
Table of Contents
Tips & Tricks.........................................................................................................................1

File Transfers Tips.......................................................................................................1
Avoiding Job Failure from Overfilling /PBS/spool........................................................2
Using Access Control Lists for File Sharing.................................................................4
Using 'Giveto' to Copy Files and/or Directories to Another User.................................8
Increasing File Transfer Rates...................................................................................10
Running Jobs Before Pleiades Dedicated Time........................................................12
Preparing to Run on Pleiades' Sandy Bridge Nodes.................................................13



Tips & Tricks

File Transfers Tips

Below are some quick and easy techniques that may improve your performance rates when
transferring files remotely to or from NAS.

Transfer files from the /nobackup file system, which is often faster than the locally
mounted disks.

• 

If you are using scp, try adding the -C option to enable file compression, which can
sometimes double your performance rates:

% scp -C filename user@remotehost.com:

• 

For SCP transfers, use a low process-overhead cipher such as arcfour:

% scp -carcfour filename user@remotehost.com:

• 

This can increase your transfer rates by 5x, compared to older methods such as
3des.

If you are transferring from Lou, make sure your file is online first, not on archive
tape. If you use shiftc for the transfers it will automatically ensure that files on Lou
are online before transfer. If you are not using shiftc, use the following DMF
commands to determine/change the location of your files:

% dmls -al filename   # show the status of your file.
% dmget filename      # retrieve your file from tape prior to transferring.

Get the full list of DMF commands.

• 

Use the bridge nodes to transfer files instead of using the Pleiades and Columbia
front ends (pfe[20-27], cfe2). The bridge nodes have 10-Gigabit interfaces and more
memory to handle multiple and large file transfers.

• 

If you are transferring many small files, try using the tar command to compress
them into a single file prior to transfer. Copying one large file is faster than
transferring many small files.

• 

For files larger than a gigabyte, we recommended using BBFTP software, which can
achieve much faster rates than single-stream applications such as scp or rsync.

• 

To improve your performance by modifying your system, see TCP Performance Tuning for
WAN Transfers.

If you continue experiencing slow transfers and want to work with a network engineer to
help improve file transfers, please contact the NAS Control Room at
support@nas.nasa.gov.

Tips & Tricks 1

mailto:support@nas.nasa.gov


Avoiding Job Failure from Overfilling /PBS/spool

When your PBS job is running, its error and output files are kept in the /PBS/spool directory
of the first node of your job. However, the space under /PBS/spool is limited, and when it
fills up, any job that tries to write to /PBS/spool may die. This makes the node unusable by
jobs until the spool directory is cleaned up manually.

To avoid this situation, PBS may start enforcing a 100-MB limit on the combined sizes of
error and output files produced by a job. If this policy goes into effect and a job exceeds that
limit, PBS will kill the job. 

To prevent this from happening to your job, do not write large amounts of content in the
PBS output/error files. If your executable normally writes a lot of messages to either
standard out or standard error, you should redirect them in your PBS script. Below are a
few options to consider:

Redirect standard out and standard error to a single file:

(for csh)
mpiexec a.out >& output
(for bash)
mpiexec a.out > output 2>&1

1. 

Redirect standard out and standard error to separate files:

(for csh)
(mpiexec a.out > output) > error
(for bash)
mpiexec a.out > output 2> error

2. 

Redirect only standard out to a file:

(for both csh and bash)
mpiexec a.out > output

3. 

The files "output" and "error" are created under your own directory and you can view the
contents of these files while your job is still running.

If you are concerned that these two files could get clobbered in a second run of the script,
you can create unique filenames for each run. For example, you can add the PBS JOBID to
"output" using the following:

(for csh)
mpiexec a.out >& output.$PBS_JOBID
(for bash)
mpiexec a.out > output.$PBS_JOBID 2>&1

where $PBS_JOBID contains a number (jobid) and the name of the PBS server, such as

Avoiding Job Failure from Overfilling /PBS/spool 2



12345.pbspl1.nas.nasa.gov.

If you just want to include the numeric part of the PBS JOBID, do the following:

(for csh)
set jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out >& output.$jobid
(for bash)
export jobid=`echo $PBS_JOBID | awk -F . '{print $1}'`
mpiexec a.out > output.$jobid 2>&1

In the event that you do not redirect your executable's standard out and error to a file, you
can see the contents of your PBS output/error files before your job completes by following
the two steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1. 

%qstat -u your_username -W o=+rank0
JobID         User   Queue  Jobname   TSK Nds    wallt S    wallt  Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long   ABC       512  64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the contents of these files using vi or view.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug  2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800  1234236 Aug  2 19:33 868819.pbspl1.nas.nasa.gov.ER

2. 

Avoiding Job Failure from Overfilling /PBS/spool 3



Using Access Control Lists for File Sharing

A common way to share files and/or directories with group members or others is to use the
chmod command to change the permissions. Yet chmod has limitations, so using Access
Control Lsts (ACLs) may sometimes be your method of choice.

When you issue the command chmod g+rx filename, for example, all the members in
your group (g) gain read (r) and search/execute (x) access to that file, as shown below:

% ls -l foo
-rw------- 1 zsmith s0101 9 Jun 10 12:11 foo

% chmod g+rx foo

% ls -l foo
-rw-r-x--- 1 zsmith s0101 9 Jun 10 12:11 foo

However, chmod does not allow you to select which members of your group or which
specific individuals outside of your group can access your files/directories. For this, use
ACLs, which provide a mechanism for finer-grain control of file sharing. There are two ACL
commands:

setfacl - set file access control lists

SYNOPSIS
       setfacl [-bkndRLPvh] [{-m|-x} acl_spec] [{-M|-X} acl_file] file ...

       setfacl --restore=file

A detailed usage explanation of setfacl and its options can be found via man
setfacl. Among the options listed:

The -m or -M option lets you "modify" the ACL, where -m expects an ACL on
the command line and -M expects an ACL from a file or from standard input

1. 

The -x or -X option removes the ACL entries2. 
The -R or --recursive option applies operations to all files and directories
recursively

3. 

The --test option allows you to test the effect of changing the ACL without
actually changing it

4. 

The -b option removes all extended ACL entries except the base entries of
the owner, group, and others

5. 

• 

getfacl - get file access control lists

SYNOPSIS
       getfacl [-dRLPvh] file ...

       getfacl [-dRLPvh] -

• 

Using Access Control Lists for File Sharing 4



A detailed usage explanation of getfacl and its options can be found via man
getfacl.

Note that setfacl operations are supported on all Pleiades, Lou and Columbia
filesystems except the Columbia home filesystems.

Before you grant another user or group access to certain files or directories, make sure that
access to the parent directory (where the files or directories reside) is also allowed.

Example 1

To allow another user (jbrown) to have read/execute (rx) permission on a file (foo) and to
view the ACL before and after an ACL change:

% ls -l foo
-rw------- 1 zsmith s0101 9 Jun 10 12:11 foo

% getfacl foo
# file: foo
# owner: zsmith
# group: s0101
user::rw-
group::---
other::---

% setfacl -m u:jbrown:rx foo

% getfacl foo
# file: foo
# owner: zsmith
# group: s0101
user::rw-
user:jbrown:r-x
group::---
mask::r-x
other::---

% ls -l foo
-rw-r-x---+ 1 zsmith s0101 9 Jun 10 12:11 foo

Example 2

To remove all extended ACLs in Example 1 except the base entries of the owner, group,
and others:

% setfacl -b foo

% ls -l foo
-rw------- 1 zsmith s0101 9 Jun 10 12:11 foo

Using Access Control Lists for File Sharing 5



% getfacl foo
# file: foo
# owner: zsmith
# group: s0101
user::rw-
group::---
other::---

Example 3

Continuing from Example 1, to test the granting of read/execute (rx) access to another
group (group id 24176) without actually doing it:

% setfacl --test -m g:24176:rx foo foo: u::rw-,u:jbrown:r-x,g::---,g:g24176:r-x,m::r-x,o::---,*  

% getfacl foo
# file: foo
# owner: zsmith 
# group: s0101 
user::rw- 
user:jbrown:r-x 
group::--- 
mask::r-x 
other::---

Example 4

To allow another user (jbrown) recursive access to a directory (dir.abc which contains a
file foo2):

% ls -ld dir.abc
drwx------ 2 zsmith s0101 17 Jun 10 13:19 dir.abc

% ls -l dir.abc
total 0
-rw------- 1 zsmith s0101 0 Jun 10 13:19 foo2

% setfacl -R -m u:jbrown:rx dir.abc

% getfacl dir.abc
# file: dir.abc
# owner: zsmith
# group: s0101
user::rwx
user:jbrown:r-x
group::---
mask::r-x
other::---

% getfacl dir.abc/foo2

Using Access Control Lists for File Sharing 6



# file: dir.abc/foo2
# owner: zsmith
# group: s0101
user::rw-
user:jbrown:r-x
group::---
mask::r-x
other::---

% ls -ld dir.abc
drwxr-x---+ 2 zsmith s0101 17 Jun 10 13:19 dir.abc

% ls -l dir.abc
total 0
-rw-r-x---+ 1 zsmith s0101 0 Jun 10 13:19 foo2

Example 5

Continuing from Example 4, to recursively remove all permissions user jbrown for a
directory:

% setfacl -R -x u:jbrown dir.abc

% getfacl dir.abc
# file: dir.abc
# owner: zsmith
# group: s0101
user::rwx
group::---
mask::---
other::---

% getfacl dir.abc/foo2
# file: dir.abc/foo2
# owner: zsmith
# group: s0101
user::rw-
group::---
mask::---
other::---

For more information on ACLs, read man acl.

Using Access Control Lists for File Sharing 7



Using 'Giveto' to Copy Files and/or Directories to Another
User

NAS's in-house developed giveto script is built on the use of  Access Control Lists (ACL).
It allows one user (the giver) to copy files and/or directories to a /nobackup directory of
another user (the recipient).

giveto is installed under /usr/local/bin on Pleiades, Columbia and Lou.

In the example below, user zsmith gives a copy of his dir.abc directory on Pleiades to
user jbrown. The steps describe the giveto command used by each of them, and the
results.

User jbrown uses the command giveto -i zsmith to automatically (a) create an
INCOMING directory (if it does not already exist) under her /nobackup/jbrown
and (b) grant user zsmith read/write/execute permission on this directory.

pfe20:/u/jbrown% giveto -i zsmith
nobackup[1] =  /nobackup/jbrown

pfe20:/u/jbrown% ls -ld /nobackup/jbrown/INCOMING
drwxrwx---+ 2 jbrown s0202 4096 Jun 14 12:18 /nobackup/jbrown/INCOMING

1. 

User zsmith uses the command giveto jbrown dir.abc to automatically (a)
create a subdirectory called zsmith_0 under jbrown's INCOMING directory, (b)
copy dir.abc to /nobackup/jbrown/INCOMING/zsmith_0, (c) grant user
jbrown read/write/execute permission on
/nobackup/jbrown/INCOMING/zsmith_0, and (d) send an email to user jbrown
regarding the copy.

pfe20:/home1/zsmith> ls -ld dir.abc
drwx------ 2 zsmith s0101 17 Jun 14 12:21 dir.abc/

pfe20:/home1/zsmith> giveto jbrown dir.abc
setfacl -m u:jbrown:rwx zsmith_0
setfacl -m u:jbrown:rwx zsmith_0/giveto.log
setfacl -m u:jbrown:rwx zsmith_0/dir.abc
setfacl -m u:jbrown:rwx zsmith_0/dir.abc/foo2
path =  /nobackup/jbrown/INCOMING/zsmith_0
total 12
drwxrwx---+ 3 zsmith  s0101 4096 Jun 14 12:29 .
drwxrwx---+ 3 jbrown  s0202 4096 Jun 14 12:29 ..
drwxrwx---+ 2 zsmith  s0101 4096 Jun 14 12:21 dir.abc
-rw-rwx---+ 1 zsmith  s0101   44 Jun 14 12:29 giveto.log

Note: If the directory zsmith_0 already exists prior to this step, zsmith_1 would be
used instead.

2. 

User jbrown receives an email from user zsmith with a subject line "giveto files".
They see that the directory dir.abc has been copied successfully. Even though the
directory /nobackup/jbrown/INCOMING/zsmith_0 is still owned by user zsmith,

3. 

Using 'Giveto' to Copy Files and/or Directories to Another User 8



user jbrown now has permission to read/write/execute files and directories under
/nobackup/jbrown/INCOMING/zsmith_0.

pfe20:/u/jbrown% ls -lrt /nobackup/jbrown/INCOMING
total 4
drwxrwx---+ 3 zsmith s0101 4096 Jun 14 12:29 zsmith_0

pfe20:/u/jbrown%ls -lrt /nobackup/jbrown/INCOMING/zsmith_0
total 4
drwxrwx---+ 2 zsmith s0101 4096 Jun 14 12:21 dir.abc

pfe20:/u/jbrown%ls -lrt /nobackup/jbrown/INCOMING/zsmith_0/dir.abc
total 4
-rw-rwx---+ 1 zsmith s0101 8 Jun 14 12:21 foo2

pfe20:/u/jbrown%getfacl /nobackup/jbrown/INCOMING/zsmith_0/dir.abc
# file: /nobackup/jbrown/INCOMING/zsmith_0/dir.abc
# owner: zsmith
# group: s0101
user::rwx
user:jbrown:rwx
group::---
mask::rwx
other::---

Read man giveto for more information.

The giveto script was created by NAS staff member Arthur Lazanoff.

Using 'Giveto' to Copy Files and/or Directories to Another User 9



Increasing File Transfer Rates

Summary: If you are moving large files, use the bbftp or shiftc commands instead of
cp or scp. An online NAS service can help diagnose your remote network connection
issues, and our network experts can work with your specific file transfer problems.

For fastest file transfer between Pleiades /nobackup and Lou2, log into Lou and use
shiftc, cxfscp, cp, mcp, or tar.

Moving large amounts of data efficiently to or from NAS across the network can be
challenging. Often, minor system, software, or network configuration changes can increase
network performance an order of magnitude or more.

If you are experiencing slow transfer rates, try these quick tips:

Pleiades /nobackup are mounted on Lou2, enabling disk-to-disk copying, which
should give the highest transfer rates. You can use the shiftc, cp, or mcp
commands to copy files or even make tar files directly from Pleiades /nobackup to
your Lou home directory.

• 

If using the scp command, make sure you are using OpenSSH version 5 or later.
Older versions of SSH have a hard limit on transfer rates and are not designed for
WAN transfers. You can check your version of SSH by running the command ssh
-V.

• 

For large files that are a gigabyte or larger, we recommend using bbFTP. This
application allows for transferring simultaneous streams of data and doesn't have the
overhead associated with encrypting all the data (authentication is still encrypted).

• 

Another reliable option for large file transfers is through the Shift client, which
includes options specific to the NAS environment, such as checking to see whether
files residing on Lou are also on tape.

• 

Online Network Testing Tools

The NAS PerfSONAR Service provides a custom website that allows you to quickly
self-diagnose your remote network connection issues. It reports the maximum bandwidth
between sites, as well as any problems in the network path. Command-line tools are
available if your system does not have a web browser.

Test results are also sent to our network experts, who will analyze traffic flows, identify
problems, and work to resolve any bottlenecks that limit your network performance, whether
the problem is at NAS or at a remote site.

One-on-One Help

Increasing File Transfer Rates 10

https://npad.nas.nasa.gov/


If you would like further assistance, contact the NAS Control Room at
support@nas.nasa.gov, and a network expert will work with you or your local administrator
one-on-one to identify methods for increasing your transfer rates.

To learn about other network-related support areas see End-to-End Networking Services.

Increasing File Transfer Rates 11

mailto:support@nas.nasa.gov
http://www.nas.nasa.gov/hecc/services/networking_service.html


Running Jobs Before Pleiades Dedicated Time

The PBS batch scheduler on Pleiades now supports a feature called shrink-to-fit (STF).
This feature allows you to specify a range of acceptable wall times for a job, so that PBS
can run the job sooner than it might otherwise. SFT is particularly helpful when scheduling
jobs before an upcoming dedicated time.

For example, suppose your typical job requires 5 days of walltime. If there are less than 5
days before the start of dedicated time, the job won't run until after dedicated time.
However, if you know that your job can do enough useful work running for 3 days or longer,
you can submit it in the following way:

qsub -l min_walltime=72:00:00,max_walltime=120:00:00 job_script
When PBS attempts to run your job, it will initially look for a time slot of 5 days; but when no
such time slot is found between now and the dedicated time, it will look for shorter and
shorter time slots, down to the min_walltime of 3 days.

If you have an existing job that is still queued, you can use the qalter command to add
these min_walltime and max_walltime attributes:

qalter -l min_walltime=hh:mm:ss,max_walltime=hh:mm:ss jobid
Or change the wall time with the command:

qalter -l walltime=hh:mm:ss jobid
If you have any questions or problems, please contact the NAS Control Room at
support@nas.nasa.gov.

Running Jobs Before Pleiades Dedicated Time 12

mailto:support@nas.nasa.gov


Preparing to Run on Pleiades' Sandy Bridge Nodes

Overview of Sandy Bridge Compute Nodes

Pleiades has 24 Sandy Bridge racks, each containing 72 nodes. Each of the 24 nodes
contains 2 eight-core E5-2670 processor chips and has 32 GB of memory.

The E5-2670 processor speed is 2.6 GHz when Turbo Boost is OFF, and can reach 3.3
GHz when Turbo Boost is ON. When Turbo Boost is enabled, idle cores are turned off and
and power is channeled to the active cores, making them more efficient. The net effect is
that the active cores perform above their clock speed (that is, overclocked).

The Sandy Bridge nodes are connected to the Pleiades InfiniBand (ib0 and ib1) network via
the 4-link fourteen data rate (4x FDR) devices and switches for inter-node communication.

The Lustre filesystems, /nobackupp[1-6], are accessible from the Sandy Bridge nodes.

Compiling Your Code For Sandy Bridge Nodes

One important feature of the Sandy Bridge processor is its use of the Advanced Vector
Extensions (AVX), a set of instructions for doing Single Instruction Multiple Data (SIMD)
operations on Intel architecture processors. AVX uses 256-bit floating point registers, which
are twice as wide as the 128-bit registers used in the Harpertown, Nehalem-EP and
Westmere processors. With two floating-point functional units and 256-bit registers (which
can hold four double-precision floating-point values or eight single precision floating point
values), a code with well-vectorized loops can achieve a maximum of either eight
double-precision floating-point operations (FLOPs) per cycle, per core or 16
single-precision FLOPs per cycle, per core.

To take advantage of AVX, we recommend that you recompile your code with an Intel
version 12 compiler (for example, comp-intel/2011.7.256) on Pleiades, using either of
the following compiler flags:

-O2 (or -O3) -xAVX

for an executable that only runs on Sandy Bridge

• 

-O2 (or -O3) -axAVX -xSSE4.1

for an executable that can run on all four Pleiades processor types

• 

You may also add the compiler options -ip or -ipo, which allow the compiler to look for
ways to better optimize and/or vectorize your code.

To get a report on how well your code is vectorized, add the compiler flag -vec-report2.

Preparing to Run on Pleiades' Sandy Bridge Nodes 13



To compare the performance differences between using AVX and not using AVX, we
recommend that you create separate executables, one with -xAVX or -axAVX -xSSE4.1
and another one without them. If you do not notice much performance improvement using
these flags, then your code does not benefit from AVX.

However, this does not mean that your code will not run faster on Sandy Bridge nodes than
on Harpertown, Nehalem-EP or Westmere nodes, because your code can still benefit from
other Sandy Bridge hardware improvements, such as larger L3 cache, higher memory
bandwidth, and faster interconnects.

If you have an MPI code that uses the SGI MPT library, you should use the module
mpi-sgi/mpt.2.06a67. This is because FDR is supported in MPT 2.06, but not in earlier
versions (mpt.1.25, mpt.1.26, mpt.2.01, and all mpt.2.04 modules).

TIP: It is important to check the correctness of your runs on Sandy Bridge before production
work.

Running PBS Jobs on Sandy Bridge Nodes

Of the 24 Sandy Bridge racks, 22 will be used for production runs via the normal, debug,
and long queues. The remaining two racks will be used for development work via the
devel queue.

To request Sandy Bridge nodes, use :model=san in your PBS script:

#PBS -l select=xx:ncpus=yy:model=san
To request the devel queue, use either of the following methods:

In your PBS script, add:

#PBS -q devel
In your qsub command line, use:

pfe% qsub -q devel your_pbs_script
Since there are 16 cores per Sandy Bridge node compared to 12 cores per Westmere node
and 8 cores per Nehalem-EP or Harpertown node, a PBS job running with a fixed number
of processes or threads should use fewer Sandy Bridge nodes than the other three
processor types.

For example, if you used to run a 48-process job with 4 Westmere nodes, or 6 Nehalem-EP
or Harpertown nodes, you should request 3 Sandy Bridge nodes instead.

For Westmere
#PBS -lselect=4:ncpus=12:mpiprocs=12:model=wes

For Nehalem
#PBS -lselect=6:ncpus=8:mpiprocs=8:model=neh

Preparing to Run on Pleiades' Sandy Bridge Nodes 14



For Harpertown
#PBS -lselect=6:ncpus=8:mpiprocs=8:model=har

For Sandy Bridge
#PBS -lselect=3:ncpus=16:mpiprocs=16:model=san

Sample PBS Script For Sandy Bridge

#PBS -lselect=3:ncpus=16:mpiprocs=16:model=san
#PBS -q devel

module load comp-intel/2011.7.256 mpi-sgi/mpt.2.06a67

cd $PBS_O_WORKDIR

mpiexec -np 48 ./a.out

For more information about Sandy Bridge nodes, see:

Pleiades architecture overview• 
Sandy Bridge Processors• 

Preparing to Run on Pleiades' Sandy Bridge Nodes 15

http://www.nas.nasa.gov/hecc/resources/pleiades.html

	Table of Contents
	Tips & Tricks
	File Transfers Tips
	Avoiding Job Failure from Overfilling /PBS/spool
	Using Access Control Lists for File Sharing
	Using 'Giveto' to Copy Files and/or Directories to Another User
	Increasing File Transfer Rates
	Running Jobs Before Pleiades Dedicated Time
	Preparing to Run on Pleiades' Sandy Bridge Nodes


