for the top N jobs (currently, N is 4), and
doesn't allow lower priority jobs start if they would delay the start time of one of the top job

PBS Scheduling Policy 123

("backfilling"). Additional details are given below.

PBS Sorting Order

Mission Shares

Each NASA mission directorate is allocated a certain percentage of the CPUs in the
system. (See Mission Shares Policy on Pleiades .) A job cannot start if that action would
cause the mission to exceed its share, unless another mission is using less than its share
and has no jobs waiting. In this case, the high-use mission can "borrow" CPUs from the
lower-use mission for up to a specified time (currently, max_borrow is 4 hours).

So , if the job itself needs less than max_borrow hours to run, or if a sufficient number of
other jobs from the high-use mission will finish within max_borrow hours to get back under
its mission share, then the job can borrow CPUs.

When jobs are sorted, jobs from missions using less of their share are picked before jobs
from missions using more of their share.

Job Priority

Job priority has three components. First is the native priority (the -p parameter to qsub or
qalter). Added to that is the queue priority. If the native priority is 0, then a further
adjustment is made based on how long the job has been waiting for resources. Waiting jobs
get a "boost" of up to 20 priority points, depending on how long they have been waiting and
which queue they are in.

This treatment is modified for queues assigned to the Human Exploration and Operations
Mission Directorate (HEOMD). For those queues, job priority is set by a separate set of
policies controlled by HEOMD management.

Queue priority

Some queues are given higher or lower priorities than the default (run qstat -Q to get
current values). Note that because the mission share is the most significant sort criterion,
job and queue priorities have little effect mission-to-mission.

Job Size

Jobs asking for more nodes are favored over jobs asking for fewer. The reasoning is that,
while it is easier for narrow jobs to fill in gaps in the schedule, wide jobs need help

PBS Scheduling Policy 124

http://www.nas.nasa.gov/kb/Mission-Shares-Policy-on-Pleiades_168.html

collecting enough CPUs to start.

Backfilling

As mentioned above, when PBS cannot start a job immediately, if it is one of the first N
such jobs, PBS sets aside resources for the job before examining other jobs. That is, PBS
looks at the currently running jobs to see when they will finish (using the wall-time
estimates). From those finish times, PBS decides when enough resources (such as CPUs,
memory, mission share, and job limits) will become available to run the top job.

PBS then creates a virtual reservation for those resources at that time. Now, when PBS
looks at other jobs to see if they can start immediately, it also checks whether starting the
job would collide with one of these reservations. Only if there are no collisions will PBS start
the lower priority jobs.

This description applies to both Pleiades and Columbia, although the specific queues,
priorities, mission percentages, and other elements differ between the two systems.

PBS Scheduling Policy 125

PBS exit codes

The PBS exit value of a job may fall in one of four ranges:

X = 0 (= JOB_EXEC_OK)

This is a PBS special return value indicating that the job executed successfully

•

X < 0

This is a PBS special return value indicating that the job could not be executed.
These negative values are:

•

-1 = JOB_EXEC_FAIL1 : Job exec failed, before files, no retry♦
-2 = JOB_EXEC_FAIL2 : Job exec failed, after files, no retry♦
-3 = JOB_EXEC_RETRY : Job exec failed, do retry♦
-4 = JOB_EXEC_INITABT : Job aborted on MOM initialization♦
-5 = JOB_EXEC_INITRST : Job aborted on MOM initialization, checkpoint, no
migrate

♦

-6 = JOB_EXEC_INITRMG : Job aborted on MOM initialization, checkpoint,
ok migrate

♦

-7 = JOB_EXEC_BADRESRT : Job restart failed♦
-8 = JOB_EXEC_GLOBUS_INIT_RETRY : Initialization of Globus job failed.
Do retry.

♦

-9 = JOB_EXEC_GLOBUS_INIT_FAIL : Initialization of Globus job failed. Do
not retry.

♦

-10 = JOB_EXEC_FAILUID : Invalid UID/GID for job♦
-11 = JOB_EXEC_RERUN : Job was rerun♦
-12 = JOB_EXEC_CHKP : Job was checkpointed and killed♦
-13 = JOB_EXEC_FAIL_PASSWORD : Job failed due to a bad password♦
-14 = JOB_EXEC_RERUN_ ON_SIS_FAIL : Job was requeued (if
rerunnable) or deleted (if not) due to a communication failure between Mother
Superior and a Sister

♦

0 <= X < 128 (or 256 depending on the system)

This is the exit value of the top process in the job, typically the shell. This may be the
exit value of the last command executed in the shell or the .logout script if the user
has such a script (csh).

•

X >=128 (or 256 depending on the system)

This means the job was killed with a signal. The signal is given by X modulo 128 (or
256). For example an exit value of 137 means the job's top process was killed with
signal 9 (137 % 128 = 9).

•

PBS exit codes 126

Front-End Usage Guidelines

Pleiades Front-End Usage Guidelines

Summary: Use the Pleiades front-end systems (PFEs) and the bridge nodes for file
editing, compiling, short debugging/testing sessions, and batch job submissions.

The PFEs and the bridge nodes are the front-end systems to Pleiades. They provide
an environment that allows you to get quick turnaround while performing file editing,
file transferring, compiling, short debugging/testing sessions, and batch job
submission via PBS to a subset of the Pleiades compute nodes.

WARNING: The new Pleiades front-ends (pfe[20-27]) use the Intel Sandy Bridge
processors. If you use a PGI compiler to build your executable, be aware that by
default the executable is optimized for Sandy Bridge and will not necessarily execute
on Harpertown, Nehalem-EP, or Westmere processors. To generate a single
executable that will work on all Pleiades processor types, use the option
-tp=penryn-64,nehalem-64,sandybridge-64 during compilation with PGI
compilers. See PGI Compilers and Tools for more information.
You cannot "ssh" to the compute nodes except for the subset of nodes your PBS job
is running on.

The bridge nodes are recommended for the following functions:

Pre- and/or Post-Processing

The large amount of memory on the bridge nodes allows pre- and post-processing
applications such as Tecplot, IDL, and Matlab to run faster than on the PFEs. Note
that the bridge nodes have the same software as the PFEs. For a list of available
applications, run the command module avail.

File Transfers Between Pleiades and Columbia

Both the Pleiades Lustre filesystems /nobackup and the Columbia CXFS filesystems
/nobackup are mounted on the bridge nodes. To copy files between the Pleiades
Lustre and Columbia CXFS filesystems, log into a bridge node and use the cp,
mcp, or shiftc command to perform the transfer.

File Transfers to Mass Storage

Front-End Usage Guidelines 127

The Pleiades /nobackup filesystems are mounted on Lou2. Thus, the easiest way to
transfer files between Pleiades and Lou2 is to initiate a command such as cp, mcp,
tar, or shiftc on Lou2. For example:

lou% mcp /nobackup/username/foo $HOME
If you initiate the transfer on Pleiades, the commands scp, bbftp, bbscp, and
shiftc are available to do the transfers between a Pleiades front-end or bridge
node and Lou. Since bbscp uses almost the same syntax as scp, but performs
faster than scp, we recommend using bbscp in cases where you do not require the
data to be encrypted. For very large file transfers, we recommend the Shift utility,
developed at NAS.

See also File Transfer Overview, and File Transfer Commands.

File transfers from the Pleiades compute nodes to Lou must go through one of the
PFEs or bridge nodes first. See Streamlining File Transfers from the Pleiades
Compute Nodes to Lou for more information.

When sending data to Lou, keep your largest individual file size under 1 TB, as large
files will occupy all of the tape drives, preventing other file restores and backups.

Additional Restrictions on Front-end Systems

No MPI (Message Passing Interface) jobs are allowed to run on the PFEs or
the bridge nodes

♦

A job on bridge[1-2] should not use more than 56 GB; when it does, a
courtesy email is sent to the owner of the job

♦

A job on bridge[3-4] should not use more than 192 GB; when it does, a
courtesy email is sent to the owner of the job

♦

Before starting a large-memory session, it is a good idea to check to make sure
there is enough memory available. You can run the command top, hit "M", and
check under the "RES" column for other large memory applications that may be
running.

Pleiades Front-End Usage Guidelines 128

http://www.nas.nasa.gov/hecc/support/kb/entry/264#FileTransferCommands

Columbia Front-End Usage Guidelines

The front-end system, cfe2, provide an environment that allows users to get quick
turnaround while performing the following: file editing, file management, short
debugging and testing sessions, and batch job submission to the compute systems.

Running long and/or large (in terms of memory and/or number of processors)
debugging or production jobs interactively or in the background of cfe2 is considered
to be inconsiderate behavior to the rest of the user community. If you need help
submitting such jobs to the batch systems, please contact a the Control Room at
(650) 604-4444 or (800) 331-USER or send e-mail to: support@nas.nasa.gov

Jobs that cause significant impact on the system load of the Columbia front-end
machine (cfe2) are candidates for removal in order to bring the front-end systems
back to a normal and smooth environment for all users. A cron job regularly monitors
the system load and determines if job removal is necessary. The criteria for job
removal are described below. Owners of any removed jobs will receive a notification
e-mail.

To be eligible for removal, the number of processors a front-end interactive
job uses can be one (1) or more. Exceptions to this are those programs,
utilities, etc. common to users and/or NASA missions that are listed in an
"exception file". Examples of these would be: bash, cp, csh, emacs,
gzip, rsync, scp, sftp, sh, ssh, tar, and tcsh. Users can
submit program names to be added to this exception file by mailing requests
to: support@nas.nasa.gov.

1.

For qualifying processes, the CPU time usage of each process in a job has,
on the average, exceeded a threshold defined as: (20 min x 8 / number of
processes for the job). That is, a baseline for removal is a job with 8
processors running for more than 20 minutes. The maximum amount of time
allowed for each processor in a job is scaled using the formula: 20 min x 8
cpu / number-of-processes. Therefore, the following variations are possible:

160 minutes = (20 * 8) / 1 cpu◊
80 minutes = (20 * 8) / 2 cpu◊
40 minutes = (20 * 8) / 4 cpu◊
20 minutes = (20 * 8) / 8 cpu◊
10 minutes = (20 * 8) / 16 cpu◊
5 minutes = (20 * 8) / 32 cpu◊
2.5 minutes = (20 * 8) / 64 cpu◊

2.

The conditions of removal are subject to change, when necessary.

Columbia Front-End Usage Guidelines 129

PBS on Pleiades

Overview

Overview

On Pleiades, PBS (version 11.2) is used to manage batch jobs that run on the
compute nodes (4 different processor types, 11,776 nodes, and 126,720 cores in
total). PBS features that are common to all NAS systems are described in other
articles. Read the following articles for Pleiades-specific PBS information:

Queue Structure♦

Resource Request Examples♦
Default Variables Set by PBS♦
Sample PBS Scripts♦

PBS on Pleiades 130

Queue Structure

You should be aware of the PBS queue structure to help with batch job
management. To find the maximum and default NCPUS (number of CPUs), the
maximum and default wall-time, the priority of the queue, and whether the queue is
disabled or stopped, use the command:

% qstat -Q
This command also provides statistics of jobs in the states of queued (Q), held (H),
running (R), or exiting (E).

Note that the queue structure will change from time to time. Below is a snapshot of
the output from this command on August 21, 2012.

%qstat -Q
Queue Ncpus/ Time/ State counts
name max/def max/def jm T/__Q/_H/W/__R/E/B pr Info
============= =====/=== ======/====== == ================== === ================
alphatst --/ -- 120:00/ 01:00 -- 0/__0/_0/0/__0/0/0 0 disabled stopped
dpr --/ 8 --/ 00:10 -- 0/__0/_0/0/__0/0/0 0 disabled
smd2 2048/ 8 12:00/ 01:00 -- 0/__0/_0/0/__0/0/0 16 disabled
diags --/ -- 120:00/ 04:00 -- 0/__0/_0/0/__0/0/0 0
wide --/ -- 120:00/ 01:00 -- 0/__0/_0/0/__3/0/0 101 disabled
rtf --/ 8 --/ 01:00 -- 0/__0/_0/0/__0/0/0 65 disabled
somd_spl --/ 8 240:00/ 01:00 -- 0/__0/_0/0/__0/0/0 25 disabled
heomd_spl --/ 8 120:00/ 01:00 -- 0/__0/_0/0/__2/0/0 45
smd1 --/ 8 240:00/ -- -- 0/__0/_0/0/__0/0/0 16
vlong 8192/ 8 384:00/120:00 -- 0/__1/_0/0/__1/0/0 0
armd_spl 4900/ 8 120:00/ 01:00 -- 0/__0/_0/0/__0/0/0 15 disabled
ded_time --/ -- --/ 01:00 -- 0/__0/_1/0/__0/0/0 0
idle --/ -- --/ -- -- 0/__0/_0/0/__0/0/0 0 disabled
testing --/ -- --/ 00:30 -- 0/__0/_0/0/__0/0/0 0
sls_aero1 --/ 8 48:00/ 01:00 -- 0/_60/_0/0/_56/0/0 45
kepler --/ 8 120:00/ 01:00 -- 0/__0/_0/0/__0/0/0 101
sls_aero2 408/ 8 144:00/ 01:00 -- 0/__0/_0/0/__0/0/0 45 disabled
low --/ 8 04:00/ 00:30 -- 0/__0/_0/0/__0/0/0 -10
gpu_long_free --/ 24 24:00/ 01:00 -- 0/__0/_0/0/__0/0/0 0
normal --/ 8 08:00/ 01:00 -- 0/_77/17/0/104/0/0 0
long 8192/ 8 120:00/ 01:00 -- 0/156/_3/0/338/0/0 0
debug 1025/ 8 02:00/ 00:30 -- 0/__6/_0/0/__7/0/0 15
route --/ 8 --/ -- -- 0/__0/_2/0/__0/0/0 0
devel 4800/ 1 02:00/ -- -- 0/_22/_0/0/__9/0/0 60
gpu --/ 8 08:00/ 01:00 -- 0/__1/_0/0/__0/0/0 0

To view more information about each queue, use:

% qstat -fQ queue_name
In the output of this command, you will find additional information such as:

acl_groups

Queue Structure 131

Lists all GIDs that are allowed to run in the queue. For the normal, debug,
long, low, and devel queues, all GIDs should be included. Special
queues, such as esmd_spl, armd_spl, somd_spl, clv_spl, etc.,
typically allow a few GIDs only.

default_chunk.model
Specifies the default processor model, if you do not specify the processor
model yourself. All queues, except devel and gpu, default to using nodes
with Harpertown model processors. See Pleiades devel Queue for the
defaults for the devel queue and GPU Basics for more information on the
gpu queue.

resources_min.ncpus
If defined, specifies the minimum NCPUs required for the queue. The wide
queue requires using a minimum of 1024 CPUs.

max_run
If defined, specifies the maximum number of jobs each user is allowed to run
in the queue. For the devel queue, the maximum number is set at 10. For
the debug queue, it is set at 2.

TIP: To request using the Nehalem-EP, Westmere, or Sandy Bridge nodes, use the
attributes model=neh, model=wes, or model=san in your resource_list. To
explicitly request Harpertown nodes, use model=har. You can apply the model
attribute to any queue.

For example:

#PBS -q long
#PBS -l select=1:ncpus=12:model=wes

Queue Structure 132

Mission Shares Policy on Pleiades

Mission Directorate shares have been implemented on Pleiades since Feb. 10,
2009. Implementing shares guarantees that each Mission Directorate gets its fair
share of resources.

The share to which a job is assigned is based on the GID used by the job. Once all
the cores within a Mission Directorate's share have been assigned, other jobs
assigned to that share must wait, even if cores are available in a different Mission
Directorate's share, with the following exception:

When a Mission Directorate is not using all of its cores, other Mission Directorates
can borrow those cores, but only for jobs that will finish within 4 hours. When part of
the resource is unavailable, the total number of cores decreases, and each Mission
Directorate loses a proportionate number of cores.

You can display the share distribution by adding the -W shares=- option to the
qstat command. For example:

%qstat -W shares=-

Group Share% Use% Share Exempt Use Avail Borrowed Ratio Waiting
------- ------ ---- ------ ------ ----- ------ -------- ----- -------
Overall 100 0 159748 0 960 158788 0 0.01 960
 ARMD 24 18 38109 0 29680 8429 0 0.78 22512
 HEOMD 23 21 36521 0 34312 2209 0 0.94 28416
 SMD 51 50 80981 0 80968 13 0 1.00 113920
 NAS 2 0 3175 0 0 3175 0 0.00 20240

Mission shares are calculated by combining the mission's HECC share of the shared
assets combined with the mission-specific assets. The mission shares on Oct 3,
2011 are shown in the second column of the above display. The amount of
resources used and borrowed by each mission and resources each mission is
waiting for are also displayed.

An in-house utility, qs, provide similar information with details that break the
resources into the Harpertown, Nehalem-EP, Westmere, and Sandy Bridge
processor types and is available at /u/scicon/tools/bin/qs.

The -h option of qs provides instructions on how to use it:

% /u/scicon/tools/bin/qs -h

usage: qs [-u] [-n N] [-b] [-p] [-d] [-r] [-f M,N] [-q N] [-t] [-v] [-h] [--file f]

 -u : show used resources only; don't show queued jobs
 -n N : show time remaining before N nodes are free
 -b : order segments in bars to help understand borrowing

Mission Shares Policy on Pleiades 133

 -p : plain output: i.e. no colors or highlights
 -d : darker colored resource bars (for a light background)
 -r : use Reverse video for displaying resource bars
 -f M,N : highlight nodes for jobs that finish in <= M minutes
 and <= N minutes [default M=60,N=240]
 (0 turns off highlighting)
 -q N : highlight nodes for jobs queued in last N minutes [3]
 (0 turns off highlighting)
 -t : show time remaining & nodes used for each running job
 --file f : reserved for debugging
 -v : (verbose) provide explanation of display elements
 -h : provide this message

Here is a sample output file of qs:

Mission Shares Policy on Pleiades 134

Resources Request Examples

Since Pleiades consists of four different processor types (Harpertown, Nehalem-EP,
Westmere, and Sandy Bridge), you will benefit from keeping the following in mind
when requesting PBS resources for your job:

Charging on the usage of the four Pleiades processor types is based on a common
Standard Billing Unit which is on a per-node basis. The SBU rate for each of the
Pleiades processor types is:

Processor Type SBU Rate (per node)
Sandy Bridge 1.82 (16 cores in a node)
Westmere 1.0 (12 cores in a node)
Nehalem-EP 0.80 (8 cores in a node)
Harpertown 0.45 (8 cores in a node)
The actual amount of memory per node through PBS is slightly less than 7.6 GB per
node for Harpertown, 22.5 GB per node for Nehalem-EP and Westmere, and about
31 GB per node for Sandy Bridge.

For the normal, long, and debug queue, use the model=[har,neh,wes,san]
attribute to request the processor type(s) for your job. If the processor type is not
specified in your PBS resource list, the job is routed to use the default processor
type, Harpertown, for most queues. For the devel queue, see Pleiades devel queue
for more information. For the gpu queue, see GPU Basics.

Example 1

Here are some examples of requesting certain processor models for a 128-process
job:

#PBS -l select=16:ncpus=8:model=har
#to run all 8 cores on each of 16 Harpertown nodes

#PBS -l select=32:ncpus=4:model=har
#to run on only 4 cores on each of 32 Harpertown nodes
#(note: will be charged for 32 nodes = 256 cores)

#PBS -l select=16:ncpus=8:model=neh
#to run all 8 cores on each of 16 Nehalem-EP nodes

#PBS -l select=11:ncpus=12:model=wes
#to run all 12 cores on each of 11 Westmere nodes
#(4 cores in 11th node will go unused)

#PBS -l select=8:ncpus=16:model=san
#to run all 16 cores on each of 8 Sandy Bridge nodes

Resources Request Examples 135

Note that you can specify both the queue type (-q normal, debug, long, low) and
the processor type (-l model=har,neh,wes,san). For example:

#PBS -q normal
#PBS -l select=16:ncpus=8:model=neh

If your application can run on any of the four processor types, you may want to
submit your job to a processor type that has more nodes unoccupied by other
running jobs. Doing this can possibly reduce the wait time of your job. The script
node_stats.sh provides information about the total, used, and free nodes for each
processor type. For example:

% /u/scicon/tools/bin/node_stats.sh

Pleiades Nodes Total: 11240
Pleiades Nodes Used : 10485
Pleiades Nodes Free : 755

Harpertown Total: 4063, Used: 4015, Free: 48
Nehalem Total: 1253, Used: 847, Free: 406
Westmere Total: 3957, Used: 3916, Free: 41
SandyBridge Total: 1288, Used: 1128, Free: 160
GPU nodes Total: 56, Used: 2, Free: 54
Devel queue Total: 623, Used: 577, Free: 46

Currently queued jobs are requesting: 8259 Harpertown, 2142 Nehalem, 9633 Westmere, 17946 SandyBridge nodes

TIP: Add /u/scicon/tools/bin to your path in .cshrc or other shell start-up
scripts to avoid having to type in the complete path for this tool.
For each job, you can also identify which processor models are used by looking at
the "Model" field of the output of the command:

% qstat -a -W o=+model

Example 2

The Harpertown nodes in rack 32 have 16 GB memory/node instead of 8 GB per
node.

This example shows a request of 2 nodes with bigmem in rack 32.

#PBS -l select=2:ncpus=8:bigmem=true:model=har

Example 3

Resources Request Examples 136

For a multi-node PBS job, the NCPUs used in each node can be different. This is
useful for jobs that need more memory for some processes, but less for other
processes. Resource requests can be done in "chunks" for a job with varying NCPUs
per node.

This example shows a request of two resource chunks. In the first chunk, 1 CPU in 1
node, and in the second chunk, 8 CPUs in each of three other nodes are requested:

#PBS -l select=1:ncpus=1+3:ncpus=8

Example 4

A PBS job can run across different processor types. This can be useful in two
scenarios:

When you cannot find enough free nodes within one model for your job♦
When some of your processes need more memory while others need much
less

♦

This can be accomplished by specifying the resources in chunks, with one chunk
requesting one processor type and another chunk requestings a different processor
type.

Here is an example of how to request 1 Westmere node (which provides 24 GB per
node) and 3 Harpertown nodes (which provides 8 GB per node), under either of the
following circumstances:

#PBS -lplace=scatter:excl:group=model

#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes+3:ncpus=8:mpiprocs=8:model=har

Resources Request Examples 137

Default Variables Set by PBS

You can use the env command--either in a PBS script or on the command line of a
PBS interactive session--to find out what environment variables are set within a PBS
job. In addition to the PBS_xxxx variables, the following two are useful to know:

NCPUS
Defaults to number of CPUs that you requested for the node.

OMP_NUM_THREADS
Defaults to 1 unless you explicitly set it to a different number. If your PBS job
runs an OpenMP or MPI/OpenMP application, this variable sets the number of
threads in the parallel region.

FORT_BUFFERED
Defaults to 1. Setting this variable to 1 enables records to be accumulated in
the buffer and flushed to disk later.

Default Variables Set by PBS 138

Sample PBS Script for Pleiades

#PBS -S /bin/csh
#PBS -N cfd
This example uses the Harpertown nodes
User job can access ~7.6 GB of memory per Harpertown node.
A memory intensive job that needs more than ~0.9 GB
per process should use less than 8 cores per node
to allow more memory per MPI process. This example
asks for 64 nodes and 4 MPI processes per node.
This request implies 64x4 = 256 MPI processes for the job.
#PBS -l select=64:ncpus=8:mpiprocs=4:model=har
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=a0801
#PBS -m e

Currently, there is no default compiler and MPI library set.
You should load in the version you want.
Currently, MVAPICH or SGI's MPT are available in 64-bit only,
you should use a 64-bit version of the compiler.

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

use of dplace to pin processes to processors may improve performance
Here you request to pin processes to processors 2, 3, 6, 7 of each node.
This helps for using the Harpertown nodes, but not for Nehalem-EP or
Westmere-EP nodes

The resource request of select=64 and mpiprocs=4 implies
that you want to have 256 MPI processes in total.
If this is correct, you can omit the -np 256 for mpiexec
that you might have used before.

mpiexec dplace -s1 -c2,3,6,7 ./grinder < run_input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool,
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

-end of script-

Sample PBS Script for Pleiades 139

Pleiades devel Queue

NAS provides a special devel queue that provides faster turnaround when doing
development work.

Currently, 512 Westmere nodes and 144 Sandy Bridge nodes are reserved for the
Pleiades devel queue, 24x7. The maximum walltime allowed is 2:00:00 and the
maximum NCPUS is 4800. Each user is allowed to have only one job running in the
devel queue at any one time.

To specify the Westmere processor type to be used for your job in the devel queue,
do:

#PBS -l select=xx:ncpus=yy:model=wes
If you want to use the Sandy Bridge nodes, do:

#PBS -l select=xx:ncpus=yy:model=san
To submit your job to the devel queue, do:

pfe20% qsub -q devel job_script
1234.pbspl1.nas.nasa.gov

To check the status of your job submitted to the devel queue, do:

pfe20% qstat devel -u your_username

Pleiades devel Queue 140

PBS on Columbia

Overview

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the
Columbia phase out process. Columbia22-24 are still available. If your script requires
a specific node, please make the appropriate changes in order to ensure the
success of your job.

On Columbia, PBS (version 10.4) is used to manage batch jobs that run on the four
compute systems (Columbia21-24). PBS features that are common to all NAS
systems are described in other articles. Read the following articles for
Columbia-specific PBS information:

Resource Request Examples♦
Default Variables Set by PBS♦
Sample PBS Scripts♦

PBS on Columbia 141

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Resources Request Examples

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the
Columbia phase out process. Columbia22-24 are still available. If your script requires
a specific node, please make the appropriate changes in order to ensure the
success of your job.

All of the Columbia compute engines, Columbia21-24, are single-system image Altix
4700 systems:

Columbia21 (508 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia22 (2044 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)
Columbia23 (1020 CPUs total, 1.8 GB memory/CPU through PBS)

Here are a few examples of requesting resources on Columbia:

Example 1

If your job needs fewer than 508 CPUs and you do not care which Columbia system
to run your job on, simply use ncpus to specify the number of CPUs that you want
for your job. For example:

#PBS -l ncpus=256

Example 2

If you specify both the ncpus and mem for your job, PBS will make sure that your job
is allocated enough resources to satisfy both ncpus and mem. For example, if you
request 4 CPUs and 14 GB of memory, your job will be allocated 8 CPUs and 14.4
GB because the amount of memory associated with 4 CPUs is not enough to satisfy
your memory request.

#PBS -l ncpus=4,mem=14GB

Example 3

If you want your job to run on a specific Columbia machine, for example, Columbia22
with 256 CPUs, use:

#PBS -l select=host=columbia22:ncpus=256

Resources Request Examples 142

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Note that the ncpus request must appear with the select=host request and must
not be present as a separate request either on the qsub command line or in the PBS
script.

Example 4

If you ever need to run a job across two Columbia systems, for example, 508 CPUs
on one Columbia and another 508 CPUs on another, use:

#PBS -l select=2:ncpus=508,place=scatter

Resources Request Examples 143

Default Variables Set by PBS

You can use the env command--either in a PBS script or from the command line of
an interactive PBS session--to find out what environment variables are set within a
PBS job. In addition to the PBS_xxxx variables, the following ones are useful to
know:

NCPUS
Defaults to number of CPUs that you requested.

OMP_NUM_THREADS

Defaults to 1 unless you explicitly set it to a different number. If your PBS job
runs an OpenMP or MPI/OpenMP application, this variable sets the number of
threads in the parallel region.

OMP_DYNAMIC
Defaults to false. If your PBS job runs an OpenMP application, this disables
dynamic adjustment of the number of threads available for execution of
parallel regions.

MPI_DSM_DISTRIBUTE

Defaults to true. If your PBS job runs an MPI application, this ensures that
each MPI process gets a unique CPU and physical memory on the node with
which that CPU is associated.

FORT_BUFFERED
Defaults to 1. Setting this variable to 1 enables records to be accumulated in
the buffer and flushed to disk later.

Default Variables Set by PBS 144

Sample PBS Script for Columbia

#PBS -S /bin/csh
#PBS -N cfd
#PBS -l ncpus=4
#PBS -l mem=7776MB
#PBS -l walltime=4:00:00
#PBS -j oe
#PBS -W group_list=g12345
#PBS -m e

By default, PBS executes your job from your home directory.
However, you can use the environment variable
PBS_O_WORKDIR to change to the directory where
you submitted your job.

cd $PBS_O_WORKDIR

For MPI jobs, there is an SGI MPT module loaded by default, unless you
modify your shell start up script to unload it or switch to a different
version. You can use either mpiexec or mpirun to start your job.

mpiexec -np 4 ./a.out < input > output

It is a good practice to write stderr and stdout to a file (ex: output)
Otherwise, they will be written to the PBS stderr and stdout in /PBS/spool
which has limited amount of space. When /PBS/spool is filled up, any job
that tries to write to /PBS/spool will die.

-end of script-

Sample PBS Script for Columbia 145

Troubleshooting PBS Jobs

Common Reasons for Being Unable to Submit Jobs

There are several common reasons why you might not be able to successfully
submit a job to PBS:

Resource Request Exceeds Resource Limits

If you get the following message after submitting a PBS job:

"qsub: Job exceeds queue resource limits"

Reduce your resource request to below the limit or use a different queue.

AUID or GID not Authorized to Use a Specific Queue

If you get the following message after submitting a PBS job:

"qsub: Unauthorized Request"

It is possible that you tried submitting to a queue which is accessible only to certain
groups or users. You can check the qstat -fQ output and see if there is an
acl_groups or a acl_users list. If your group or username is not in the lists, you
will have to submit to a different queue.

If your GID has no allocation left, you will also get this error. See the section 'Not
Enough or No Allocation Left' below for more information.

AUID Not Authorized to Use a Specific GID

If you get the following message after submitting a PBS job:

"qsub: Bad GID for job execution"

It is possible that your AUID has not been added to use allocations under a specific
GID. Please consult with the principal investigator of that GID and ask him/her to
submit a request to support@nas.nasa.gov to add your AUID under that GID.

Queue is Disabled

Troubleshooting PBS Jobs 146

If you get the following message after submitting a PBS job:

"qsub: Queue is not enabled"

You should submit to a different queue which is enabled.

Not Enough or No Allocation Left

An automated script is used to check if a GID is over its allocation everyday. If it
does, that GID is removed from PBS access control list and users of that GID will not
be able to submit jobs.

Users can check the amount of allocations remaining using the acct_ytd command.
In addition, if you see in your PBS output file some message regarding your GID
allocation usage is near its limit or is already over, ask your PI to request for more
allocation.

Once the request for more allocation is approved and added to your account, an
automatic hourly script will add your GID back to the PBS access control list.

Common Reasons for Being Unable to Submit Jobs 147

Common Reasons Why Jobs Won't Start

If your job does not run after it has been successfully submitted, it might be due to
one of the following reasons:

The job is waiting for resources♦
Your mission share has run out♦
The system is going into dedicated time♦
Scheduling is turned off♦
The job has been placed on hold♦
Your home filesystem or default /nobackup filesystem is down♦

You can often find out why a job does not start by running tracejob jobid on the
PBS server pbspl1, which prints log messages for a PBS job, or qstat -as
jobid on any Pleiades front-end systems, which displays all information about a
job.

The following sections provide more details about each scenario, along with
troubleshooting steps.

The Job is Waiting for Resources

Your job might be waiting for resources for one of the following reasons:

All resources are busy running jobs, and no other jobs can be started until
resources become available again

♦

There is a higher-priority job that needs more resources than are currently
available, so PBS is draining the system and not running any new jobs in
order to accommodate the high-priority job

♦

Users have submitted too many jobs at once (for example, more than 100), so
the PBS scheduler is busy sorting jobs and cannot start new jobs effectively

♦

If you requested a specific node or group of nodes to run your job, it might
wait in the queue longer than if nodes were not specified

♦

To view job status and events, run the tracejob utility on pbspl1. For example:

pbspl1 $ tracejob 234567
Job: 234567.pbspl1.nas.nasa.gov

06/15/2012 00:23:55 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 00:23:55 L No available resources on nodes
06/15/2012 00:38:47 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 00:50:30 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 01:51:21 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 01:55:38 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 02:16:44 S Job Modified at request of Scheduler@pbspl1.nas.nasa.gov
06/15/2012 07:39:48 L Considering job to run
06/15/2012 07:39:48 L Job is requesting an exclusive node and node is in use

Common Reasons Why Jobs Won't Start 148

TIP: If the scheduler has not yet reviewed the job, no information will be available
and the tracejob utility will not provide any output.
If your job requests an exclusive node and that node is in use, you can wait for the
requested node, request a different node, or submit the job again without requesting
a specific node.

To view the current node usage for each processor type, run the node_states.sh
script. For example:

/u/scicon/tools/bin/node_stats.sh

 Pleiades Nodes Total: 12457
 Pleiades Nodes Used : 11675
 Pleiades Nodes Free : 782

 Harpertown Total: 4083, Used: 3948, Free: 135
 Nehalem Total: 1279, Used: 1246, Free: 33
 Westmere Total: 4662, Used: 4436, Free: 226
 SandyBridge Total: 1723, Used: 1513, Free: 210
 GPU nodes Total: 62, Used: 2, Free: 60
 Devel wes Total: 504, Used: 418, Free: 86
 Devel san Total: 144, Used: 112, Free: 32

Currently queued jobs are requesting: 1734 Harpertown, 1502 Nehalem, 5219 Westmere, 1877 SandyBridge nodes

TIP: Add /u/scicon/tools/bin to your path in .cshrc or other shell start-up
scripts to avoid having to type in the complete path for this tool.

Your Mission Share Has Run Out

If all of the cores within your mission directorate's share have been assigned, or if
the new job would exceed your mission share, your job will not run. If resources
appear to be available, they belong to other missions.

To view all information about your job, run qstat -as jobid. In the following
sample output, a comment indicates that the job would exceed the mission share:

Qstat as 778574
JobID User Queue Jobname CPUs wallt Ss wallt Eff wallt
------------- ------- ------ ------- ---- ----- -- ----- --- -----
778574.pbspl3 msmith3 normal my_GC 12 04:00 Q 07:06 -- 04:00
Job would exceed mission CPU share

To view the share distribution among all mission directorates, run qstat -W
shares. For example:

 pfe20 $ qstat -W shares
 Group Share% Use% Share Exempt Use Avail Borrowed Ratio Waiting
 ------- ------ ---- ------ ------ ----- ------ -------- ----- -------

Common Reasons Why Jobs Won't Start 149

 Overall 100 0 167456 0 0 167456 0 0.00 0
 ARMD 25 20 41864 0 34480 7384 0 0.82 11744
 HEOMD 23 17 38514 0 29632 8882 0 0.77 8304
 SMD 50 45 83728 2912 76728 7000 0 0.92 129376
 NAS 2 0 3349 0 384 2965 0 0.11 32

If your job exceeds your mission share, you might be able to borrow nodes from
other mission directorates. To borrow nodes, your job must not request a wall-clock
time that is too long (more than 4 hours on Pleiades). See Mission Shares Policy on
Pleiades for more information.

The System is Going into Dedicated Time

When dedicated time (DED) is scheduled for hardware and/or software work, the
PBS scheduler will not start a job if its projected end-time runs past the beginning of
the DED time.

If you can reduce the requested wall-clock time so that your job will finish running
prior to DED time, then your job can then be considered for running. To change the
wall-clock time request for your job, follow the example below:

%qalter -l walltime=hh:mm:ss jobid
To find out whether the system is in dedicated time, run the command schedule
all. For example:

pfe25$ schedule all
No scheduled downtime for the specified period.

Scheduling is Turned Off

Sometimes job scheduling is turned off by NAS Control Room staff or a system
administrator. This is usually done when there are system or PBS issues that need
to be resolved before jobs can be scheduled to run. When this happens, you should
see the following message near the beginning of the qstat -au your_userid
output.

+++Scheduling turned off.

Your Job Has Been Placed On Hold ("H" Mode)

A job can be placed on hold either by the job owner or by someone who has root
privilege, such as a system administrator. If your job has been placed on hold by a
system administrator, you should get an email explaining the reason for the hold.

Common Reasons Why Jobs Won't Start 150

Your Home Filesystem or Default /nobackup Filesystem is Down

When a PBS job starts, the PBS prologue checks to determine whether your home
filesystem and default /nobackup are available before executing the commands in
your script. If your default /nobackup filesystem is down, PBS cannot run your job
and will put the job back in the queue. If your PBS job does not need any file in that
filesystem, you can tell PBS that your job will not use the default /nobackup to allow
your job to run.

For example, if your default is /nobackupp1 (for Pleiades), you can add the following
in your PBS script:

#PBS -l /nobackupp1=0

Common Reasons Why Jobs Won't Start 151

Using pdsh_gdb for Debugging Pleiades PBS Jobs

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on
Pleiades under /u/scicon/tools/bin for debugging PBS jobs while the job is
running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The
aggregated stack trace from each process will be written to a user specified directory
(by default, it is written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 152

Effective Use of PBS

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou,
within a PBS job. Since Pleiades compute nodes do not have network access to the
Lou storage nodes, or other nodes outside of Pleiades, all file transfers to Lou within
a PBS job must first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2]
where the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script.
Note the use of -q for quiet-mode, and double quotes so that shell variables
are expanded prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Effective Use of PBS 153

Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool
directory of the first node of your job. However, the space under /PBS/spool is
limited, and when it fills up, any job that tries to write to /PBS/spool may die. This
makes the node unusable by jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined
sizes of error and output files produced by a job. If this policy goes into effect and a
job exceeds that limit, PBS will kill the job.

To prevent this from happening to your job, do not write large amounts of content in
the PBS output/error files. If your executable normally writes a lot of messages to
either standard out or standard error, you should redirect them in your PBS script.
Below are a few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1.

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2.

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3.

The files "output" and "error" are created under your own directory and you can view
the contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the
script, you can create unique filenames for each run. For example, you can add the
PBS JOBID to "output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server,
such as 12345.pbspl1.nas.nasa.gov.

Avoiding Job Failure from Overfilling /PBS/spool 154

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a
file, you can see the contents of your PBS output/error files before your job
completes by following the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s).
You can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

2.

Avoiding Job Failure from Overfilling /PBS/spool 155

Running Multiple Serial Jobs to Reduce Wall-Time

On Pleiades, running multiple serial jobs within a single batch job can be
accomplished with following example PBS scripts. The maximum number of
processes you can run on a single node will be limited to the core-count-per-node or
the maximum number that will fit in a given node's memory, whichever is smaller.

Processor Types Cores/node Available Memory/node
Harpertown 8 7.6 GB
Nehalem-EP 8 22.5 GB
Westmere 12 22.5 GB
Sandy Bridge 16 ~31.0 GB
The examples below allow you to spawn serial jobs across nodes using the
mpiexec command. Note that a special version of mpiexec from the
mpi-mvapich2/1.4.1/intel module is needed in order for this to work. This mpiexec
keeps track of $PBS_NODEFILE and places each serial job onto the CPUs listed in
$PBS_NODEFILE properly. The use of the arguments -comm none for this version
of mpiexec is essential for serial codes or scripts. In addition, to launch multiple
copies of the serial job at once, the use of the mpiexec-supplied $MPIEXEC_RANK
environment variable is needed to distinguish different input/output files for each
serial job. This is demonstrated with the use of a wrapper script wrapper.csh in
which the input/output identifier (that is, ${rank}) is calculated from the sum of
$MPIEXEC_RANK and an argument provided as input by the user.

Example 1

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh

Running Multiple Serial Jobs to Reduce Wall-Time 156

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and
that they are all located in the directory where the PBS script is submitted from (that
is, $PBS_O_WORKDIR). If the input files are in different directories, then
wrapper.csh can be modified appropriately to cd into different directories as long
as the directory names are differentiated by a single number that can be obtained
from $MPIEXEC_RANK (=0, 1, 2, 3, ...). In addition, be sure that wrapper.csh is
executable by you, and you have the current directory included in your path.

Example 2

A second example provides the flexibility where the total number of serial jobs may
not be the same as the total number of processors requested in a PBS job. Thus, the
serial jobs are divided into a few batches and the batches are processed
sequentially. Again, the wrapper script is used where multiple versions of the
program a.out in a batch are run in parallel.

serial2.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

The total number to run at once is automatically determined
at runtime by the number of CPUs available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. No changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

Running Multiple Serial Jobs to Reduce Wall-Time 157

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Wall-Time 158

Checking the Time Remaining in a PBS Job from a Fortran Code

During job execution, sometimes it is useful to find out the amount of time remaining
for your PBS job. This allows you to decide if you want to gracefully dump restart
files and exit before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime
has exceeded some threshold to decide if the code should go into the shutdown
phase.

For example:

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8
variable
external pbs_time_left
integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to
be performed
call pbs_time_left(seconds_left)
print*,"Seconds remaining in PBS job:",seconds_left

Note: The return value from pbs_time_left is only accurate to within a
minute or two.

2.

Compile your modified code and link with the above library using, for example:
LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 159

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job

GNU is a complete, free software system, upward-compatible with Unix. GNU
parallel is a shell tool for executing jobs in parallel. It uses the lines of its standard
input to modify shell commands, which are then run in parallel. Detailed information
about this tool can be found on the GNU Operating System website and its related
parellel man page.

On Pleiades, a copy of GNU parallel is available under /usr/bin.

The three examples below demonstrate how you can use GNU parallel to run
multiple tasks in a single PBS batch job.

Example 1

This example script runs 64 copies of a serial executable file, and assumes that 4
copies will fit in the available memory of one node and that 16 nodes are used.

gnu_serial1.pbs

#PBS -lselect=16:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD;./myscript.csh {}"

In the above PBS script, the last command uses the parallel command to
simultaneously run 64 copies of myscript.csh located under
$PBS_O_WORKDIR. Here is the specific breakdown:

seq 64

Generates a set of integers 1, 2, 3, ..., 64 that will be passed to the parallel
command.

♦

-j 4

GNU parallel will determine the number of processor cores on the remote
computers and run the number of tasks as specified by -j. In this case, -j 4
tells the the parallel command to run 4 tasks in parallel on one compute node.

♦

-u

Tells the parallel command to print output as soon as possible. This may
cause output from different commands to be mixed. GNU parallel runs faster

♦

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 160

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/man.html

with -u. This can be reversed with --group.
--sshloginfile $PBS_NODEFILE

Distributes tasks to the compute nodes listed in $PBS_NODEFILE.

♦

"cd $PWD; ./myscript.csh {}"

Changes directory to the current working directory and runs myscript.csh
located under $PWD. At this point, $PWD is the same as
$PBS_O_WORKDIR. The {} is an input to myscript.csh (see below) and
will be replaced by the sequence number generated from seq 64.

♦

myscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

In this above sample script executed by the parallel command:

$1 refers to the sequence numbers (1, 2, 3, ..., 64) from the seq command
that was piped into the parallel command

♦

For each serial run, a subdirectory named run_$1 (run_1, run_2, ...) is
created

♦

The echo line prints information back to the PBS stdout file♦
The serial a.out is located under $HOME/bin♦
The input for each run, input_$1 (input_1, input_2, ...) is located under
$PBS_O_WORKDIR, which is the directory above run_$1

♦

The output for each run (output_1, output_2, ...) is created under run_$1♦

Potential Modifications to Example 1

There are multiple ways to pass arguments to parallel. For example, instead of using
the seq command to pass a sequence of integers, you can also pass in a list of
directory names or filenames using ls -1 or cat mylist, where the file mylist
contains a list of entries.

Example 2

This script is similar to Example 1, except that 6 nodes are used instead of 16 nodes.
This means that 24 serial a.outs can be run simultaneously, since a total of 24
cores (6 nodes x 4 cores) are requested. As each a.out completes its work on a

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 161

core, another a.out is launched by the parallel command to run on the same core.

myscript.csh is the same as that shown in the previous example.

gnu_serial2.pbs

#PBS -lselect=6:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myscript.csh {}"

Example 3

In this example, an OpenMP executable is run with 12 OpenMP threads on one
Westmere node. To run 64 copies of this executable with 10 copies running
simultaneously on 10 nodes:

gnu_openmp.pbs

#PBS -lselect=10:ncpus=12:mpiprocs=1:ompthreads=12:model=wes
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 1 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myopenmpscript.csh {}"

myopenmpscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

setenv OMP_NUM_THREADS 12

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 162

Best Practices

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Best Practices 163

Increasing File Transfer Rates

Summary: If you are moving large files, use the bbftp or shiftc commands instead of
cp or scp. An online NAS service can help diagnose your remote network connection
issues, and our network experts can work with your specific file transfer problems.

For fastest file transfer between Pleiades /nobackup and Lou2, log into Lou and use
shiftc, cxfscp, cp, mcp, or tar.

Moving large amounts of data efficiently to or from NAS across the network can be
challenging. Often, minor system, software, or network configuration changes can increase
network performance an order of magnitude or more.

If you are experiencing slow transfer rates, try these quick tips:

Pleiades /nobackup are mounted on Lou2, enabling disk-to-disk copying, which
should give the highest transfer rates. You can use the shiftc, cp, or mcp
commands to copy files or even make tar files directly from Pleiades /nobackup to
your Lou home directory.

•

If using the scp command, make sure you are using OpenSSH version 5 or later.
Older versions of SSH have a hard limit on transfer rates and are not designed for
WAN transfers. You can check your version of SSH by running the command ssh
-V.

•

For large files that are a gigabyte or larger, we recommend using bbFTP. This
application allows for transferring simultaneous streams of data and doesn't have the
overhead associated with encrypting all the data (authentication is still encrypted).

•

Another reliable option for large file transfers is through the Shift client, which
includes options specific to the NAS environment, such as checking to see whether
files residing on Lou are also on tape.

•

Online Network Testing Tools

The NAS PerfSONAR Service provides a custom website that allows you to quickly
self-diagnose your remote network connection issues. It reports the maximum bandwidth
between sites, as well as any problems in the network path. Command-line tools are
available if your system does not have a web browser.

Test results are also sent to our network experts, who will analyze traffic flows, identify
problems, and work to resolve any bottlenecks that limit your network performance, whether
the problem is at NAS or at a remote site.

One-on-One Help

Increasing File Transfer Rates 164

https://npad.nas.nasa.gov/

If you would like further assistance, contact the NAS Control Room at
support@nas.nasa.gov, and a network expert will work with you or your local administrator
one-on-one to identify methods for increasing your transfer rates.

To learn about other network-related support areas see End-to-End Networking Services.

Increasing File Transfer Rates 165

mailto:support@nas.nasa.gov
http://www.nas.nasa.gov/hecc/services/networking_service.html

Choosing an MPI Library

Summary: Use an up-to-date version of SGI's MPT library (such as version 2.04). MPT is
generally more efficient on SGI systems than third-party MPI libraries, and versions 2.04
and later help system administrators identify issues with the InfiniBand interconnect more
quickly.

Message Passing Interface (MPI) is a standardized and portable message-passing library
specification. It is widely used for parallel programming across a network of computers.

Among the three MPI implementations available on Pleiades (Intel MPI, MVAPICH2, and
SGI MPT) and their installed versions, we recommend using SGI MPT version 2.04 --
specifically, the module mpi-sgi/mpt.2.04.10789 -- unless there is a strong reason for
using something else. You can get that library with the following:

%module load mpi-sgi/mpt.2.04.10789
Benefits of using SGI MPT instead of other MPI libraries:

SGI MPT contains MPI enhancements that are specific to SGI systems; in particular,
it offers multiple features for scaling applications to very large process counts

•

Use of MPT on Pleiades is supported by SGI; MPT bugs or issues encountered on
Pleiades are tracked closely by SGI to provide timely resolution

•

Benefits of using mpi-sgi/mpt.2.04.10789 instead of other MPT modules:

SGI MPT 2.04 is a full implementation of the MPI 2.2 specification•
The Lustre awareness feature of MPT 2.04 can improve MPI I/O performance on
Lustre filesystems (/nobackupp1-6)

•

On Pleiades, the environment variable MPI_IB_RAILS is set to 2 by default, in order
to make use of both InfiniBand (IB) fabrics for communications; this can increase
communication transfer rates in some cases

•

With mpi-sgi/mpt.2.04.10789, IB issues or failures may be recorded in system
logfiles, allowing system administrators to better track issues with the IB network

•

Detailed information about the enhancements and bug fixes/issues is found in sections 4
and 5, respectively, of the following document on Pleiades:
/nasa/sgi/mpt/2.04.10789/doc/README.relnotes.

See the article Porting with SGI MPT to learn more on using mpi-sgi/mpt.2.04.10789.

Choosing an MPI Library 166

Process Pinning

Process/Thread Pinning Overview

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code by increasing the percentage of local memory accesses.

Once your code runs and produces correct results on a system, the next concern is its
performance. For a code that uses multiple cores, the placement of processes and/or
threads can play a significant role in code performance.

Given a set of processor cores in a PBS job, the Linux kernel usually does a reasonably
good job of mapping processes/threads to physical cores (although the kernel may also
migrate processes/threads). Some OpenMP runtime libraries and MPI libraries may also
perform certain placements by default. In cases where the placements by the kernel or the
MPI or OpenMP libraries are suboptimal, you can try multiple methods to control the
placement in order to improve performance of your code. Using the same placement also
has the added benefit of reducing runtime variability from run to run.

You should pay attention to maximizing data locality while minimizing latency and resource
contention, and should have a clear understanding of the characteristics of your own code
and the machine that the code is running on.

Characteristics of NAS HECC Systems

Pleiades and Columbia are two distinctly different types of systems.

Pleiades

Pleiades is a cluster system consisting of four different processor types -- Harpertown,
Nehalem, Westmere, and Sandy Bridge, with a total of 11,776 nodes. On Pleiades, memory
on each node is accessible and shared only by processes/threads running on that node.

Process Pinning 167

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

A Harpertown node is a symmetric memory system where all 8 cores have equal access to
the memory on the node, so data locality is not an issue.

On the other hand, a Nehalem-EP, Westmere, or Sandy Bridge node contains two sockets.
Within each socket is a symmetric memory system. Accessing memory across the two
sockets is through the Quick Path Interconnect and these nodes are considered
non-uniform memory access (NUMA) systems. So,for optimal performance, data locality
should not be overlooked on these three processor types.

Overall, compared to a global shared-memory NUMA system such as Columbia, data
locality is less of a concern on Pleiades. Rather, minimizing latency and resource
contention will be the main focus when pinning processes/threads on Pleiades.

For more information on Pleiades and these processors, see Pleiades Configuration
Details, which has links to each of the processor types.

Columbia

Columbia comprises 4 hosts (C21-24). Each host is a NUMA system that contains
hundreds of nodes with memory located physically at various distances from the processors
accessing data on memory. A process/thread can access the local memory on its node, as
well as the remote memory across nodes through the NUMAlink, with varying latencies. So,
data locality is critical for getting good performance on Columbia.

One good practice to follow when developing an application is to initialize data in parallel,
such that each processor core initializes data that it is likely to access later for calculation.

For more information about Columbia, see Columbia Configuration Details.

Methods for Process/Thread Pinning

Several pinning approaches for OpenMP, MPI and MPI+OpenMP hybrid applications are
listed below. We recommend using the Intel compiler (and its runtime library) and the SGI
MPT software on NAS systems, so most of the approaches pertain specifically to them. On
the other hand, the mbind tool works for multiple OpenMP libraries and MPI environments.

OpenMP codes

Using Intel OpenMP Thread Affinity for Pinning♦

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

MPI codes•

Process/Thread Pinning Overview 168

Setting SGI MPT Environment Variables♦

Using SGI's omplace Tool for Pinniing♦
Using the mbind Tool for Pinning♦

MPI+OpenMP hybrid codes

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

Checking Process/Thread Placement

Each of the approaches listed above provides some verbose capability to print out the tool's
placement results. In addition, you can check the placement using the following
approaches:

ps Command

ps -C executable_name -L -opsr,comm,time,pid,ppid,lwp
In the output generated, use the core ID under the PSR column, the process ID under the
PID column, and the thread ID under the LWP column to see where the processes and/or
threads are placed on the cores.

Note that the ps command provides a snapshot of the placement at that specific time. You
may need to monitor the placement from time to time to make sure that the
processes/threads do not migrate.

Instrument your code to

Call the mpi_get_processor_name function, to get the name of the processor an
MPI process is running on

•

Call the Linux C function sched_getcpu() to get the processor number the
process or thread is running on

•

For more information, see Instrumenting your Fortran Code to Check Process/Thread
Placement.

Process/Thread Pinning Overview 169

Using SGI's dplace Tool for Pinning

Summary: The dplace tool binds processes/threads to specific processor cores to
improve your code performance. For an introduction to pinning at NAS, see Process/Thread
Pinning Overview.

The SGI dplace tool binds processes/threads to specific processor cores. Once pinned,
the processes/threads do not migrate. This can improve the performance of your code by
increasing the percentage of local memory accesses.

dplace invokes a kernel module to create a job placement container consisting of all (or a
subset of) the CPUs of the cpuset. In the current dplace version 2, an LD_PRELOAD
library (libdplace.so) is used to intercept calls to the functions fork(), exec(), and
pthread_create() to place tasks that are being created. Note that tasks created internal
to glib are not intercepted by the preload library. These tasks will not be placed. If no
placement file is being used, then the dplace process is placed in the job placement
container and (by default) is bound to the first CPU of the cpuset associated with the
container.

Syntax

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \
 [-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \
 command [command-args]
dplace [-p placement_file] [-o log_file] command [mpiexec -np4 a.out]
dplace [-q] [-qq] [-qqq]

As illustrated above, dplace "execs" command (in this case, without its mpiexec
arguments), which executes within this placement container and continues to be bound to
the first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If a placement file is being used, then the dplace process is not placed at the time the job
placement container is created. Instead, placement occurs as processes are forked and
executed.

Options for dplace

Explanations for some of the options are provided below. For additional information, see
man dplace on either Pleiades or Columbia.

Using SGI's dplace Tool for Pinning 170

-e and -c cpu_numbers

-e determines exact placement. As processes are created, they are bound to CPUs in the
exact order specified in the CPU list. CPU numbers may appear multiple times in the list.

A CPU value of "x" indicates that binding should not be done for that process. If the end of
the list is reached, binding starts over again at the beginning of the list.

-c cpu_numbers specifies a list of CPUs, optionally strided CPU ranges, or a striding
pattern. For example:

-c 1•
-c 2-4 (equivalent to -c 2,3,4)•
-c 12-8 (equivalent to -c 12,11,10,9,8)•
-c 1,4-8,3•
-c 2-8:3 (equivalent to -c 2,5,8)•
-c CS•
-c BT•

NOTE: CPU numbers are not physical CPU numbers. They are logical CPU numbers that
are relative to the CPUs that are in the allowed set, as specified by the current cpuset.

A CPU value of "x" (or *), in the argument list for the -c option, indicates that binding
should not be done for that process. The value "x" should be used only if the -e option is
also used.

Note that CPU numbers start at 0.

For striding patterns, any subset of the characters (B)lade, (S)ocket, (C)ore, (T)hread may
be used; their ordering specifies the nesting of the iteration. For example, SC means to
iterate all the cores in a socket before moving to the next CPU socket, while CB means to
pin to the first core of each blade, then the second core of every blade, and so on.

For best results, use the -e option when using stride patterns. If the -c option is not
specified, all CPUs of the current cpuset are available. The command itself (which is
"execed" by dplace) is the first process to be placed by the -c cpu_numbers.

Without the -e option, the order of numbers for the -c option is not important.

-x skip_mask

Provides the ability to skip placement of processes. The skip_mask argument is a
bitmask. If bit N of skip_mask is set, then the N+1th process that is forked is not placed.
For example, setting the mask to 6 prevents the second and third processes from being
placed. The first process (the process named by the command) will be assigned to the first

Using SGI's dplace Tool for Pinning 171

CPU. The second and third processes are not placed. The fourth process is assigned to the
second CPU, and so on. This option is useful for certain classes of threaded applications
that spawn a few helper processes that typically do not use much CPU time.

-s skip_count

Skips the first skip_count processes before starting to place processes onto CPUs. This
option is useful if the first skip_count processes are "shepherd" processes used only for
launching the application. If skip_count is not specified, a default value of 0 is used.

-q

Lists the global count of the number of active processes that have been placed (by
dplace) on each CPU in the current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers. If specified twice, lists the current
dplace jobs that are running. If specified three times, lists the current dplace jobs and the
tasks that are in each job.

-o log_file

Writes a trace file to log_file that describes the placement actions that were made for
each fork, exec, etc. Each line contains a time-stamp, process id:thread number, CPU that
task was executing on, taskname and placement action. Works with version 2 only.

Examples of dplace Usage

For OpenMP Codes

#PBS -lselect=1:ncpus=8

#With Intel compiler versions 10.1.015 and later,
#you need to set KMP_AFFINITY to disabled
#to avoid the interference between dplace and
#Intel's thread affinity interface.

setenv KMP_AFFINITY disabled

#The -x2 option provides a skip map of 010 (binary 2) to
#specify that the 2nd thread should not be bound. This is
#because under the new kernels (including the ones used on
#Pleiades and Columbia), the master thread (first thread)
#will fork off one monitor thread (2nd thread) which does
#not need to be pinned.

Using SGI's dplace Tool for Pinning 172

#On Pleiades, if the number of threads is less than
#the number of cores, choose how you want
#to place the threads carefully. For example,
#the following placement is good on Harpertown
#but not good on other Pleiades processor types:

dplace -x2 -c 2,1,4,5 ./a.out

To check the thread placement, you can add the -o option to create a log:

dplace -x2 -c 2,1,4,5 -o log_file ./a.out
Or use the following command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample Output of log_file

timestamp process:thread cpu taskname| placement action
15:32:42.196786 31044 1 dplace | exec ./openmp1, ncpu 1
15:32:42.210628 31044:0 1 a.out | load, cpu 1
15:32:42.211785 31044:0 1 a.out | pthread_create thread_number 1, ncpu -1
15:32:42.211850 31044:1 - a.out | new_thread
15:32:42.212223 31044:0 1 a.out | pthread_create thread_number 2, ncpu 2
15:32:42.212298 31044:2 2 a.out | new_thread
15:32:42.212630 31044:0 1 a.out | pthread_create thread_number 3, ncpu 4
15:32:42.212717 31044:3 4 a.out | new_thread
15:32:42.213082 31044:0 1 a.out | pthread_create thread_number 4, ncpu 5
15:32:42.213167 31044:4 5 a.out | new_thread
15:32:54.709509 31044:0 1 a.out | exit

Sample Output of placement.out

PSR COMMAND TIME PID PPID LWP
 1 a.out 00:00:02 31044 31039 31044
 0 a.out 00:00:00 31044 31039 31046
 2 a.out 00:00:02 31044 31039 31047
 4 a.out 00:00:01 31044 31039 31048
 5 a.out 00:00:01 31044 31039 31049

Note that Intel OpenMP jobs use an extra thread that is unknown to the user and it does not
need to be placed. In the above example, this extra thread (31046) is running on core
number 0.

For MPI Codes Built with SGI's MPT Library

With SGI's MPT, only 1 shepherd process is created for the entire pool of MPI processes,
and the proper way of pinning using dplace is to skip the shepherd process.

Using SGI's dplace Tool for Pinning 173

Here is an example for Columbia:

#PBS -l ncpus=8
....
 mpirun -np 8 dplace -s1 -c 0-7 ./a.out
or
 mpiexec -np 8 dplace -s1 -c 0-7 ./a.out

On Pleiades, if the number of processes in each node is less than the number of cores in
that node, choose how you want to place the processes carefully. For example, the
following placement works well on Harpertown nodes, but not on other Pleiades processor
types:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

To check the placement, you can set MPI_DSM_VERBOSE, which prints the placement in
the PBS stderr file:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
setenv MPI_DSM_VERBOSE
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

Output in PBS stderr File

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r75i2n13 1
 1 1 yes r75i2n13 2
 2 2 yes r75i2n13 4
 3 3 yes r75i2n13 5
 4 0 yes r87i2n6 1
 5 1 yes r87i2n6 2
 6 2 yes r87i2n6 4
 7 3 yes r87i2n6 5

If you use the -o log_file flag of dplace, the CPUs where the processes/threads are
placed will be printed, but the node names are not printed.

#PBS -l select=2:ncpus=8:mpiprocs=4
....
mpiexec -np 8 dplace -s1 -c 2,4,1,5 -o log_file ./a.out

Output in log_file

timestamp process:thread cpu taskname | placement action
15:16:35.848646 19807 - dplace | exec ./new_pi_mpt126, ncpu -1

Using SGI's dplace Tool for Pinning 174

15:16:35.877584 19807:0 - a.out | load, cpu -1
15:16:35.878256 19807:0 - a.out | fork -> pid 19810, ncpu 1
15:16:35.879496 19807:0 - a.out | fork -> pid 19811, ncpu 2
15:16:35.880053 22665:0 - a.out | fork -> pid 22672, ncpu 2
15:16:35.880628 19807:0 - a.out | fork -> pid 19812, ncpu 4
15:16:35.881283 22665:0 - a.out | fork -> pid 22673, ncpu 4
15:16:35.882536 22665:0 - a.out | fork -> pid 22674, ncpu 5
15:16:35.881960 19807:0 - a.out | fork -> pid 19813, ncpu 5
15:16:57.258113 19810:0 1 a.out | exit
15:16:57.258116 19813:0 5 a.out | exit
15:16:57.258215 19811:0 2 a.out | exit
15:16:57.258272 19812:0 4 a.out | exit
15:16:57.260458 22672:0 2 a.out | exit
15:16:57.260601 22673:0 4 a.out | exit
15:16:57.260680 22674:0 5 a.out | exit
15:16:57.260675 22671:0 1 a.out | exit

For MPI Codes Built with MVAPICH2 Library

With MVAPICH2, 1 shepherd process is created for each MPI process. You can use ps -L
-u your_userid on the running node to see these processes. To properly pin MPI
processes using dplace, you cannot skip the shepherd processes and must use the
following:

mpiexec -np 4 dplace -c2,4,1,5 ./a.out

Using SGI's dplace Tool for Pinning 175

Using Intel OpenMP Thread Affinity for Pinning

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: The Intel compiler's OpenMP runtime library has the ability to bind OpenMP
threads to physical processing units. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the code
performance. For most OpenMP codes, type=scatter would provide the best
performance, as it minimizes cache and memory bandwidth contention for Nehalem-EP,
Westmere, and Sandy Bridge. For Harpertown, using an explicit proclist should give the
best performance.

Recommended Approaches

Two approaches are recommended for using the Intel OpenMP thread affinity capability:

Use the KMP_AFFINITY Environment Variable

The thread affinity interface is controlled using the KMP_AFFINITY environment variable.

Syntax

For csh and tcsh:

setenv KMP_AFFINITY [<modifier>,...]<type>[,<permute>][,<offset>]
For sh, bash,and ksh:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Use the Compiler Flag -par-affinity Compiler Option

Starting with the Intel compiler version 11.1, thread affinity can also be specified through
the compiler option -par-affinity. The use of -openmp or -parallel is required in
order for this option to take effect. This option overrides the environment variable when both
are specified. See man ifort for more information.

Using Intel OpenMP Thread Affinity for Pinning 176

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Syntax

-par-affinity=[<modifier>,...]<type>[,<permute>][,<offset>]
For both of these approaches, type is the only required argument, and it indicates the type
of thread affinity to use. Descriptions of the arguments (type, modifier, permute, and
offset) can be found on Intel's Thread Affinity Interface web page.

Note: Intel compiler versions 11.1 and later are recommended, as some of the affinity
methods described below are not supported in earlier versions.

Possible Values of type

Possible values for type are:

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating
system supports affinity, the compiler still uses the OpenMP thread affinity interface to
determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine
topology map.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the
OpenMP runtime library to behave as if the affinity interface was not supported by the
operating system. This includes implementations of the low-level API interfaces such as
kmp_set_affinity and kmp_get_affinity that have no effect and will return a
nonzero error code.

Additional information from Intel:

"The thread affinity type of KMP_AFFINITY environment variable defaults to none
(KMP_AFFINITY=none). The behavior for KMP_AFFINITY=none was changed in 10.1.015
or later, and in all 11.x compilers, such that the initialization thread creates a "full mask" of
all the threads on the machine, and every thread binds to this mask at startup time. It was
subsequently found that this change may interfere with other platform affinity mechanism,
for example, dplace() on SGI Altix machines. To resolve this issue, a new affinity type
disabled was introduced in compiler 10.1.018, and in all 11.x compilers
(KMP_AFFINITY=disabled). Setting KMP_AFFINITY=disabled will prevent the runtime
library from making any affinity-related system calls."

Using Intel OpenMP Thread Affinity for Pinning 177

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

type = compact

Specifying compact causes the threads to be placed as close together as possible. For
example, in a topology map, the nearer a core is to the root, the more significance the core
has when sorting the threads.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=compact,verbose

for csh, tcsh
setenv KMP_AFFINITY compact,verbose

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system.
Scatter is the opposite of compact.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=scatter,verbose

for csh, tcsh
setenv KMP_AFFINITY scatter,verbose

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been
explicitly specified by using the proclist= modifier, which is required for this affinity type.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY="explicit,proclist=[0,1,4,5],verbose"

for csh, tcsh
setenv KMP_AFFINITY "explicit,proclist=[0,1,4,5],verbose"

For nodes that support hyper-threading (such as Nehalem-EP, Westmere, and Sandy Br),
you can use the granularity modifier to choose whether to pin OpenMP threads to
physical cores using granularity=core (the default) or pin to logical cores using

Using Intel OpenMP Thread Affinity for Pinning 178

granularity=fine or granularity=thread for the compact and scatter types.

For most OpenMP codes, type=scatter should provide the best performance, as it
minimizes cache and memory bandwidth contention for Nehalem-EP, Westmere, and
Sandy Bridge nodes. For Harpertown nodes, using an explicit proclist should give the
best performance.

Examples

The following examples illustrate the thread placement of an OpenMP job with four threads
on various platforms with different thread affinity methods. The variable
OMP_NUM_THREADS is set to 4:

for sh, ksh, bash
export OMP_NUM_THREADS=4

for csh, tcsh
setenv OMP_NUM_THREADS 4

The use of the verbose modifier is recommended, as it provides an output with the
placement.

Harpertown

Note that every two cores (indicated with same color) in Harpertown share L2 cache.

Four threads running on one node (eight physical cores) of Harpertown will get the
following thread placement:

setting of KMP_AFFINITY Processor id 0 2 4 6 1 3 5 7
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,1,4,5],verbose" thread id 0 2 1 3

Nehalem-EP

Note that four physical cores (indicated with same color) in Nehalem-EP share the same L3
cache.

Four threads running on one node (eight physical cores and 16 logical cores due to
hyper-threading) of Nehalem-EP will get the following thread placement:

setting of KMP_AFFINITY Processor id 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15

Using Intel OpenMP Thread Affinity for Pinning 179

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,2,4,6],verbose" thread id 0 1 2 3
Note that with granularity=core, an OpenMP thread is pinned to a physical core, and is
allowed to float between the two logical cores associated with the physical core. For
example, with granularity=core,compact, both threads 0 and 1 are pinned to the
logical core set {0,8}. If you use granularity=fine,compact instead, thread 0 is pinned
to logical core 0 and thread 1 is pinned to logical core 8, respectively.

Westmere

Note that six physical cores (indicated with same color) in Westmere share the same L3
cache.

Four threads running on 1 node (12 physical cores and 24 logical cores due to
hyper-threading) of Westmere will get the following thread placement:

setting of KMP_AFFINITY Processor
id 0,121,132,143,154,165,176,187,198,209,2110,2211,23

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,3,6,9],verbose"thread id 0 1 2 3

Sandy Bridge

As seen in the configuration diagram of a Sandy Bridge node, each set of eight physical
cores in a socket share the same L3 cache.

Four threads running on 1 node (16 physical cores and 32 logical cores due to
hyper-threading) of Sandy Bridge will get the following thread placement:

Columbia

Each Columbia host has hundreds of cores. Based on the number of cores requested by
the PBS job, a cpuset is created with the requested number of cores. Depending on
availability, PBS may not be able to allocate consecutive cores to a job.

There are two cores per node (indicated with same color, below) on Columbia21, while

Using Intel OpenMP Thread Affinity for Pinning 180

http://www.nas.nasa.gov/kb_upload/image/kb285_sandybridge_1030881.png

there are four cores per node on C22-24. In the following example, 8 consecutive cores
(cores 4-11) are allocated on Columbia21.

Four threads running on 8 cores of Columbia21 will get the following thread placement:

setting of KMP_AFFINITY Processor id 4 5 6 7 8 9 10 11
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 1 2 3
"explicit,proclist=[5,7,9,11],verbose" thread id 0 1 2 3

Using Intel OpenMP Thread Affinity for Pinning 181

Using SGI MPT Environment Variables for Pinning

Summary: For MPI codes built with SGI's MPT libraries, one way to control pinning is to set
certain MPT memory placement environment variables. For an introduction to pinning at
NAS, see Process/Thread Pinning Overview.

MPT Environment Variables

Here are the MPT memory placement environment variables:

MPI_DSM_VERBOSE

Directs MPI to display a synopsis of the NUMA and host placement options being used at
run time to the standard error file.

Default: not enabled

The setting of this environment variable is ignored if MPI_DSM_OFF is also set.

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process gets a
unique CPU and physical memory on the node with which that CPU is associated.
Currently, the CPUs are chosen by simply starting at relative CPU 0 and incrementing until
all MPI processes have been forked.

SGI defaults:

off for MPT.1.25•
on for MPT.1.26, MPT.2.0.1, MPT.2.0.4, MPT.2.0.6•

NAS local defaults:

off for PBS jobs using Harpertown nodes•
on for PBS jobs using Nehalem, Westmere, and Sandy Bridge nodes•
on for PBS jobs on Columbia•

WARNING: Under most situations, it is a bad practice to set this environment variable for
running on the Harpertown nodes. For the Nehalem and Westmere nodes, it is
recommended that you do not set this environment variable if the nodes are not fully
populated with MPI processes. This is because the CPUs are chosen sequentially from
relative CPU 0.

Using SGI MPT Environment Variables for Pinning 182

The setting of this environment variable is ignored if MPI_DSM_CPULIST is also set or if
dplace or omplace is used.

MPI_DSM_CPULIST

Specifies a list of CPUs on which to run an MPI application, excluding the shepherd
process(es) and mpirun. The number of CPUs specified should equal the number of MPI
processes (excluding the shepherd process) that will be used.

Syntax and examples for the list:

Use a comma and/or hyphen to provide a delineated list:

place MPI processes ranks 0-2 on CPUs 2-4
and ranks 3-5 on CPUs 6-8
setenv MPI_DSM_CPULIST "2-4,6-8"

•

Use a "/" and a stride length to specify CPU striding:

Place the MPI ranks 0 through 3 stridden
on CPUs 8, 10, 12, and 14
setenv MPI_DSM_CPULIST 8-15/2

•

Use a colon to separate CPU lists of multiple hosts:

Place the MPI processes 0 through 7 on the first host
on CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.
setenv MPI_DSM_CPULIST 8-15:16-23

•

Use a colon followed by allhosts to indicate that the prior list pattern applies to all
subsequent hosts/executables:

Place the MPI processes onto CPUs 0, 2, 4, 6 on all hosts
setenv MPI_DSM_CPULIST 0-7/2:allhosts

•

Examples

An MPI job requesting 2 nodes on Pleiades and running 4 MPI processes per node will get
the following placements, depending on the environment variables set:

#PBS -lselect=2:ncpus=8:mpiprocs=4
module load <a_mpt_module>
setenv
cd $PBS_O_WORKDIR
mpiexec -np 8 ./a.out

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_DISTRIBUTE

•

Using SGI MPT Environment Variables for Pinning 183

MPI: DSM information
MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r86i3n5 0
 1 1 yes r86i3n5 1
 2 2 yes r86i3n5 2
 3 3 yes r86i3n5 3
 4 0 yes r86i3n6 0
 5 1 yes r86i3n6 1
 6 2 yes r86i3n6 2
 7 3 yes r86i3n6 3

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6

MPI: WARNING MPI_DSM_CPULIST CPU placement spec list is too short.
MPI: MPI processes on host #1 and later will not be pinned.
MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r22i1n7 0
 1 1 yes r22i1n7 2
 2 2 yes r22i1n7 4
 3 3 yes r22i1n7 6
 4 0 no r22i1n8 0
 5 1 no r22i1n8 0
 6 2 no r22i1n8 0
 7 3 no r22i1n8 0

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:0,2,4,6

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:allhosts

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

Using SGI MPT Environment Variables for Pinning 184

Using SGI omplace for Pinning

Summary: The omplace wrapper script pins processes and threads for better
performance. It works with SGI MPT, Intel MPI, and hybrid MPI/OpenMP applications.

SGI's omplace is a wrapper script for dplace. It provides an easier syntax than dplace
for pinning processes and threads. omplace works with SGI MPT as well as with Intel MPI.
In addition to pinning pure MPI or pure OpenMP applications, omplace can also be used
for pinning hybrid MPI/OpenMP applications.

A few issues with omplace to keep in mind:

dplace and omplace do not work with Intel compiler versions 10.1.015 and
10.1.017. Use the Intel compiler version 11.1 or later, instead

•

To avoid interference between dplace/omplace and Intel's thread affinity
interface, set the environment variable KMP_AFFINITY to disabled or set
OMPLACE_AFFINITY_COMPAT to ON

•

The omplace script is part of SGI's MPT, and is located under the
/nasa/sgi/mpt/mpt_version_number/bin directory

•

Syntax

For OpenMP:
setenv OMP_NUM_THREADS nthreads
omplace [OPTIONS] program args...
or
omplace -nt nthreads [OPTIONS] program args...

For MPI:
mpiexec -np nranks omplace [OPTIONS] program args...

For MPI/OpenMP hybrid:
setenv OMP_NUM_THREADS nthreads
mpiexec -np nranks omplace [OPTIONS] program args...
or
mpiexec -np nranks omplace -nt nthreads [OPTIONS] program args...

Some useful omplace options are listed below:

-b basecpu
Specifies the starting CPU number for the effective CPU list.

-c cpulist
Specifies the effective CPU list. This is a comma-separated list of CPUs or CPU
ranges.

WARNING: For omplace, a blank space is required between -c and cpulist.
Without the space, the job will fail. This is different from dplace.

Using SGI omplace for Pinning 185

-nt nthreads
Specifies the number of threads per MPI process. If this option is unspecified, it
defaults to the value set for the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not set, then nthreads defaults to 1.

-v
Verbose option. Portions of the automatically generated placement file will be
displayed.

-vv
Very verbose option. The automatically generated placement file will be displayed in
its entirety.

For information about additional options, see man omplace.

Examples

For Pure OpenMP Codes Using the Intel OpenMP Library

Sample PBS script:

#PBS -lselect=1:ncpus=12:model=wes

module load comp-intel/11.1.072
setenv KMP_AFFINITY disabled

omplace -c 0,3,6,9 -vv ./a.out

Sample placement information for this script is given in the application's stout file:

omplace: placement file /tmp/omplace.file.21891
 firsttask cpu=0
 thread oncpu=0 cpu=3-9:3 noplace=1 exact

The above placement output may not be easy to understand. A better way to check the
placement is to run the ps command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out
Sample output of placement.out

PSR COMMAND TIME PID PPID LWP
 0 openmp1 00:00:02 31918 31855 31918
 19 openmp1 00:00:00 31918 31855 31919
 3 openmp1 00:00:02 31918 31855 31920
 6 openmp1 00:00:02 31918 31855 31921
 9 openmp1 00:00:02 31918 31855 31922

Note that Intel OpenMP jobs use an extra thread that is unknown to the user, and does not
need to be placed. In the above example, this extra thread is running on logical core
number 19.

Using SGI omplace for Pinning 186

For Pure MPI Codes Using SGI MPT

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#Setting MPI_DSM_VERBOSE allows the placement information
#to be printed to the PBS stderr file

setenv MPI_DSM_VERBOSE

mpiexec -np 8 omplace -c 0,3,6,9 ./a.out

Sample placement information for this script is shown in the PBS stderr file:

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r144i3n12 0
 1 1 yes r144i3n12 3
 2 2 yes r144i3n12 6
 3 3 yes r144i3n12 9
 4 0 yes r145i2n3 0
 5 1 yes r145i2n3 3
 6 2 yes r145i2n3 6
 7 3 yes r145i2n3 9

In this example, the four processes on each node are evenly distributed to the two sockets
(CPUs 0 and 3 are on the first socket while CPUs 6 and 9 on the second socket) to
minimize contention. If omplace had not been used, then placement would follow the rules
of the environment variable OMP_DSM_DISTRIBUTE, and all four processes would have
been placed on the first socket -- likely leading to more contention.

For MPI/OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Proper placement is more critical for MPI/OpenMP hybrid codes than for pure MPI or pure
OpenMP codes. The following example demonstrates the situation when no placement
instruction is provided and the OpenMP threads for each MPI process are stepping on one
another which likely would lead to very bad performance.

Sample PBS script without pinning:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

Using SGI omplace for Pinning 187

setenv OMP_NUM_THREADS 2

mpiexec -np 8 ./a.out

There are two problems with the resulting placement shown in the example above. First,
you can see that the first four MPI processes on each node are placed on four cores
(0,1,2,3) of the same socket, which will likely lead to more contention compared to when
they are distributed between the two sockets.

MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 1
 2 2 yes r212i0n10 2
 3 3 yes r212i0n10 3
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 1
 6 2 yes r212i0n11 2
 7 3 yes r212i0n11 3

The second problem is that, as demonstrated with the ps command below, the OpenMP
threads are also placed on the same core where the associated MPI process is running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:02 4098 4092 4098
 0 a.out 00:00:02 4098 4092 4108
 0 a.out 00:00:02 4098 4092 4110
 1 a.out 00:00:03 4099 4092 4099
 1 a.out 00:00:03 4099 4092 4106
 2 a.out 00:00:03 4100 4092 4100
 2 a.out 00:00:03 4100 4092 4109
 3 a.out 00:00:03 4101 4092 4101
 3 a.out 00:00:03 4101 4092 4107

Sample PBS script demonstrating proper placement:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load mpi-sgi/mpt.2.04.10789
module load comp-intel/11.1.072

setenv MPI_DSM_VERBOSE
setenv OMP_NUM_THREADS 2
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

#the following two lines will result in identical placement

mpiexec -np 8 omplace -nt 2 -c 0,1,3,4,6,7,9,10 -vv ./a.out
#mpiexec -np 8 omplace -nt 2 -c 0-10:bs=2+st=3 -vv ./a.out

Using SGI omplace for Pinning 188

Shown in the PBS stderr file, the 4 MPI processes on each node are properly distributed
on the two sockets with processes 0 and 1 on CPUs 0 and 3 (first socket) and processes 2
and 3 on CPUs 6 and 9 (second socket).

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 3
 2 2 yes r212i0n10 6
 3 3 yes r212i0n10 9
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 3
 6 2 yes r212i0n11 6
 7 3 yes r212i0n11 9

In the PBS stout file, it shows the placement of the two OpenMP threads for each MPI
process:

omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.6454
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact
omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.22771
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact

To get a better picture of how the OpenMP threads are placed, using the following ps
command:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:06 4436 4435 4436
 1 a.out 00:00:03 4436 4435 4447
 1 a.out 00:00:03 4436 4435 4448
 3 a.out 00:00:06 4437 4435 4437
 4 a.out 00:00:05 4437 4435 4446
 6 a.out 00:00:06 4438 4435 4438
 7 a.out 00:00:05 4438 4435 4444
 9 a.out 00:00:06 4439 4435 4439
 10 a.out 00:00:05 4439 4435 4445

Using SGI omplace for Pinning 189

Using the mbind Tool for Pinning

Summary: The mbind utility is a "one-stop" tool for binding processes and threads for MPI
and OpenMP, and hybrid applications.

The mbind utility, developed at NAS, is used for binding processes and threads to CPUs. It
works for MPI, OpenMP, or MPI+OpenMP hybrid applications, and is available under
/u/scicon/tools/bin on Pleiades.

One of the benefits of mbind is that it relieves users from the burden of learning the
complexity of each individual pinning approach for associated MPI or OpenMP libraries. It
providing a uniform usage model that works for multiple MPI and OpenMP environments.

Currently supported MPI and OpenMP libraries are listed below.

MPI:

SGI-MPT•
MVAPICH2•
INTEL-MPI•
OPEN-MPI•
MPICH2•

OpenMP:

Intel OpenMP runtime library•
GNU OpenMP library•
PGI runtime library•
Pathscale OpenMP runtime library•

Use of mbind is limited to cases where the same set of CPU lists is used for all processor
nodes, and the same number of threads is used for all processes.

WARNING: Be aware that mbind may have issues when used together with other
performance tools, such as PerfSuite.

Syntax
#For OpenMP:
mbind.x [-options] program [args]

#For MPI or MPI+OpenMP hybrid which supports mpiexec:
mpiexec -np nranks mbind.x [-options] program [args]

Information about all available options can be found in the text file
/u/scicon/tools/doc/mbind.txt on Pleiades.

Here are a few recommended mbind options:

Using the mbind Tool for Pinning 190

-cs, -cp, -cc; or -ccpulist
-cs for spread (default), -cp for compact, -cc for cyclic; -ccpulist for process
ranks (for example, -c0,3,6,9). CPU numbers in the cpulist are relative within a
cpuset if present.
Note that the -cs option will spread the processes and threads among the physical
cores to minimize various resource contentions, and is usually the best choice for
placement.

-nn
Number of processes per node.

-tn
Number of threads per process. The default value is given by the
OMP_NUM_THREADS environment variable.

-vn
Verbose flag; print some useful information. [n] controls the level of details. Default is
n=0 (OFF).

Examples

For Pure OpenMP Codes Using Intel OpenMP Library

Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes
#PBS -l walltime=0:5:0

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

mbind.x -cs -t4 -v ./a.out

The 4 OpenMP threads are spread (with the -cs option) among 4 physical cores in a node,
as shown in the application's stdout:

host: r211i0n5, ncpus 24, nthreads: 4, bound to cpus: {0,3,6,9}
The proper placement is further demonstrated in the output of the ps command below:

r211i0n5% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 9 a.out 00:02:06 849 711 849
3 a.out 00:00:00 849 711 850

 3 a.out 00:02:34 849 711 851
 0 a.out 00:01:47 849 711 852
 6 a.out 00:01:23 849 711 853

Note that Intel OpenMP creates an extra thread, which is unknown to the user and does not
need to be placed. In this example, this extra thread (thread id 850) is running on the same
core (core 3) as thread 851. Since this extra thread does not do any work, it will not

Using the mbind Tool for Pinning 191

interfere with the other threads.

For Pure MPI Codes Using SGI MPT

WARNING: mbind.x overwrites the placement initially performed by MPT's mpiexec. The
placement output from MPI_DSM_VERBOSE (if set) most likely is incorrect and should be
ignored.
Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -v ./a.out

On each of the two nodes, 4 MPI processes are spread among 4 physical cores (0,3,6,9),
as shown in the application's stdout:

host: r213i2n12, ncpus 24, process-rank: 0, bound to cpu: 0
host: r213i2n12, ncpus 24, process-rank: 1, bound to cpu: 3
host: r213i2n12, ncpus 24, process-rank: 3, bound to cpu: 9
host: r213i2n12, ncpus 24, process-rank: 2, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 4, bound to cpu: 0
host: r213i2n13, ncpus 24, process-rank: 5, bound to cpu: 3
host: r213i2n13, ncpus 24, process-rank: 6, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 7, bound to cpu: 9

For MPI+OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

On each of the two nodes, the 4 MPI processes are spread among the physical cores. The
2 OpenMP threads of each MPI process run on adjacent physical cores as seen in the

Using the mbind Tool for Pinning 192

application's stdout:

host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}

For MPI+OpenMP Hybrid Codes Using MVAPICH2 and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

#If you use mpirun_rsh instead of mpiexec
#use the following

mpirun_rsh -np 8 -hostfile $PBS_NODEFILE \
mbind.x -cs -n4 -t2 -v2 ./a.out

The application's stdout in this example is very similar to that in the previous MPT/Intel
OpenMP example.

For MPI+OpenMP Hybrid Codes Using Intel MPI and Intel OpenMP

The Intel MPI library automatically pins processes to CPUs to prevent unwanted process
migration. If you find that the placement done by the Intel MPI library is not optimal, you can
use mbind to do the pinning instead.

WARNING: Note that in order for mbind to work with the Intel MPI library, the internal
pinning mode of the library must be turned off explicitly by setting the environment variable
I_MPI_PIN to 0.
Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-intel/4.0.2.003

Using the mbind Tool for Pinning 193

setenv I_MPI_PIN 0

cd $PBS_O_WORKDIR

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE | \
 sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE` --rsh=ssh \
 --mpd=`which mpd` --ordered

mpiexec -ppn 4 -np 8 mbind.x -cs -n4 -t2 -v ./a.out

mpdallexit

For the above job, the following placement is seen in the application's stdout:

host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}

This can be confirmed by running the following ps command on the running nodes. For
clarity, the extra OpenMP threads created by the Intel OpenMP (which don't do any work)
are removed from the output.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 6 a.out 00:00:12 44698 44696 44698
 7 a.out 00:00:12 44698 44696 44715
 2 a.out 00:00:12 44699 44695 44699
 3 a.out 00:00:12 44699 44695 44711
 8 a.out 00:00:12 44700 44697 44700
 9 a.out 00:00:12 44700 44697 44713
 0 a.out 00:00:12 44701 44694 44701
 1 a.out 00:00:12 44701 44694 44717

If I_MPI_PIN is not set to 0 in the PBS script, then mbind.x prints out identical placement
results, as in the case where I_MPI_PIN is set to 0 but the ps command shows that some
OpenMP threads "step on" one another.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
3 a.out 00:00:12 44185 44182 44185

 3 a.out 00:00:12 44185 44182 44198
 6 a.out 00:00:19 44186 44183 44186
 7 a.out 00:00:12 44186 44183 44202
9 a.out 00:00:12 44187 44184 44187

 9 a.out 00:00:12 44187 44184 44200
 0 a.out 00:00:19 44188 44181 44188
 1 a.out 00:00:12 44188 44181 44204

Using the mbind Tool for Pinning 194

The mbind utility was created by NAS staff member Henry Jin.

Using the mbind Tool for Pinning 195

Instrumenting your Fortran Code to Check Process/Thread Placement

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code. To check whether your Fortran code has been successfully
pinned, use the C code, mycpu.c, found below.

The MPI function mpi_get_processor_name and the Linux C function sched_getcpu
can be inserted into your source code to check process and/or thread placement.

The MPI function mpi_get_processor_name returns the hostname an MPI process is
running on (to be used for MPI and/or MPI+OpenMP codes only). The Linux C function
sched_getcpu returns the processor number the process/thread is running on.

If your source code is written in Fortran, you can use the C code, mycpu.c, below, which
allows your Fortran code to call sched_getcpu.

C Program mycpu.c

#include <utmpx.h>
int sched_getcpu();

int findmycpu_ ()
{
 int cpu;
 cpu = sched_getcpu();
 return cpu;
}

Compile mycpu.c as follows to produce the object file mycpu.o:

pfe20% module load comp-intel/2011.2
pfe20% icc -c mycpu.c

The example below demonstrates how to instrument an MPI+OpenMP source code with
the above functions. The added lines are shown in red.

 program your_program
 use omp_lib
...
 integer :: resultlen, tn, cpu
 integer, external :: findmycpu
 character (len=8) :: name

 call mpi_init(ierr)
 call mpi_comm_rank(mpi_comm_world, rank, ierr)
 call mpi_comm_size(mpi_comm_world, numprocs, ierr)
 call mpi_get_processor_name(name, resultlen, ierr)
!$omp parallel

Instrumenting your Fortran Code to Check Process/Thread Placement 196

 tn = omp_get_thread_num()
 cpu = findmycpu()
 write (6,*) 'rank ', rank, ' thread ', tn,
 & ' hostname ', name, ' cpu ', cpu
.....
!$omp end parallel
 call mpi_finalize(ierr)
 end

Compile your instrumented code as follows:

pfe20% module load comp-intel/2011.2
pfe20% module load mpi-sgi/mpt.2.06a67
pfe20% ifort -o a.out -openmp mycpu.o your_program.f -lmpi

Sample PBS script

The PBS script below shows an example for running the hybrid MPI+OPenMP code across
two nodes, with 2 MPI processes per node and 4 OpenMP threads per process, and using
mbind to pin the processes and threads.

#PBS -lselect=2:ncpus=12:mpiprocs=2:model=wes
#PBS -lwalltime=0:10:00

cd $PBS_O_WORKDIR

module load comp-intel/2011.2
module load mpi-sgi/mpt.2.06a67

mpiexec -np 4 mbind.x -cs -n2 -t4 -v ./a.out

Here is a sample output:

These 4 lines are generated by mbind only if you have included the -v option:
host: r212i1n8, ncpus 24, process-rank: 0, nthreads: 4, bound to cpus: {0-3}
host: r212i1n8, ncpus 24, process-rank: 1, nthreads: 4, bound to cpus: {6-9}
host: r212i1n9, ncpus 24, process-rank: 2, nthreads: 4, bound to cpus: {0-3}
host: r212i1n9, ncpus 24, process-rank: 3, nthreads: 4, bound to cpus: {6-9}

These lines are generated by your instrumented code:
rank 0 thread 0 hostname r212i1n8 cpu 0
rank 0 thread 1 hostname r212i1n8 cpu 1
rank 0 thread 2 hostname r212i1n8 cpu 2
rank 0 thread 3 hostname r212i1n8 cpu 3
rank 1 thread 0 hostname r212i1n8 cpu 6
rank 1 thread 1 hostname r212i1n8 cpu 7
rank 1 thread 2 hostname r212i1n8 cpu 8
rank 1 thread 3 hostname r212i1n8 cpu 9
rank 2 thread 0 hostname r212i1n9 cpu 0
rank 2 thread 1 hostname r212i1n9 cpu 1
rank 2 thread 2 hostname r212i1n9 cpu 2

Instrumenting your Fortran Code to Check Process/Thread Placement 197

rank 2 thread 3 hostname r212i1n9 cpu 3
rank 3 thread 0 hostname r212i1n9 cpu 6
rank 3 thread 1 hostname r212i1n9 cpu 7
rank 3 thread 2 hostname r212i1n9 cpu 8
rank 3 thread 3 hostname r212i1n9 cpu 9

Note that these lines in your output may be listed in a different order.

This approach was suggested by NAS SGI analyst Ken Taylor.

Instrumenting your Fortran Code to Check Process/Thread Placement 198

Effective Use of Resources with PBS

Streamlining PBS Job File Transfers from Pleiades to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the Lou storage
nodes, or other nodes outside of Pleiades, all file transfers to Lou within a PBS job must
first go through one of the front-ends (pfe[20-27], or bridge[1-4]).

Here is an example of what you can add to your PBS script to accomplish this:

ssh to a bridge node (for example, bridge2) and create a directory on lou[1,2] where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via a bridge node to transfer the files.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

2.

Effective Use of Resources with PBS 199

Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool directory
of the first node of your job. However, the space under /PBS/spool is limited, and when it
fills up, any job that tries to write to /PBS/spool may die. This makes the node unusable by
jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined sizes of
error and output files produced by a job. If this policy goes into effect and a job exceeds that
limit, PBS will kill the job.

To prevent this from happening to your job, do not write large amounts of content in the
PBS output/error files. If your executable normally writes a lot of messages to either
standard out or standard error, you should redirect them in your PBS script. Below are a
few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1.

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2.

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3.

The files "output" and "error" are created under your own directory and you can view the
contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the script,
you can create unique filenames for each run. For example, you can add the PBS JOBID to
"output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server, such as
12345.pbspl1.nas.nasa.gov.

Avoiding Job Failure from Overfilling /PBS/spool 200

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a file, you
can see the contents of your PBS output/error files before your job completes by following
the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

2.

Avoiding Job Failure from Overfilling /PBS/spool 201

Running Multiple Serial Jobs to Reduce Wall-Time

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

Processor Types Cores/node Available Memory/node
Harpertown 8 7.6 GB
Nehalem-EP 8 22.5 GB
Westmere 12 22.5 GB
Sandy Bridge 16 ~31.0 GB
The examples below allow you to spawn serial jobs across nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel
module is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE
and places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of
the arguments -comm none for this version of mpiexec is essential for serial codes or
scripts. In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script wrapper.csh in which the input/output identifier (that is, ${rank}) is
calculated from the sum of $MPIEXEC_RANK and an argument provided as input by the
user.

Example 1

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh

Running Multiple Serial Jobs to Reduce Wall-Time 202

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (that is,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can
be modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you, and you have the current
directory included in your path.

Example 2

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of processors requested in a PBS job. Thus, the serial jobs
are divided into a few batches and the batches are processed sequentially. Again, the
wrapper script is used where multiple versions of the program a.out in a batch are run in
parallel.

serial2.pbs

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

The total number to run at once is automatically determined
at runtime by the number of CPUs available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. No changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

Running Multiple Serial Jobs to Reduce Wall-Time 203

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Wall-Time 204

Checking the Time Remaining in a PBS Job from a Fortran Code

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example:

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable
external pbs_time_left
integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed
call pbs_time_left(seconds_left)
print*,"Seconds remaining in PBS job:",seconds_left

Note: The return value from pbs_time_left is only accurate to within a minute or
two.

2.

Compile your modified code and link with the above library using, for example:
LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 205

Memory Usage on Pleiades

Memory Usage Overview

Running jobs on cluster systems such as Pleiades requires more attention to the memory
usage of a job than on shared memory systems. Below are a few factors that limit the
amount of memory available to your running job:

The total physical memory of a Pleiades compute node varies from 8 GB to 32 GB. A
small amount of the physical memory is used by the system kernel; through PBS, a
job can access up to about 7.6 GB of an 8-GB node (Harpertown), about 22.5 GB of
a 24-GB node (Nehalem-EP and Westmere-EP), and about 31 GB of a 32-GB node
(Sandy Bridge)

•

The PBS prologue tries to clean up the memory used by the previous job that ran on
the nodes of your current running job; if there is a delay in flushing the previous job's
data from memory to disks (for example, due to Lustre issues), the actual amount of
free memory available to your job will be less

•

I/O uses buffer cache that also occupies memory; if your job does a large amount of
I/O, the amount of memory left for your running processes will be less

•

If your job uses more than one node, beware that the memory usage reported in the PBS
output file is not the total memory usage for your job: rather, it is the memory used in the
first node of your job. To help you get a more accurate picture of the memory usage of your
job, we provide a few in-house tools, listed below.

qtop.pl
Invokes top on the compute nodes of a job, and provides a snapshot of the amount
of used and free memory of the whole node and the amount used by each running
process.
For more information, read the article Checking Memory Usage of a Batch Job Using
qtop.pl.

qps
Invokes ps on the compute nodes of a job, and provides a snapshot of the %mem
used by its running processes.
For more information, read the article Checking Memory Usage of a Batch Job Using
qps.

qsh.pl
Can be used to invoke the command cat /proc/meminfo on the compute nodes
to provide a snapshot of the total and free memory in each node.
For more information, read the article Checking Memory Usage of a Batch Job Using
qsh.pl and "cat /proc/meminfo".

gm.x and gm_post.x
Provides the memory high-water mark for each process of your job when the job
finishes.

Memory Usage on Pleiades 206

For more information, read the article Checking Memory Usage of a Batch Job Using
qm.x.

These tools are installed under the directory /u/scicon/tools/bin. It is a good idea to
include this directory in your path by modifying your shell startup script so that you don't
have to provide the complete path name when using these tools. For example:

set path = ($path /u/scicon/tools/bin)

If your job runs out of memory and is killed by the kernel, this event was probably recorded
in system log files. Instructions on how to check whether this is the case are provided in the
article Checking if a Job was Killed by the OOM Killer.

If your job needs more memory, read the article How to Get More Memory for your Job for
possible approaches.

Memory Usage Overview 207

Checking memory usage of a batch job using qps

qps (available under /u/scicon/tools/bin) is a Perl script that securely connects via ssh into
each node of a running job and gets process status (ps) information on each node.

Syntax:

pfe20% qps jobid
Example:

pfe20% qps 26130

*** Job 26130, User abc, Procs 1
NODE TIME %MEM %CPU STAT TASK
r1i0n14 10:17:13 2.8 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:18 2.9 99.9 RL ./a.out
r1i0n14 10:16:34 2.9 99.8 RL ./a.out
r1i0n14 10:17:11 2.9 99.9 RL ./a.out
r1i0n14 10:17:13 2.9 99.9 RL ./a.out
r1i0n14 10:17:12 2.9 99.9 RL ./a.out
r1i0n14 10:17:15 2.9 99.9 RL ./a.out

Note: The percentage of memory usage by a process reported by this script is the
percentage of memory in the whole node.

Checking memory usage of a batch job using qps 208

Checking memory usage of a batch job using qtop.pl

A Perl script called qtop.pl (available under /u/scicon/tools/bin) was provided by
Bob Hood of the NAS staff. This script "ssh's" into the nodes of a PBS job and performs the
command top. The output of qtop.pl provides memory usage for the whole node and for
each process.

Syntax:

pfe1% qtop.pl [-b] [-p n] [-P s] [-h n] [-H s] [-t s] [-N s] PBSjobid
 -b : (for running in background or batch) don't run 'resize' command
 -p n : show at most n processes per host
 -P s : show only procs in s, a comma-separated list of ranges
 e.g. -P 1,8-9
 -h : don't show the column header line
 -H s : show only header lines in s, comma-separated ranges
 e.g. -H 1-2,7
 e.g. -H 0 (don't show any lines)
 -t s : pass string s (must be one argument) to top command
 -n s : show output only from nodes in s, comma-separated ranges
 e.g. -n 0,2-3 (relative node #'s)
 -N s : show output only from nodes in s, a comma-separated list
 e.g. -N r1i1n14,r1i1n15 (absolute node #'s)

Example: to skip the header and list 8 procs per host

pfe1% qtop.pl -H 0 -p 8 996093
all nodes in job 996093: r184i2n12
r184i2n12 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 20027 zsmith 25 0 23.8g 148m 5320 R 101 0.6 5172:37 a.out
 20028 zsmith 25 0 23.8g 140m 5140 R 101 0.6 5173:35 a.out
 20029 zsmith 25 0 23.9g 286m 6640 R 101 1.2 5172:23 a.out
 20030 zsmith 25 0 23.9g 245m 5040 R 101 1.0 5171:18 a.out
 20031 zsmith 25 0 23.9g 265m 6040 R 101 1.1 5171:46 a.out
 20032 zsmith 25 0 23.9g 246m 5300 R 101 1.0 5171:00 a.out
 20033 zsmith 25 0 23.8g 158m 5476 R 101 0.7 5172:41 a.out
 20034 zsmith 25 0 23.8g 148m 5280 R 101 0.6 5173:02 a.out

Checking memory usage of a batch job using qtop.pl 209

Checking memory usage of a batch job using qsh.pl and "cat
/proc/meminfo"

A Perl script called qsh.pl (available under /u/scicon/tools/bin) was provided by
NAS staff member Bob Hood. This script "ssh's" into all the nodes used by a PBS job and
runs a command that you supply.

Syntax:

pfe1% qsh.pl pbs_jobid your_command
One good use of this script is to check the amount of free memory in the nodes of your PBS
job.

Example:

pfe1% qsh.pl 30329 "cat /proc/meminfo"

running "cat /proc/meminfo" on: r56i2n14 r56i2n15
r56i2n14 :
 MemTotal: 8079728 kB
 MemFree: 857936 kB
 Buffers: 0 kB
 Cached: 3775472 kB
...
r56i2n15 :
 MemTotal: 8079728 kB
 MemFree: 5840920 kB
 Buffers: 0 kB
 Cached: 784280 kB
...

Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo" 210

Checking memory usage of a batch job using gm.x

NAS staff member Henry Jin created a tool called gm.x (available under
/u/scicon/tools/bin) that reports the memory usage at the end of a run from each
process.

TIP: Add /u/scicon/tools/bin to your $PATH so that you can invoke gm.x without the
full path.
Use the -h option to find out what types of memory usage can be reported:

pfe1%gm.x -h
gm - version 1.0
usage: gm.x [-opts] a.out [args]
 -hwm ; high water mark (VmHWM)
 -rss ; resident memory size (VmRSS)
 -wrss ; weighted memory size (WRSS)
 -v ; verbose flag
Default is by environment variable GM_TYPE (def=WRSS)

Note that the -rss option reports the last snapshot of resident set size usage captured by
the kernel. With the -wrss option, gm.x calls the system function
get_weighted_memory_size. More information about this function can be found from
the man page man get_weighted_memory_size.

gm.x can be used for either OpenMP or MPI applications (linked with either SGI's MPT,
MVAPICH or Intel MPI libraries) and you do not have to recompile your application for it. A
script called gm_post.x then takes the per process memory usage information and
computes the total memory used and the average memory used per process.

To use gm.x for an MPI code, add gm.x after the mpiexec options. For example:

mpiexec -np 4 gm.x ./a.out
Memory usage for (r1i1n0,pid=9767): 1.458 MB (rank=0)
Memory usage for (r1i1n0,pid=9768): 1.413 MB (rank=1)
Memory usage for (r1i1n0,pid=9770): 1.413 MB (rank=3)
Memory usage for (r1i1n0,pid=9769): 1.417 MB (rank=2)

mpiexec -np 4 gm.x ./a.out | gm_post.x
Number of nodes = 1
Number of processes = 4
Processes per node = 4
Total memory = 5.701 MB

Memory per node = 5.701 MB
Minimum node memory = 5.701 MB
Maximum node memory = 5.701 MB

Memory per process = 1.425 MB
Minimum proc memory = 1.413 MB
Maximum proc memory = 1.458 MB

Checking memory usage of a batch job using gm.x 211

If you use dplace to pin process, add gm.x after dplace:

mpiexec -np NN dplace -s1 gm.x ./a.out

Checking memory usage of a batch job using gm.x 212

Checking if a Job was Killed by the OOM Killer

If a PBS job runs out of memory and is killed by the Out-Of-Memory (OOM) killer of the
kernel, this event is likely (though not always) recorded in system log files. You can confirm
this event by checking some of the messages recorded in system log files, and then
increase your memory request in order to get your job running.

Follow the steps below to check whether your job has been killed by the OOM killer:

Find out when your job ran, what rack numbers were used by your job, and if the job
exited with the Exit_status=137 from the tracejob output of your job. For
example:

pfe[20-27]% ssh pbspl1
pbspl1% tracejob -n 3 140001

Where "3" indicates that you want to trace your job (PBS JOBID=140001), which ran
within the past 3 days.

1.

From the rack numbers (such as r2, r3, ...), you then grep messages that were
recorded in the messages file stored in the leader node of those racks for your
executable. For example, to look at messages for rack r2:

pfe[20-27]% grep abc.exe /net/r2lead/var/log/messages
Apr 21 00:32:50 r2i2n7 kernel: abc.exe invoked oom-killer:
gfp_mask=0x201d2, order=0, oomkilladj=-17

2.

Often, the Out-Of-Memory message doesn't make it into the messages file, but will
be recorded in a consoles file named by each individual node. For example, to look
for abc.exe invoking the OOM killer on node r2i2n7:

3.

pfe% grep abc.exe /net/r2lead/var/log/consoles/r2i2n7
abc.exe invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

Note that these messages do not have a timestamp associated with them, so you
will need to use an editor to view the file and look for the hourly time markers
bracketing when the job ran out of memory. An hourly time marker looks like this:

[-- MARK -- Thu Apr 21 00:00:00 2011]
It's also possible that a system process (such as, pbs_mom or ntpd) is listed as
invoking the OOM killer, but it is nevertheless direct evidence that the node had run
out of memory.

If you want to monitor the memory use of your job while it is running, you can use the tools
listed in the article Memory Usage Overview.

In addition, NAS provides a script called pbs_oom_check. This script does the steps
above and parses the /var/log/messages on all the nodes associated with pbs_jobid,
looking for an instance of OOM killer. The script is available under

Checking if a Job was Killed by the OOM Killer 213

/u/scicon/tools/bin and works best when run on the host pbspl1.

Checking if a Job was Killed by the OOM Killer 214

How to Get More Memory for your Job

If your job was terminated because it needed more memory than what was available in the
nodes that it ran on, consider the following examples.

Harpertown Nodes

Among the Harpertown nodes, the 64 nodes in rack 32 have 16 GB per node (GB/node)
instead of 8 GB/node. You can request running your job on rack 32 with the keyword
bigmem=true. For example, change:

#PBS -lselect=1:ncpus=8

to

#PBS -lselect=1:ncpus=8:bigmem=true

Instead of running your jobs on Harpertown nodes, run them on Nehalem-EP, Westmere, or
Sandy Bridge nodes. For example, change:

#PBS -lselect=1:ncpus=8:model=har

to

#PBS -lselect=1:ncpus=8:model=neh

or

#PBS -lselect=1:ncpus=8:model=wes

or

#PBS -lselect=1:ncpus=8:model=san

Westmere Nodes

Among the Westmere nodes, 17 nodes have 48 GB/node and 4 nodes have 94 GB/node
instead of 24 GB/node. You can request using some of these nodes with the keyword
bigmem=true and model=wes. For example, change:

#PBS -lselect=1:ncpus=12:model=wes

to

#PBS -lselect=1:ncpus=12:bigmem=true:model=wes

If you submit your resource request as shown above, your job will be assigned either a 48
GB or a 94 GB bigmem node, depending on availability.

How to Get More Memory for your Job 215

To explicitly request a bigmem node with 94 GB of memory, add the :mem attribute with a
memory size between 48 and 94 GB. For example:

 #PBS -l select=1:ncpus=12:bigmem=true:mem=90GB:model=wes

Please note that these Westmere bigmem nodes can be used for jobs requesting the
normal, long, debug, and low queues. They are not available for the devel or gpu
queues.

All Nodes

If all processes use about the same amount of memory and you cannot fit 8 processes per
node (for Harpertown or Nehalem-EP), 12 processes per node (for Westmere), or 16
processors per node (for Sandy Bridge), then reduce the number of processes per node
and request more nodes for your job. For example, change:

#PBS -lselect=3:ncpus=8:mpiprocs=8:model=neh

to

#PBS -lselect=6:ncpus=4:mpiprocs=4:model=neh

For a typical MPI job where rank 0 does the I/O and uses a lot of buffer cache, assign rank
0 to one node by itself. For example, if rank 0 needs up to 22.5 GB of memory by itself,
change:

#PBS -lselect=1:ncpus=12:mpiprocs=12:model=wes

to

#PBS -lselect=1:ncpus=1:mpiprocs=1:model=wes+1:ncpus=11:mpiprocs=11:model=wes

If rank 0 needs 22.5 - 48 GB of memory by itself, use:

#PBS -lselect=1:ncpus=1:mpiprocs=1:bigmem=true:model=wes+1:ncpus=11:mpiprocs=11:model=wes

Note that due to formatting issues, the above may appear as two lines; it should be entered
as a single line.

If you suspect that certain nodes which your job ran on had less total physical memory than
normal, report it to the NAS Contol Room. Those nodes can be "off-lined" and taken care of
by NAS staff. This prevents you and other users from using those nodes before they are
fixed.

For certain pre- or post-processing work that needs more memory, you can use one of the
Westmere bigmem nodes in a PBS batch job or run the job interactively on the bridge
nodes (bridge[1-4]). Note that an interactive job cannot use more than 56 GB on bridge[1,2]

How to Get More Memory for your Job 216

or 192 GB on bridge[3,4]. Also, MPI applications that use SGI's MPT library cannot run on
the bridge nodes.

For a multi-process or multi-thread job, if any of your processes/threads need more than 94
GB, the job won't run on Pleiades. Instead, run it on a shared-memory system such as
Columbia.

How to Get More Memory for your Job 217

Lustre on Pleiades

Lustre Basics

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput. On
Pleiades, the Lustre filesystems are named "/nobackupp."

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

•

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

•

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

•

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

•

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

•

File Striping

A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

Lustre on Pleiades 218

allows one to have a file size larger than the size of an OST•

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

•

Drawbacks of striping:

higher risk of file damage due to hardware malfunction•

increased overhead due to network operations and server contention•

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1.

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2.

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3.

Use the lfs setstripe command for setting the stripe parameters.

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe20% mkdir dir1
pfe20% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.•

Lustre Basics 219

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

•

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe20% lfs osts

•

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp1:
pfe20% lfs df -h
pfe20% lfs df -h /nobackupp1

•

To list inode usage for all filesystems or a specific one, for example, /nobackupp1:
pfe20% df -i
pfe20% df -i /nobackupp1

•

To create a new (empty) file or set directory default with specified stripe parameters

pfe20% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

•

To list the striping information for a given file or directory

pfe20% lfs getstripe dir|filename

•

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp1):

pfe20% lfs quota -u username /nobackupp1

or

pfe20% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe20% lfs quota -v -u username /nobackup/username

•

See the lfs man page for more options and information.

Lustre Basics 220

Pleiades Lustre Filesystems

Summary: The Lustre filesystems on Pleiades are called "nobackup." As the name
suggests, these filesystems are for temporary use, and are not backed up. Lustre can
handle many large files, but you cannot store those files on Pleiades; if you want to save
them, move them to Lou.

Pleiades has several Lustre filesystems (/nobackupp[1-6]) that provide a total of about
6.795 petabytes of storage and serve thousands of cores. These filesystems are managed
under Lustre software version 1.8.6.

Lustre filesystem configurations are summarized at the end of this article.

WARNING: As the names suggest, these filesystems are not backed up, so any files that
are removed cannot be restored. Essential data should be stored on Lou[1-2] or on other,
more permanent storage.

Which /nobackup Should I Use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems. Find out which Lustre filesystem you have been assigned to by typing
the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23 2010 /nobackup/username -> /nobackupp2/username

In the above example, the symlink from /nobackup to /nobackupp2 shows that the
user's assigned nobackup system is /nobackupp2.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard quota limits for inodes are 75,000 and 100,000, respectively. Those for the disk
space are 500 gigabytes and 1 terabyte, respectively. To check your disk space and inodes
usage and quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid nnnn):
 Filesystem kbytes quota limit grace files quota limit grace
/nobackup/username 1234 530000000 1100000000 - 567 75000 100000 -

The NAS quota policy states that if you exceed the soft quota, an email will be sent that lists
your current usage and remaining grace period. It is expected that users will occasionally
exceed their soft limit, as needed; however after 14 days, users who are still over their soft
limit will have their batch queue access to Pleiades disabled.

Pleiades Lustre Filesystems 221

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, the jobs writing to it will hang. A Lustre error
with code -28 in the system log file indicates that the filesystem is full. The NAS Control
Room staff normally will send out emails to those using the most space, asking them to
clean up their files.

Lustre File Systems Configurations

In the table below, /nobackupp[1-6] are abbreviated as nbp[1-6]. P=Petabytes; T=Terabytes

Pleiades Lustre Configurations
Filesystem nbp1 nbp2 nbp3 nbp4 nbp5 nbp6
of MDSes 1 1 1 1 1 1
of MDTs 1 1 1 1 1 1
size of MDTs 0.9T 0.9T 0.6T 0.6T 0.8T 0.9T
of usable inodes
on MDTs ~256x10^6 ~256x10^6 ~173x10^6 ~173x10^6 ~512x10^6 ~256x10^6

of OSSes 8 8 8 8 8 8
of OSTs 120 120 60 60 120 120
size/OST 15T 15T 7.1T 7.1T 15T 7.1T
Total Space 1.7P 1.7P 424T 424T 1.7P 847T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1
NOTE: After January 13, 2011, directories without an explicit stripe count and/or stripe size
adopted the new stripe count of 1 and stripe size of 4MB. However, old files in that directory
retain their old default values. New files that you create in these directories will adopt the
new default values.

Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding the I/O operations of other users,
read the related articles listed below.

Pleiades Lustre Filesystems 222

mailto:support@nas.nasa.gov

Lustre Best Practices

Summary: At NAS, Lustre filesystems (/nobackup) are shared among many users and
many application processes, which causes contention for various Lustre resources. This
article explains how Lustre I/O works, and provides best practices for improving application
performance.

 How Does Lustre I/O Work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades contend for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs while working in our high-end
computing environment.

Best Practices

Avoid Using ls -l

The ls -l command displays information such as ownership, permission, and size of all
files and directories. The information on ownership and permission metadata is stored on
the MDTs. However, the file size metadata is only available from the OSTs. So, the ls -l
command issues RPCs to the MDS/MDT and OSSes/OSTs for every file/directory to be
listed. RPC requests to the OSSes/OSTs are very costly and can take a long time to
complete if there are many files and directories.

Use ls by itself if you just want to see if a file exists•
Use ls -l filename if you want the long listing of a specific file•

Lustre Best Practices 223

http://www.nas.nasa.gov/hecc/support/kb/Lustre_Basics_224.html#striping

Avoid Having a Large Number of Files in a Single Directory

Opening a file keeps a lock on the parent directory. When many files in the same directory
are to be opened, it creates contention. A better practice is to split a large number of files
(in the thousands or more) into multiple subdirectories to minimize contention.

Avoid Accessing Small Files on Lustre Filesystems

Accessing small files on the Lustre filesystem is not efficient. When possible, keep them on
an NFS-mounted filesystem (such as your home filesystem on Pleiades /u/username) or
copy them from Lustre to /tmp on each node at the beginning of the job, and then access
them from /tmp.

Use a Stripe Count of 1 for Directories with Many Small Files

If you must keep small files on Lustre, be aware that stat operations are more efficient if
each small file resides in one OST. Create a directory to keep small files, set the stripe
count to 1 so that only one OST will be needed for each file. This is useful when you extract
source and header files (which are usually very small files) from a tarfile. Use the Lustre
utility lfs to create a specific striping pattern, or find the striping pattern of existing files.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to stripe
across more than one OST. You can create a new directory with a larger stripe count and
copy the larger files to that directory. Note that moving files into that directory with the mv
command will not change the strip count of the files. Files must be created in or copied to a
directory to inherit the stripe count properties of a directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100 MB) and a few very large files
(greater than 1 GB), then it may be better to create a new subdirectory with a larger stripe
count. Store just the large files and create symbolic links to the large files using the symlink
command ln.

pfe1% mkdir bigstripe
pfe1% lfs setstripe -c 16 -s 4m bigstripe
pfe1% ln -s bigstripe/large_file large_file

Lustre Best Practices 224

Use mtar for Creating or Extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the number
of stripes is set to the number of gigabytes of the file.

Keep Copies of Your Source Code on the Pleiades Home Filesystem
and/or Lou

Be aware that files under /nobackup[p1-p6] are not backed up. Make sure that you have
copies of your source codes, makefiles, and any other important files saved on your
Pleiades home filesystem or on Lou, the NAS storage system.

Avoid Accessing Executables on Lustre Filesystems

There have been a few incidents on Pleiades where users' jobs encountered problems
while accessing their executables on the /nobackup filesystem. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on the
Lustre filesystem. This can cause a bus error when a job tries to bring the next set of
instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run executables
from your home filesystem on Pleiades. On rare occasions, running executables from the
Lustre filesystem can cause executables to be corrupted. Avoid copying new executables
over existing ones of the same name within the Lustre filesystem. The copy causes a
window of time (about 20 minutes) where the executable will not function. Instead, the
executable should be accessed from your home filesystem during runtime.

Increase the stripe_count for Parallel Writes to the Same File

When multiple processes are writing blocks of data to the same file in parallel, the I/O
performance for large files will improve when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the stripe
count is set to 1. While this default setting provides for efficient access of metadata--for
example to support the ls -l command--large files should use stripe counts of greater
than 1. This will increase the aggregate I/O bandwidth by using multiple OSTs in parallel
instead of just one. A rule of thumb is to use a stripe count approximately equal to the
number of gigabytes in the file.

Another good practice is to make the stripe count be an integral factor of the number of
processes performing the write in parallel, so that you achieve load balance among the

Lustre Best Practices 225

OSTs. For example, set the stripe count to 16 instead of 15 when you have 64 processes
performing the writes.

Limit the Number of Processes Performing Parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or fewer,
there will be contention if a large number of processes of an application are involved in
parallel I/O. Instead of allowing all processes to do the I/O, choose just a few processes to
do the work. For writes, these few processes should collect the data from other processes
before the writes. For reads, these few processes should read the data and then broadcast
the data to others.

Stripe Align I/O Requests to Minimize Contention

Stripe aligning means that the processes access files at offsets that correspond to stripe
boundaries. This helps to minimize the number of OSTs a process must communicate for
each I/O request. It also helps to decrease the probability that multiple processes accessing
the same file communicate with the same OST at the same time.

One way to stripe-align a file is to make the stripe size the same as the amount of data
in the write operations of the program.

Avoid Repetitive "stat" Operations

Some users have implemented logic in their scripts to test for the existence of certain files.
Such tests generate "stat" requests to the Lustre server. When the testing becomes
excessive, it creates a significant load on the filesystem. A workaround is to slow down the
testing process by adding sleep in the logic. For example, the following user script tests
the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their existence as
quickly as possible (on the order of 5,000 times per second). Adding sleep inside the loop

Lustre Best Practices 226

slows down the testing.

touch WAIT
 rm STOP

 while (0 <= 1)
 if(-e WAIT) then
 mpiexec ...
 rm WAIT
 endif
 if(-e STOP) then
 exit
 endif
sleep 15

 end

Avoid Having Multiple Processes Open the Same File(s) at the Same
Time

On Lustre filesystems, if multiple processes try to open the same file(s), some processes
will not able to find the file(s) and your job will fail.

The source code can be modified to call the sleep function between I/O operations. This will
reduce the occurrence of multiple, simultaneous access attempts to the same file from
different processes.

 100 open(unit,file='filename',IOSTAT=ierr)
 if (ierr.ne.0) then
 ...

call sleep(1)
 go to 100
 endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

Avoid Repetitive Open/Close Operations

Opening files and closing files incur overhead and repetitive open/close should be avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the open
statement. If possible, read the files once each and save the results, instead of reading the
files repeatedly.

If you intend to write to a file many times during a run, open the file once at the beginning of
the run. When all writes are done, close the file at the end of the run.

Lustre Best Practices 227

See also: Lustre Basics

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number, name of the filesystem, and the path of the directory or
file that you are trying to access.Your report will help us correlate issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 228

Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

Open/close of files on the Lustre file system•
Stat/statfs are query operations invoked by commands such as ls -l•
Read/write is the total volume of I/O in gigabytes•

The following is an example of this listing:

==
 LUSTRE Filesystem Statistics
--
nbp10 Metadata Operations
 open close stat statfs read(GB) write(GB)
 1057 1058 1394 0 2 14
Read 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 9 3 1 0 1 0 3 2 319
Write 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB
 138 13 1 11 36 9 21 37 12479
__
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

 CPU Time Used : 00:03:56
 Real Memory Used : 2464kb
 Walltime Used : 00:04:26
 Exit Status : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads occurred with block sizes between 4 KB and
8 KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

For tips for improving Lustre I/O, see Lustre Best Practices for multiple tips to improve the
Lustre I/O performance of your jobs.

Lustre Filesystem Statistics in PBS Output File 229

Using 'mtar' to Create or Extract Tar Files on Lustre

NAS's in-house developed mtar program is a modification of GNU tar version 1.25. It is
exactly equivalent to tar except that, if it detects a Lustre filesystem, then it restripes files
as they are "tarred" and/or "untarred" for better performance. Specifically:

The stripe count of files extracted on a Lustre filesystem will be dynamically selected
based on the original file size, so, small files will be extracted with small stripe counts
and large files will be extracted with large stripe counts

•

Tar files created on a Lustre file system will have a stripe count based on the sum of
the sizes of all component files

•

TIP: We recommend using mtar in place of tar when creating or extracting from a tar file
on Lustre.
Currently, the number of stripes set by mtar is essentially the number of gigabytes of that
file (for disk storage, 1 GB = 109 bytes), limited by the number of object storage targets in
that Lustre filesystem.

Tar files created with gzip (-z), bzip2 (-j), and arbitrary compression
(--use-compress-program) will preserve the striping of the uncompressed tar file.

Using mtar

mtar is available in /usr/local/bin on the Pleiades front-ends (pfe[20-27], bridge[1-4]).
Usage of mtar is exactly the same as tar and you don't have to know anything extra, as it
all happens automatically.

The following example demonstrates its usage and the comparison between mtar and
tar. Note that some output has been removed for clarity.

%ls -l *_file
-rw------- 1 zsmith s0101 16800000112 Aug 3 14:58 17g_file
-rw------- 1 zsmith s0101 1200000008 Aug 3 14:51 2g_file
-rw------- 1 zsmith s0101 1215 Aug 3 15:04 2k_file

%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

Notice that the default stripe count is 1 on all Pleiades Lustre filesystems.

Comparison of tar and mtar

Using 'mtar' to Create or Extract Tar Files on Lustre 230

tar mtar
%tar cvf tar.tar 17g_file 2g_file 2k_file
%lfs getstripe tar.tar
tar.tar
lmm_stripe_count: 1

%mtar cvf mtar.tar 17g_file 2g_file 2k_file
%lfs getstripe mtar.tar
mtar.tar
lmm_stripe_count: 19

%tar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar xvf mtar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 1
2g_file
lmm_stripe_count: 1
2k_file
lmm_stripe_count: 1

%mtar xvf tar.tar
%lfs getstripe *_file
17g_file
lmm_stripe_count: 17
2g_file
lmm_stripe_count: 2
2k_file
lmm_stripe_count: 1

%tar zcvf tar.tgz tar.tar
%lfs getstripe tar.tgz
tar.tgz
lmm_stripe_count: 1

%mtar zcvf mtar.tgz mtar.tar
%lfs getstripe mtar.tgz
mtar.tgz
lmm_stripe_count: 19

Notice that the tar-created archive has a default stripe count, while the mtar-created
archive has a stripe count based on the sizes of component files. In addition, tar-extracted
files all have a default stripe count, while mtar-extracted files have a variable stripe count
depending on size. Also notice that using mtar with compression preserves striping of the
uncompressed tar file.

The mtar script was created by NAS staff member Paul Kolano.

Using 'mtar' to Create or Extract Tar Files on Lustre 231

	Table of Contents
	Computing at NAS
	Computing Overview

	Computing Hardware
	Pleiades
	Pleiades: Introduction
	Pleiades Configuration Details
	Harpertown Processors
	Nehalem-EP Processors
	Westmere Processors
	Pleiades Home Filesystem
	Pleiades Lustre Filesystems
	Pleiades Front-End Usage Guidelines
	Pleiades Interconnect
	GPU Basics
	Sandy Bridge Processors

	Columbia
	Columbia: Introduction
	Columbia Hardware Overview
	Columbia Configuration Details
	Columbia Home Filesystems
	Columbia CXFS Filesystems
	Columbia Front-End Usage Guidelines

	Porting & Developing Applications
	Porting & Developing: Overview
	Endian and Related Environment Variables or Compiler Options
	OpenMP
	Compilers
	Intel Compiler
	GNU Compiler Collection
	PGI Compilers and Tools

	MPI Libraries
	SGI MPT
	MVAPICH

	Math & Scientific Libraries
	MKL
	SCSL
	MKL FFTW Interface

	Program Development Tools
	Recommended Intel Compiler Debugging Options
	Totalview
	Totalview Debugging on Pleiades
	Totalview Debugging on Columbia
	IDB
	GDB
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Porting to Pleiades
	Recommended Compiler Options
	Porting with SGI MPT
	With MVAPICH
	With Intel-MPI
	With OpenMP
	With SGI's MPI and Intel OpenMP
	With MVAPICH and Intel OpenMP

	Porting to Columbia
	Default or Recommended compiler version and options
	Porting to Columbia: With SGI's MPT
	Porting to Columbia: With OpenMP
	Porting to Columbia: With MPI and OpenMP

	Software Environment
	Software: Overview
	Operating Systems
	Modules
	Table of All Modules
	Licensed Application Software
	Licensed Application Software: Overview
	Tecplot
	IDL
	Matlab
	Gaussian
	FieldView
	Gridgen

	Running Jobs with PBS
	Portable Batch System (PBS): Overview
	Job Accounting
	Job Accounting Utilities
	Multiple GIDs and Charging to a specific GID
	Commonly Used PBS Commands
	Commonly Used QSUB Options in PBS Scripts or in the QSUB Command Line
	New Features in PBS
	Checkpointing and Restart
	PBS Environment Variables
	PBS Scheduling Policy
	PBS exit codes
	Front-End Usage Guidelines
	Pleiades Front-End Usage Guidelines
	Columbia Front-End Usage Guidelines

	PBS on Pleiades
	Overview
	Queue Structure
	Mission Shares Policy on Pleiades
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Pleiades
	Pleiades devel Queue

	PBS on Columbia
	Overview
	Resources Request Examples
	Default Variables Set by PBS
	Sample PBS Script for Columbia

	Troubleshooting PBS Jobs
	Common Reasons for Being Unable to Submit Jobs
	Common Reasons Why Jobs Won't Start
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

	Effective Use of PBS
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Wall-Time
	Checking the Time Remaining in a PBS Job from a Fortran Code
	Using GNU Parallel to Package Multiple Jobs in a Single PBS Job

	Best Practices
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Increasing File Transfer Rates
	Choosing an MPI Library
	Process Pinning
	Process/Thread Pinning Overview
	Using SGI's dplace Tool for Pinning
	Using Intel OpenMP Thread Affinity for Pinning
	Using SGI MPT Environment Variables for Pinning
	Using SGI omplace for Pinning
	Using the mbind Tool for Pinning
	Instrumenting your Fortran Code to Check Process/Thread Placement

	Effective Use of Resources with PBS
	Streamlining PBS Job File Transfers from Pleiades to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Wall-Time
	Checking the Time Remaining in a PBS Job from a Fortran Code

	Memory Usage on Pleiades
	Memory Usage Overview
	Checking memory usage of a batch job using qps
	Checking memory usage of a batch job using qtop.pl
	Checking memory usage of a batch job using qsh.pl and "cat /proc/meminfo"
	Checking memory usage of a batch job using gm.x
	Checking if a Job was Killed by the OOM Killer
	How to Get More Memory for your Job

	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File
	Using 'mtar' to Create or Extract Tar Files on Lustre

